
Recap on Subtype



Rule of Subsumption

a value of one type can always safely be used where a
value of the other is expected.

1. a subtyping relation between types, written S <: T

2. a rule of subsumption stating that, if S <: T, then any 
value of type S can also be regarded as having type T



Subtype Relation



Properties 

of 

Subtyping



Safety
Statements of progress and preservation theorems are
unchanged from λ→

However, Proofs become a bit more involved, because the
typing relation is no longer syntax directed.

i.e., given a derivation, we don’t always know what rule was
used in the last step

e.g., the rule T-SUB could appear anywhere



An Inversion Lemma for subtyping
Lemma: If   U <: T1 ⟶ T2,   then  U has the form U1 ⟶ U2, with  

T1 <: U1 and  U2 <: T2.
Proof:   By induction on subtyping derivations
Case S-Arrow: U = U1 ⟶ U2 T1 <: U1 U2 <: T2

Immediate.

Case S-Refl: U = T1 ⟶ T2

By S-Refl (twice), T1 <: T1 and T2 <: T2, as required

Case S-Trans: U <: W W <: T1 ⟶ T2

― Applying the IH to the second subderivation, we find that W
has the form W1 ⟶ W2, with T1 <: W1 and W2 <: T2.

― Now the IH applies again (to the first subderivation), telling
us that U has the form U1 ⟶ U2 , with W1 <: U1 and U2 <: W2.

― By S-Trans, T1 <: U1 , and, by S-Trans again, U2 <: T2, as
required.



Inversion Lemma for Typing
Lemma: if Γ ⊢ λx: S1. s2: T1 ⟶ T2, then

T1 <: S1 and Γ, x: S1 ⊢ s2: T2

Proof: Induction on typing derivations.

Case T-ABS: T1 =S1 T2 =S2 Γ, x:S1 ⊢ s2 : S2

Case T–SUB: Γ ⊢ λx:S1.s2: U U: T1⟶T2

― By the subtyping inversion lemma, U1 ⟶ U2, with T1 <: U1

and U2 <: T2.

― The IH now applies, yielding U1 <: S1 and Γ, x:S1 ⊢ s2 : U2.

― From U1 <: S1 and T1 <: U1, rule S-Trans gives T1 <: S1.

― From Γ, x:S1 ⊢ s2 : U2 and U2 <: T2, rule T-Sub gives
Γ, x: S1 ⊢ s2: T2 , thus we are done



Preservation
Theorem: If Γ ⊢ t: T 𝑎𝑛𝑑 t ⟶ t’, 𝑡ℎ𝑒𝑛 Γ ⊢ t′ ∶ T.

Proof:  induction on typing derivations.

Which cases are likely to be hard ?



Preservation - Subsumption case

Case T-Sub: t ∶ S S <: T

By the induction hypothesis,   Γ ⊢ t′ ∶ S.      

By T-Sub , Γ ⊢ t′: T.

Not hard!



Preservation - Application case

Case T-App :

t = t1 t2
Γ ⊢ t1: T11 ⟶ T12
Γ ⊢ t2: T11
T = T12

By the inversion lemma for evaluation, there are

three rules
by which t ⟶ t′ can be derived:

E-APP1, E-APP2, and E-APPABS .

Proceed by cases



Preservation - Application case
Case T-App :

t = t1 t2
Γ ⊢ t1: T11 ⟶ T12
Γ ⊢ t2: T11
T = T12

By the inversion lemma for evaluation, there are
three rules by which t ⟶ t′ can be derived:
E-APP1, E-APP2, and E-APPABS
Proceed by cases.



Preservation - Application case
Case T-App :

t = t1 t2
Γ ⊢ t1: T11 ⟶ T12
Γ ⊢ t2: T11
T = T12

Subcase E-App1 : t1⟶ t′1 t′ = t′1 t2
The result follows from the induction hypothesis and

T-APP



Preservation - Application case

Subcase E-App2 :   t1 = v1 t2⟶ t′2 t′ = v1 t′2

Similar.

Case T-App :

t = t1 t2
Γ ⊢ t1: T11 ⟶ T12
Γ ⊢ t2: T11
T = T12



Preservation - Application case
Subcase E-AppAbs : 

t1 = λx: S11. t12 t2= v2 t′ = [x ↦ v2] t12
by the inversion lemma for the typing relation ... 

T11 <: 𝑆11 and   Γ, x: S11 ⊢ t12: T12
By using T-Sub,   Γ ⊢ t2: S11
by the substitution lemma,  Γ ⊢ t′: T12



Progress
Lemma for Canonical Forms

1. If v is a closed value of type T1 ⟶ T2, then v has the 
form   λx: S1. t2. 

2. If v is a closed value of type 𝑙𝑖: 𝑇𝑖
𝑖∈1..𝑛 ,     then v has 

the form  𝑘𝑗 = 𝑣𝑗
𝑗∈1..𝑚

with   𝑙𝑖
𝑖∈1..𝑛  𝑘𝑎

𝑎∈1..𝑚

Possible shapes of values belonging to arrow and record
types.

Based on this Canonical Forms Lemma, we can still has 
the progress theorem and its proof quite close to what 
we saw in the simply typed lambda-calculus



Subtyping 

with 

Other Features



Ascription and Casting
Ordinary ascription:

(T) T
up-cast
down-cast



Ascription and Casting
Ordinary ascription:

Casting (cf. Java):



Subtyping and Variants



Subtyping and Lists

i.e., List is a covariant type constructor



Subtyping and References

i.e., Ref is not a covariant (nor a contravariant) type 
constructor, but an invariant



Subtyping and References

i.e., Ref is not a covariant (nor a contravariant) type
constructor.

Why?

– When a reference is read, the context expects a T1,
so if S1<: T1 then an S1 is ok.

– When a reference is written, the context provides a
T1 and if the actual type of the reference is Ref S1,
someone else may use the T1 as an S1. So we need
T1 <: S1.



References again
Observation:  a value of type 𝑅𝑒𝑓 𝑇 can be used in two 
different ways: 

– as a source for values of type T , and 

– as a sink for values of type T



References again
Observation:  a value of type 𝑅𝑒𝑓 𝑇 can be used in two 
different ways: 

– as a source for values of type T , and 

– as a sink for values of type T.

Idea：Split Ref T into three parts:

– Source T:  reference cell with “read capability”

– Sink T:  reference cell with “write capability”

– Ref T:  cell with both capabilities



Modified Typing Rules



Subtyping rules



Subtyping and Arrays
Similarly...

This is regarded (even by the Java designers) as a mistake 
in the design



Capabilities
Other kinds of capabilities can be treated similarly, e.g.,

– send and receive capabilities on communication 
channels, 

– encrypt/decrypt capabilities of cryptographic keys, 

– ...



Base Types
For language with a rich set of base types, it’s better to 
introduce primitive subtype relations among them

– e.g., Bool <: Nat



Intersection and Union 

Types



Intersection Types
The inhabitants of  T1 ∧ T2 are terms belonging to both S

and T — i.e.,

T1 ∧ T2 is an order-theoretic  meet   (greatest lower 
bound ) of T1 and T2



Intersection Types
Intersection types permit a very flexible form of finitary
overloading, e,g, S-Inter4:

This form of overloading is extremely powerful.

Every strongly normalizing untyped lambda-term can be typed in
the simply typed lambda-calculus with intersection types

type reconstruction problem is undecidable

Intersection types have not been used much in language
designs (too powerful!), but are being intensively
investigated as type systems for intermediate languages
in highly optimizing compilers (cf. Church project)



Union types
Union types are also useful.

T1 ∨ T2 is an untagged (non-disjoint) ordinary union of the set
of values belonging to T1 and that of values belonging to T2.

No tags: no case construct. The only operations we can safely
perform on elements of T1 ∨ T2 are ones that make sense for
both T1 and T2.

Note well: untagged union types in C are a source of type
safety violations precisely because they ignores this restriction,
allowing any operation on an element of T1 ∨ T2 that makes
sense for either T1 or T2.

Union types are being used recently in type systems for XML
processing languages (cf. Xduce, Xtatic).



Varieties of Polymorphism
• Parametric polymorphism (ML-style)

• Subtype polymorphism (OO-style)

• Ad-hoc polymorphism (overloading)



Issues 

in 

Subtyping



Typing with Subsumption

a value of one can always safely be used where a value of
the other is expected

Principle of safe substitution

1. a subtyping relation between types, written S <: T

2. a rule of subsumption stating that, if S <: T, then any

value of type S can also be regarded as having type T,

i.e.,



Subtype Relation: General rules

A subtyping is a binary relation between types that is
closed under the following rules



Issues in Subtyping  
For a given subtyping statement, there are multiple rules
that could be used in a derivation.

1. The conclusions of S-RcdWidth, S-RcdDepth, and S-
RcdPerm overlap with each other.

2. S-REFL and S-TRANS overlap with every other rule.



Syntax-directed rules
In the simply typed lambda-calculus (without subtyping), 
each rule can be “read from bottom to top” in a 
straightforward way.

If we are given some Γ and some t of the form t1 t2, we 
can try to find a type for t by

1. finding (recursively) a type for t1
2. checking that it has the form T11 ⟶ T12
3. finding (recursively) a type for t2
4. checking that it is the same as T11



Syntax-directed rules
Technically, the reason this works is that we can divide the

“positions” of the typing relation into input positions (i.e.,
Γ and t) and output positions (T).

– For the input positions, all metavariables appearing in the
premises also appear in the conclusion (so we can calculate
inputs to the “subgoals” from the subexpressions of inputs to
the main goal)

– For the output positions, all metavariables appearing in the
conclusions also appear in the premises (so we can calculate
outputs from the main goal from the outputs of the subgoals)



Syntax-directed sets of rules
The second important point about the simply typed
lambda-calculus is that the set of typing rules is syntax-
directed:

– for every “input” Γ and t, there is one rule that can
be used to derive typing statements involving t

e.g., if t is an application, then we must proceed by trying
to use T-App

– If we succeed, then we have found a type (indeed,
the unique type) for t

– If it fails, then we know that t is not typable

⟹ no backtracking!



Non-syntax-directedness of typing
When we extend the system with subtyping, both aspects
of syntax-directedness get broken.

1. The set of typing rules now includes two rules that can be used
to give a type to terms of a given shape (the old one + 𝑇−𝑆𝑈𝐵)

2. Worse yet, the new rule T-SUB itself is not syntax directed: the
inputs to the left-hand subgoal are exactly the same as the
inputs to the main goal

• Hence, if we translate the typing rules naively into a
typechecking function, the case corresponding to T-SUB
would cause divergence



Non-syntax-directedness of subtyping

Moreover, the subtyping relation is not syntax directed
either

1. There are lots of ways to derive a given subtyping
statement ( ∵ 8.2.4 /9.3.3 [uniqueness of types] ×)

2. The transitivity rule

is badly non-syntax-directed: the premises contain
a metavariable (in an “input position”) that does not
appear at all in the conclusion.

To implement this rule naively, we have to guess a
value for U!



What to do? 
We'll turn the declarative version of subtyping into the
algorithmic version

The problem was that we don't have an algorithm to
decide when S <: T or Γ ⊢ t ∶ T

Both sets of rules are not syntax-directed



What to do?
1. Observation: We don’t need lots of ways to prove a

given typing or subtyping statement — one is enough.

⟶ Think more carefully about the typing and
subtyping systems to see where we can get rid of
excess flexibility.

2. Use the resulting intuitions to formulate new
“algorithmic” (i.e., syntax-directed) typing and
subtyping relations.

3. Prove that the algorithmic relations are “the same as”
the original ones in an appropriate sense.



Chap 16 

Metatheory of Subtyping 

Algorithmic  Subtyping 

Algorithmic Typing

Joins and Meets 



Developing 

an algorithmic 

subtyping relation



Algorithmic Subtyping



What to do
How do we change the rules deriving S <: T to be
syntax-directed?

There are lots of ways to derive a given subtyping
statement S <: T.

The general idea is to change this system so that there is
only one way to derive it.



Step 1: simplify record subtyping

Idea: combine all three record subtyping rules into one
“macro rule” that captures all of their effects



Simpler subtype relation



Step 2:  Get rid of reflexivity
Observation: S-REFL is unnecessary.

Lemma 16.1.2: S <: S can be derived for every type S
without using S-REFL.



Even simpler subtype relation



Step 3: Get rid of transitivity
Observation: S-Trans is unnecessary.

Lemma 16.1.2: If S <: T can be derived, then it can be
derived without using S-Trans .



Even simpler subtype relation



“Algorithmic” subtype relation



Soundness and completeness

Theorem[16.1.5]: S <: T iff ↦ S <: T

Terminology:

– The algorithmic presentation of subtyping is sound with respect 

to the original,    if ↦ S <: T implies S <: T

(Everything validated by the algorithm is actually true)

– The algorithmic presentation of subtyping is complete with 

respect to the original,   if S <: T implies ↦ S <: T

(Everything true is validated by the algorithm)



Decision Procedures
Recall:
A decision procedure for a relation 𝑅 ⊆ 𝑈 is a total
function 𝑝 from 𝑈 to {true, false} such that 𝑝(𝑢) =
𝑡𝑟𝑢𝑒 iff 𝑢 ∈ 𝑅.

Is our subtype function a decision procedure?

subtype is just an implementation of the algorithmic
subtyping rules, we have

1. if 𝑠𝑢𝑏𝑡𝑦𝑝𝑒(S, T) = 𝑡𝑟𝑢𝑒, then ↦ S <: T

hence, by soundness of the algorithmic rules, S <: T

1. if 𝑠𝑢𝑏𝑡𝑦𝑝𝑒(S, T) = 𝑓𝑎𝑙𝑠𝑒, then not ↦ S <: T
hence, by completeness of the algorithmic rules, not S <: T

Q: What’s missing?



Decision Procedures
Is our subtype function a decision procedure?

Since subtype is just an implementation of the algorithmic 
subtyping rules, we have

1. if 𝑠𝑢𝑏𝑡𝑦𝑝𝑒(S, T) = 𝑡𝑟𝑢𝑒, then ↦ S <: T

(hence, by soundness of the algorithmic rules, S <: T)

1. if 𝑠𝑢𝑏𝑡𝑦𝑝𝑒(S, T) = 𝑓𝑎𝑙𝑠𝑒, then not ↦ S <: T

(hence, by completeness of the algorithmic rules, not S <: T)

Q: What’s missing?

A: How do we know that subtype is a total function?



Decision Procedures
Is our subtype function a decision procedure?

Since subtype is just an implementation of the
algorithmic subtyping rules, we have

1. if 𝑠𝑢𝑏𝑡𝑦𝑝𝑒(S, T) = 𝑡𝑟𝑢𝑒, then ↦ S <: T

(hence, by soundness of the algorithmic rules, S <: T)

1. if 𝑠𝑢𝑏𝑡𝑦𝑝𝑒(S, T) = 𝑓𝑎𝑙𝑠𝑒, then not ↦ S <: T

(hence, by completeness of the algorithmic rules, not S <: T)

Q: What’s missing?

A: How do we know that subtype is a total function?

Prove it!



Decision Procedures
Recall: A decision procedure for a relation 𝑅 ⊆ 𝑈 is a total
function 𝑝 from 𝑈 to {true, false} such that 𝑝(𝑢) = 𝑡𝑟𝑢𝑒
iff 𝑢 ∈ 𝑅.

Example:

𝑈 = 1, 2, 3

𝑅 = {(1, 2), (2, 3)}

Note that, we are saying nothing about computability.



Decision Procedures
Recall: A decision procedure for a relation 𝑅 ⊆ 𝑈 is a total
function 𝑝 from 𝑈 to {true, false} such that 𝑝(𝑢) = 𝑡𝑟𝑢𝑒
iff 𝑢 ∈ 𝑅.

Example: 

𝑈 = 1, 2, 3

𝑅 = {(1, 2), (2, 3)}

The function 𝑝′ whose graph is

{((1, 2), true), ((2, 3), true)}

is not a decision function for 𝑅



Decision Procedures
Recall:  A decision procedure for a relation 𝑅 ⊆ 𝑈 is a total 
function 𝑝 from 𝑈 to {true, false}  such that 𝑝(𝑢) = 𝑡𝑟𝑢𝑒
iff 𝑢 ∈ 𝑅.

Example: 

𝑈 = {1, 2, 3}

𝑅 = {(1, 2), (2, 3)}

The function 𝑝′′ whose graph is

{((1, 2), true), ((2, 3), true), ((1, 3), false)}

is also not a decision function for 𝑅



Decision Procedures
Recall: A decision procedure for a relation 𝑅 ⊆ 𝑈 is a total
function 𝑝 from 𝑈 to {true, false} such that 𝑝(𝑢) = 𝑡𝑟𝑢𝑒 iff
𝑢 ∈ 𝑅.

Example: 
𝑈 = 1, 2, 3
𝑅 = {(1, 2), (2, 3)}

The function 𝑝 whose graph is

{ ((1, 2), true), ((2, 3), true),
((1, 1), false), ((1, 3), false),
((2, 1), false), ((2, 2), false),
((3, 1), false), ((3, 2), false), ((3, 3), false)}

is a decision function for 𝑅



Decision Procedures (take 2)

We want a decision procedure to be a procedure.

A decision procedure for a relation 𝑅 ⊆ 𝑈 is a computable
total function 𝑝 from 𝑈 to {true, false} such that

𝑝(𝑢) = 𝑡𝑟𝑢𝑒 iff u ∈ 𝑅.



Example

𝑈 = {1, 2, 3}
𝑅 = {(1, 2), (2, 3)}

The function
𝑝(𝑥, 𝑦) = 𝑖𝑓 𝑥 = 2 𝑎𝑛𝑑 𝑦 = 3 𝑡ℎ𝑒𝑛 𝑡𝑟𝑢𝑒

𝑒𝑙𝑠𝑒 𝑖𝑓 𝑥 = 1 𝑎𝑛𝑑 𝑦 = 2 𝑡ℎ𝑒𝑛 𝑡𝑟𝑢𝑒
𝑒𝑙𝑠𝑒 𝑓𝑎𝑙𝑠𝑒

whose graph is
{ ((1, 2), true), ((2, 3), true),

((1, 1), false), ((1, 3), false),
((2, 1), false), ((2, 2), false),
((3, 1), false), ((3, 2), false), ((3, 3), false)}

is a decision procedure for 𝑅.



Example

𝑈 = 1, 2, 3

𝑅 = {(1, 2), (2, 3)}

The recursively defined partial function

𝑝(𝑥, 𝑦) = 𝑖𝑓 𝑥 = 2 𝑎𝑛𝑑 𝑦 = 3 𝑡ℎ𝑒𝑛 𝑡𝑟𝑢𝑒

𝑒𝑙𝑠𝑒 𝑖𝑓 𝑥 = 1 𝑎𝑛𝑑 𝑦 = 2 𝑡ℎ𝑒𝑛 𝑡𝑟𝑢𝑒
𝑒𝑙𝑠𝑒 𝑖𝑓 𝑥 = 1 𝑎𝑛𝑑 𝑦 = 3 𝑡ℎ𝑒𝑛 𝑓𝑎𝑙𝑠𝑒

𝑒𝑙𝑠𝑒 𝑝(𝑥, 𝑦)

whose graph is

{ ((1, 2), true), ((2, 3), true), ((1, 3), false)}

is not a decision procedure for 𝑅.



Subtyping Algorithm
The following recursively defined total function is a
decision procedure for the subtype relation:

subtype(S, T) =

if T = Top, then true

else if S = S1 ⟶ S2 and T = T1 ⟶ T2
then 𝑠𝑢𝑏𝑡𝑦𝑝𝑒 T1, S1 ∧ 𝑠𝑢𝑏𝑡𝑦𝑝𝑒(S2, T2)

else if S = {kj: Sj
j∈1..m

} and T = {li: Ti
i∈1..𝑛}

then  {li
i∈1..n} ⊆ {kj

j∈1..m}

∧ for all 𝑖 ∈ 1. . 𝑛 there is some 𝑗 ∈ 1. .𝑚 with  kj = li
and 𝑠𝑢𝑏𝑡𝑦𝑝𝑒(Sj, Ti)

else false.



Subtyping Algorithm
This recursively defined total function is a decision
procedure for the subtype relation:
subtype(S, T) =

if T = Top, then true
else if S = S1 ⟶ S2 and T = T1 ⟶ T2

then 𝑠𝑢𝑏𝑡𝑦𝑝𝑒 T1, S1 ∧ 𝑠𝑢𝑏𝑡𝑦𝑝𝑒(S2, T2)

else if S = {kj: Sj
j∈1..m

} and T = {li: Ti
i∈1..𝑛}

then  {li
i∈1..n} ⊆ {kj

j∈1..m}

∧ for all 𝑖 ∈ 1. . 𝑛 there is some 𝑗 ∈ 1. .𝑚 with  kj = li
and 𝑠𝑢𝑏𝑡𝑦𝑝𝑒(Sj, Ti)

else false.

To show this, we need to prove :
1. that it returns 𝑡𝑟𝑢𝑒 whenever S <: T, and
2. that it returns either 𝑡𝑟𝑢𝑒 or 𝑓𝑎𝑙𝑠𝑒 on all inputs
[16.1.6  Termination Proposition]



Algorithmic Typing



Algorithmic typing
How do we implement a type checker for the lambda-
calculus with subtyping?

Given a context Γ and a term t, how do we determine its
type T, such that Γ ⊢ t ∶ T?



Issue 
For the typing relation, we have just one problematic rule to
deal with: subsumption rule

Q: where is this rule really needed?

For applications, e.g., the term
(λr: {x: Nat}. r. x) {x = 0, y = 1}

is not typable without using subsumption.

Where else??

Nowhere else!
Uses of subsumption rule to help typecheck applications are
the only interesting ones.



Plan
1. Investigate how subsumption is used in typing

derivations by looking at examples of how it can be
“pushed through” other rules;

2. Use the intuitions gained from these examples to
design a new, algorithmic typing relation that

– Omits subsumption;

– Compensates for its absence by enriching the
application rule;

3. Show that the algorithmic typing relation is essentially
equivalent to the original, declarative one.



Example (T-ABS)

becomes



Intuitions
These examples show that we do not need T-SUB to “enable”
𝑻-𝑨𝑩𝑺 :

given any typing derivation, we can construct a derivation
with the same conclusion in which T-SUB is never used
immediately before 𝑇-𝐴𝐵𝑆.

What about 𝑇-𝐴𝑃𝑃?

We’ve already observed that T-SUB is required for typechecking
some applications

Therefore we expect to find that we cannot play the same game
with T-APP as we’ve done with T-ABS

Let’s see why.



Example (T−Sub with T-APP on the left)

becomes



Example (T−Sub with T-APP on the right)

becomes



Observations
We’ve seen that uses of subsumption rule can be “pushed”
from one of immediately before T-APP’s premises to the other,
but cannot be completely eliminated



Example (nested uses of T-Sub)

becomes



Summary
What we’ve learned:

– Uses of the T-Sub rule can be “pushed down” through typing 
derivations until they encounter either

1. a use of T-App ,  or

2. the root of the derivation tree.

– In both cases, multiple uses of T-Sub can be coalesced into a 
single one.

This suggests a notion of “normal form” for typing
derivations, in which there is

– exactly one use of T-Sub before each use of T-App,

– one use of T-Sub at the very end of the derivation,

– no uses of T T-Sub anywhere else.



Algorithmic Typing
The next step is to “build in” the use of subsumption rule in
application rules, by changing the T-App rule to incorporate a
subtyping premise

Given any typing derivation, we can now

1. normalize it, to move all uses of subsumption rule to either just
before applications (in the right-hand premise) or at the very
end

2. replace uses of T-App with T-SUB in the right-hand premise
by uses of the extended rule above

This yields a derivation in which there is just one use of
subsumption, at the very end!



Minimal Types
But... if subsumption is only used at the very end of
derivations, then it is actually not needed in order to show
that any term is typable!
It is just used to give more types to terms that have already
been shown to have a type.

In other words, if we dropped subsumption completely (after
refining the application rule), we would still be able to give
types to exactly the same set of terms — we just would not
be able to give as many types to some of them.

If we drop subsumption, then the remaining rules will assign a
unique, minimal type to each typable term
For purposes of building a typechecking algorithm, this is
enough



Final Algorithmic Typing Rules



Completeness of the algorithmic rules

Theorem [Minimal Typing]:

If Γ ⊢ t ∶ T, then Γ ↦ t ∶ S for some S <: T.

Proof: Induction on typing derivation.

N.b.: All the messing around with transforming
derivations was just to build intuitions and decide what
algorithmic rules to write down and what property to
prove:

the proof itself is a straightforward induction on typing
derivations.



Meets and Joins



Adding Booleans
Suppose we want to add booleans and conditionals to the
language we have been discussing.

For the declarative presentation of the system, we just
add in the appropriate syntactic forms, evaluation rules,
and typing rules.



A Problem with Conditional Expressions

For the algorithmic presentation of the system, however,
we encounter a little difficulty.

What is the minimal type of

𝑖𝑓 𝑡𝑟𝑢𝑒 𝑡ℎ𝑒𝑛 𝑥 = 𝑡𝑟𝑢𝑒, 𝑦 = 𝑓𝑎𝑙𝑠𝑒 𝑒𝑙𝑠𝑒 𝑥 = 𝑡𝑟𝑢𝑒, 𝑧 = 𝑡𝑟𝑢𝑒 ?



The Algorithmic Conditional Rule
More generally, we can use subsumption to give an expression

if t1 then t2 else t3
any type that is a possible type of both t2 and t3.

So the minimal type of the conditional is the

least common supertype (or join) of

the minimal type of t2 and the minimal type of t3

Q:  Does such a type exist for every T2 and T3 ??



Existence of Joins
Theorem: For every pair of types S and T, there is a type J
such that

1. S <: J

2. T <: J

3. If K is a type such that S <: K and T <: K, then J <: K.

i.e.,    J is the smallest type that is a   supertype of both 
S and T.

How to prove it?



Calculating Joins



Examples
What are the joins of the following pairs of types?

1. {x: Bool, y: Bool} and {y: Bool, z: Bool}?

2. {x: Bool} and {y: Bool}?

3. {x: {a: Bool, b: Bool}} and {x: {b: Bool, c: Bool}, y: Bool}?

4. {} and Bool?

5. {x: {}} and {x: Bool}?

6. Top ⟶ x: Bool and Top ⟶ y: Bool ?

7. x: Bool ⟶ Top and {y: Bool} ⟶ Top?



Meets
To calculate joins of arrow types, we also need to be able 
to calculate meets (greatest lower bounds)!

Unlike joins, meets do not necessarily exist.

E.g., Bool ⟶ Bool and {} have no common subtypes, so 
they certainly don’t have a greatest one!



Existence of Meets
Theorem:   For every pair of types S and T,  we say that a type M is 
a meet of S and T, written  S  T = M if 

1. M <: S
2. M <:T
3. If O is a type such that O <: S and O <: T, then O <:M.

i.e., M (when it exists) is the largest type that is a subtype of 
both S and T.

Jargon: In the simply typed lambda calculus with subtyping,
records, and booleans ...

➢ The subtype relation has joins
➢ The subtype relation has bounded meets



Calculating Meets



Examples
What are the meets of the following pairs of types?

1. {x: Bool, y: Bool} and {y: Bool, z: Bool}?

2. {x: Bool} and {y: Bool}?

3. {x: {a: Bool, b: Bool}} and {x: {b: Bool, c: Bool}, y: Bool}?

4. {} and Bool?

5. {x: {}} and {x: Bool}?

6. Top ⟶ x: Bool and Top ⟶ y: Bool ?

7. x: Bool ⟶ Top and {y: Bool} ⟶ Top?



Homework☺

• Read and digest chapter 16 & 17

• HW:   16.1.2;    16.2.6;   16. 4.1


