SMT Theory and DPLL(T)

Albert Oliveras
Technical University of Catalonia (BarcelonaTech)

Third International SAT/SMT Solver Summer School 2013
Aalto University, Finland
July 4th, 2013
Overview of the talk

- Motivation
- SMT
- Theories of Interest
- History of SMT
- Eager approach
- Lazy approach
 - Optimizations
 - Theory propagation
 - Conflict analysis in DPLL(T)
 - Combining Theory Solvers
 - Eager vs Lazy
 - Theory solver example
Historically, automated reasoning \equiv uniform proof-search procedures for FO logic

Limited success: is FO logic the best compromise between expressivity and efficiency?

Current trend [Sha02] is to gain efficiency by:

- addressing only (expressive enough) decidable fragments of a certain logic
- incorporate domain-specific reasoning, e.g:
 - arithmetic reasoning
 - equality
 - data structures (arrays, lists, stacks, ...)

SMT Theory and DPLL(T) – p. 3
Examples of this recent trend:

- **SAT**: use *propositional logic* as the formalization language
 - + high degree of efficiency
 - - expressive (all NP-complete) but involved encodings

- **SMT**: propositional logic + *domain-specific* reasoning
 - + improves the expressivity
 - - certain (but acceptable) loss of efficiency

GOAL OF THIS TALK: introduce **SMT**, with its main techniques
Overview of the talk

- Motivation

SMT

- Theories of Interest
- History of SMT
- Eager approach
- Lazy approach
 - Optimizations
 - Theory propagation
 - Conflict analysis in DPLL(T)
 - Combining Theory Solvers
 - Eager vs Lazy
 - Theory solver example
Need and Applications of SMT

Some problems are more naturally expressed in other logics than propositional logic, e.g:

- Software verification needs reasoning about equality, arithmetic, data structures, pointers, functions calls, ...

SMT consists of deciding the satisfiability of a (ground) FO formula with respect to a background theory

Example (Equality with Uninterpreted Functions – EUF):

\[g(a) = c \land (f(g(a)) \neq f(c) \lor g(a) = d) \land c \neq d \]

Wide range of applications:

- Predicate abstraction [LNO06]
- Model checking [AMP06]
- Scheduling [BNO+08b]
- Test generation [TdH08]
- ...
Overview of the talk

- Motivation
- SMT

Theories of Interest

- History of SMT

Eager approach

Lazy approach
 - Optimizations
 - Theory propagation
 - Conflict analysis in DPLL(T)
 - Combining Theory Solvers
 - Eager vs Lazy
 - Theory solver example
Equality with Uninterpreted Functions, i.e. "=" is equality

If background logic is FO with equality, EUF is empty theory

Consider formula

\[a \star (f(b) + f(c)) = d \land b \star (f(a) + f(c)) \neq d \land a = b \]
Equality with Uninterpreted Functions, i.e. “=” is equality

If background logic is FO with equality, EUF is empty theory

Consider formula

\[a \times (f(b) + f(c)) = d \land b \times (f(a) + f(c)) \neq d \land a = b \]

Formula is UNSAT, but no arithmetic reasoning is needed

If we abstract the formula into

\[h(a, g(f(b), f(c))) = d \land h(b, g(f(a), f(c))) \neq d \land a = b \]

it is still UNSAT

EUF is used to abstract non-supported constructions, e.g:

- Non-linear multiplication
- ALUs in circuits
Theories of Interest - Arithmetic

- Very useful for obvious reasons

- Restricted fragments support more efficient methods:
 - **Bounds:** $x \bowtie k$ with $\bowtie \in \{<,>,\leq,\geq,=\}$
 - **Difference logic:** $x - y \bowtie k$, with $\bowtie \in \{<,>,\leq,\geq,=\}$
 - [NO05, WIGG05, SM06]
 - **UTVPI:** $\pm x \pm y \bowtie k$, with $\bowtie \in \{<,>,\leq,\geq,=\}$
 - [LM05]
 - **Linear arithmetic**, e.g: $2x - 3y + 4z \leq 5$ [DdM06]
 - **Non-linear arithmetic**, e.g: $2xy + 4xz^2 - 5y \leq 10$
 - [BLNM+09, ZM10]
 - Variables are either **reals or integers**

SMT Theory and DPLL(T) – p. 7
Two interpreted function symbols \(\text{read} \) and \(\text{write} \)

Theory is \textit{axiomatized} by:

\[
\forall a \forall i \forall v \ (\text{read}(\text{write}(a, i, v), i) = v)
\]

\[
\forall a \forall i \forall j \forall v \ (i \neq j \rightarrow \text{read}(\text{write}(a, i, v), j) = \text{read}(a, j))
\]

Sometimes \textit{extensionality} is added:

\[
\forall a \forall b \ ((\forall i (\text{read}(a, i) = \text{read}(b, i))) \rightarrow a = b)
\]

Is the following set of literals satisfiable?

\[
\text{write}(a, i, x) \neq b \quad \text{read}(b, i) = y \quad \text{read}(\text{write}(b, i, x), j) = y \\
\quad a = b \\
\quad i = j
\]

Used for:

- Software verification
- Hardware verification (memories)
Th. of Interest - Bit vectors [BCF+07, BB09]

- Constants represent vectors of bits
- Useful both for hardware and software verification
- Different type of operations:
 - String-like operations: concat, extract, ...
 - Logical operations: bit-wise not, or, and, ...
 - Arithmetic operations: add, subtract, multiply, ...
- Assume bit-vectors have size 3. Is the formula SAT?

\[a[0 : 1] \neq b[0 : 1] \land (a|b) = c \land c[0] = 0 \land a[1] + b[1] = 0 \]
In practice, theories are not isolated

Software verifications needs arithmetic, arrays, bitvectors, ...

Formulas of the following form usually arise:

\[a = b + 2 \land A = \text{write}(B, a + 1, 4) \land (\text{read}(A, b + 3) = 2 \lor f(a - 1) \neq f(b + 1)) \]

The goal is to combine decision procedures for each theory
GOOD NEWS: efficient decision procedures for sets of ground literals exist for various theories of interest

PROBLEM: in practice, we need to deal with:

(1) arbitrary Boolean combinations of literals (\land, \lor, \neg)
 (DNF conversion is not a solution in practice)

(2) multiple theories

(3) quantifiers

We will only focus on (1) and (2), but techniques for (3) exist.
SMT in Practice (2)

- **SMT-LIB**: language, benchmarks, tutorials, ...
- **SMT-COMP**: performance and capabilities of tools
- **SMT Workshop**: held annually, collocated with CADE, CAV, SAT.
- Papers at SAT, CADE, CAV, FMCAD, TACAS,
Overview of the talk

Motivation

SMT

Theories of Interest

History of SMT

Eager approach

Lazy approach
 - Optimizations
 - Theory propagation
 - Conflict analysis in DPLL(T)
 - Combining Theory Solvers
 - Eager vs Lazy
 - Theory solver example
Pioneers:

Influential results:
- Nelson-Oppen congruence closure procedure \([\text{NO80}]\)
- Nelson-Oppen combination method \([\text{NO79}]\)
- Shostak combination method \([\text{Sho84}]\)

Influential systems:
- Nqthm prover \([\text{BM90}]\) [Boyer, Moore]
- Simplify \([\text{DNS05}]\) [Detlefs, Nelson, Saxe]
Beginnings of SMT - Early 2000s

KEY FACT: SAT solvers improved performance

Two ways of exploiting this fact:

- **Eager approach:** encode SMT into SAT

 [Bryant, Lahiri, Pnueli, Seshia, Strichman, Velev, ...]

 [PRSS99, SSB02, SLB03, BGV01, BV02]

 First systems: UCLID [LS04]

- **Lazy approach:** plug SAT solver with a decision procedure

 [Armando, Barrett, Castellini, Cimatti, Dill, Giunchiglia, deMoura, Ruess, Sebastiani, Stump,...]

 [ACG00, dMR02, BDS02a, ABC+02]

 First systems: TSAT [ACG00], ICS [FORS01], CVC [BDS02b], MathSAT [ABC+02]
Overview of the talk

- Motivation
- SMT
- Theories of Interest

Eager approach

- Lazy approach
 - Optimizations
 - Theory propagation
 - Conflict analysis in DPLL\(T\)
 - Combining Theory Solvers
 - Eager vs Lazy
 - Theory solver example
Eager approach

- **Methodology:** translate problem into equisatisfiable propositional formula and use off-the-shelf SAT solver

- **Why “eager”?**
 Search uses all theory information from the beginning

- **Characteristics:**
 + Can use best available SAT solver
 - Sophisticated encodings are needed for each theory

- **Tools:** UCLID, Beaver, Boolector, STP, SONOLAR, Spear, SWORD
Eager approach – Example

Let us consider an EUF formula:

- **First step**: remove function/predicate symbols.
 Assume we have terms $f(a)$, $f(b)$ and $f(c)$.

- **Ackermann** reduction:
 - Replace them by fresh constants A, B and C
 - Add clauses:
 - $a = b \implies A = B$
 - $a = c \implies A = C$
 - $b = c \implies B = C$

- **Bryant** reduction:
 - Replace $f(a)$ by A
 - Replace $f(b)$ by $\text{ite}(b = a, A, B)$
 - Replace $f(c)$ by $\text{ite}(c = a, A, \text{ite}(c = b, B, C))$

Now, atoms are **equalities** between **constants**
Eager approach – Example (2)

- **Second step**: encode formula into propositional logic
 - **Small-domain** encoding:
 - If there are \(n \) different constants, there is a model with size at most \(n \)
 - \(\log n \) bits to encode the value of each constant
 - \(a = b \) translated using the bits for \(a \) and \(b \)
 - **Per-constraint** encoding:
 - Each atom \(a = b \) is replaced by \(\text{var } P_{a,b} \)
 - Transitivity constraints are added (e.g. \(P_{a,b} \land P_{b,c} \rightarrow P_{a,c} \))

This is a **very rough** overview of an encoding from EUF to SAT.

See [PRSS99, SSB02, SLB03, BGV01, BV02] for details.
Overview of the talk

- Motivation
- SMT
- Theories of Interest
- Eager approach

Lazy approach

- Optimizations
- Theory propagation
- Conflict analysis in DPLL(T)
- Combining Theory Solvers
- Eager vs Lazy
- Theory solver example
Lazy approach

Methodology:
Example: consider EUF and the CNF

\[
g(a) = c \quad \land \quad (f(g(a)) \neq f(c) \quad \lor \quad g(a) = d) \quad \land \quad c \neq d
\]

SAT solver returns model \([1, 2, 4]\)
Lazy approach

Methodology:
Example: consider EUF and the CNF

\[g(a) = c \land (f(g(a)) \neq f(c) \lor g(a) = d) \land c \neq d \]

- \textbf{SAT solver} returns model \([1, \overline{2}, \overline{4}]\)
- \textbf{Theory solver} says \(T\)-inconsistent
Lazy approach

Methodology:
Example: consider EUF and the CNF

\[g(a) = c \quad \land \quad (f(g(a)) \neq f(c) \quad \lor \quad g(a) = d) \quad \land \quad c \neq d \]

- SAT solver returns model \([1, \overline{2}, \overline{4}]\)
- Theory solver says \(T\)-inconsistent
- Send \(\{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2 \lor 4\}\) to SAT solver
Lazy approach

Methodology:
Example: consider EUF and the CNF

\[g(a) = c \quad \land \quad (f(g(a)) \neq f(c) \quad \lor \quad g(a) = d) \quad \land \quad c \neq d \]

- **SAT solver** returns model \([1, \overline{2}, \overline{4}]\)
- **Theory solver** says \(T\)-inconsistent
- Send \([1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2 \lor 4]\) to SAT solver
- **SAT solver** returns model \([1, 2, 3, \overline{4}]\)
Lazy approach

Methodology:
Example: consider EUF and the CNF

\[g(a) = c \quad \land \quad (f(g(a)) \neq f(c) \quad \lor \quad g(a) = d) \quad \land \quad c \neq d \]

- SAT solver returns model \([1, 2, 4]\)
- Theory solver says \(T\)-inconsistent
- Send \(\{1, 2 \lor 3, 4, \bar{1} \lor 2 \lor 4\}\) to SAT solver
- SAT solver returns model \([1, 2, 3, 4]\)
- Theory solver says \(T\)-inconsistent

\(SMT\) Theory and DPLL(\(T\)) – p. 18
Lazy approach

Methodology:
Example: consider EUF and the CNF

\[g(a) = c \land (f(g(a)) \neq f(c) \lor g(a) = d) \land c \neq d \]

- SAT solver returns model \([1, \overline{2}, \overline{4}]\)
- Theory solver says \(T\)-inconsistent
- Send \([1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2 \lor 4]\) to SAT solver
- SAT solver returns model \([1, 2, 3, \overline{4}]\)
- Theory solver says \(T\)-inconsistent
- SAT solver detects \([1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2 \lor 4, \overline{1} \lor \overline{2} \lor 3 \lor 4]\)

UNSATISFIABLE
Lazy approach (2)

- Why “lazy”?
 Theory information used lazily when checking T-consistency of propositional models

- Characteristics:
 + Modular and flexible
 - Theory information does not guide the search

- Tools:
 Alt-Ergo, ArgoLib, Ario, Barcelogic, CVC, DTP, ICS, MathSAT, OpenSMT, Sateen, SVC, Simplify, tSAT, veriT, Yices, Z3, etc...
Overview of the talk

- Motivation
- SMT
- Theories of Interest
- Eager approach
- Lazy approach

Optimizations
- Theory propagation
- Conflict analysis in DPLL(\(T\))
- Combining Theory Solvers
- Eager vs Lazy
- Theory solver example
Lazy approach - Optimizations

Several optimizations for enhancing efficiency:

- Check T-consistency only of full propositional models
Lazy approach - Optimizations

Several optimizations for enhancing efficiency:

- Check T-consistency only of full propositional models—
- Check T-consistency of partial assignment while being built
Several optimizations for enhancing efficiency:

- Check T-consistency only of full propositional models.
- Check T-consistency of partial assignment while being built.
- Given a T-inconsistent assignment M, add $\neg M$ as a clause.
Lazy approach - Optimizations

Several optimizations for enhancing efficiency:

- Check T-consistency only of full propositional models
- Check T-consistency of partial assignment while being built

- Given a T-inconsistent assignment M, add $\neg M$ as a clause
- Given a T-inconsistent assignment M, identify a T-inconsistent subset $M_0 \subseteq M$ and add $\neg M_0$ as a clause
Lazy approach - Optimizations

Several optimizations for enhancing efficiency:

- Check T-consistency only of full propositional models-
- Check T-consistency of partial assignment while being built

- Given a T-inconsistent assignment M, add $\neg M$ as a clause-
- Given a T-inconsistent assignment M, identify a T-inconsistent subset $M_0 \subseteq M$ and add $\neg M_0$ as a clause

- Upon a T-inconsistency, add clause and restart
Several optimizations for enhancing efficiency:

- Check T-consistency only of full propositional models.
- Check T-consistency of partial assignment while being built.

- Given a T-inconsistent assignment M, add $\neg M$ as a clause.
- Given a T-inconsistent assignment M, identify a T-inconsistent subset $M_0 \subseteq M$ and add $\neg M_0$ as a clause.

- Upon a T-inconsistency, add clause and restart.
- Upon a T-inconsistency, bactrack to some point where the assignment was still T-consistent.
Lazy approach - Important points

Important and benefitial aspects of the lazy approach: (even with the optimizations)

- Everyone does what he/she is good at:
 - SAT solver takes care of Boolean information
 - Theory solver takes care of theory information

- Theory solver only receives conjunctions of literals

- Modular approach:
 - SAT solver and T-solver communicate via a simple API
 - SMT for a new theory only requires new T-solver
 - SAT solver can be embedded in a lazy SMT system with very few new lines of code
Overview of the talk

- Motivation
- SMT
- Theories of Interest
- Eager approach
- Lazy approach
 - Optimizations
 - Theory propagation
 - Conflict analysis in DPLL(T)
 - Combining Theory Solvers
 - Eager vs Lazy
 - Theory solver example
Lazy approach - T-propagation

As pointed out the lazy approach has one drawback:

- Theory information does not guide the search (too lazy)

How can we improve that?

T-Propagate:

\[M \parallel F \implies M \parallel F \quad \text{if} \quad \begin{cases} M \models_T l \\ l \text{ or } \neg l \text{ occurs in } F \text{ and not in } M \end{cases} \]

Search guided by T-Solver by finding T-consequences, instead of only validating it as in basic lazy approach.

Naive implementation:

Add $\neg l$. If T-inconsistent then infer l \cite{ACG00}

But for efficient Theory Propagation we need:

- T-Solvers specialized and fast in it.
- fully exploited in conflict analysis

This approach has been named $\text{DPLL}(T)$ \cite{NOT06}
In a nutshell:

\[\text{DPLL}(T) = \text{DPLL}(X) + T\text{-Solver} \]

- **DPLL(X):**
 - Very similar to a SAT solver, enumerates Boolean models
 - Not allowed: pure literal, blocked literal detection, ...
 - Required: incremental addition of clauses
 - Desirable: partial model detection

- **T-Solver:**
 - Checks consistency of conjunctions of literals
 - Computes theory propagations
 - Produces explanations of inconsistency/\(T\)-propagation
 - Should be incremental and backtrackable
Consider again EUF and the formula:

\[
\begin{align*}
 g(a) &= c \quad \land \quad (f(g(a)) \neq f(c) \quad \lor \quad g(a) = d) \quad \land \quad c \neq d \\
 0 \; || \; 1, \; \overline{2} \lor 3, \; \overline{4} &\Rightarrow \quad (\text{UnitPropagate})
\end{align*}
\]
Consider again EUF and the formula:

\[
\begin{align*}
g(a) &= c \quad \land \quad (f(g(a)) \neq f(c) \lor g(a) = d) \quad \land \quad c \neq d \\
\end{align*}
\]

\[
\begin{align*}
&\quad 0 \parallel 1, \overline{2} \lor 3, \overline{4} \Rightarrow (\text{UnitPropagate}) \\
&\quad 1 \parallel 1, \overline{2} \lor 3, \overline{4} \Rightarrow (\text{UnitPropagate})
\end{align*}
\]
Consider again EUF and the formula:

\[
g(a) = c \quad \land \quad \left(f(g(a)) \neq f(c) \lor g(a) = d \right) \quad \land \quad c \neq d
\]

\[
\begin{align*}
0 & \parallel 1, \overline{2} \lor 3, \overline{4} \quad \Rightarrow \quad (\text{UnitPropagate}) \\
1 & \parallel 1, \overline{2} \lor 3, \overline{4} \quad \Rightarrow \quad (\text{UnitPropagate}) \\
1 \overline{4} & \parallel 1, \overline{2} \lor 3, \overline{4} \quad \Rightarrow \quad (T\text{-Propagate})
\end{align*}
\]
Consider again EUF and the formula:

\[
g(a) = c \land (f(g(a)) \neq f(c) \lor g(a) = d) \land c \neq d
\]

\[
\begin{align*}
0 \parallel & 1, \overline{2} \lor 3, \overline{4} \implies \text{(UnitPropagate)} \\
1 \parallel & 1, \overline{2} \lor 3, \overline{4} \implies \text{(UnitPropagate)} \\
1, \overline{4} \parallel & 1, \overline{2} \lor 3, \overline{4} \implies \text{(T-Propagate)} \\
1, \overline{4}, 2 \parallel & 1, \overline{2} \lor 3, \overline{4} \implies \text{(T-Propagate)}
\end{align*}
\]
Consider again EUF and the formula:

\[g(a) = c \quad \land \quad \left(f(g(a)) \neq f(c) \lor g(a) = d \right) \quad \land \quad c \neq d \]

\[\begin{array}{l}
0 \parallel 1, \overline{2} \lor 3, \overline{4} \quad \Rightarrow \quad (\text{UnitPropagate}) \\
1 \parallel 1, \overline{2} \lor 3, \overline{4} \quad \Rightarrow \quad (\text{UnitPropagate}) \\
1 \overline{4} \parallel 1, \overline{2} \lor 3, \overline{4} \quad \Rightarrow \quad (T-Propagate) \\
1 \overline{4} 2 \parallel 1, \overline{2} \lor 3, \overline{4} \quad \Rightarrow \quad (T-Propagate) \\
1 \overline{4} 2 \overline{3} \parallel 1, \overline{2} \lor 3, \overline{4} \quad \Rightarrow \quad (\text{Fail})
\end{array} \]
Consider again EUF and the formula:

\[
g(a) = c \quad \land \quad (f(g(a)) \neq f(c) \lor g(a) = d) \quad \land \quad c \neq d
\]

\[
\begin{align*}
0 & \parallel 1, \overline{2} \lor 3, \overline{4} \implies (\text{UnitPropagate}) \\
1 & \parallel 1, \overline{2} \lor 3, \overline{4} \implies (\text{UnitPropagate}) \\
1, \overline{4} & \parallel 1, \overline{2} \lor 3, \overline{4} \implies (T\text{-Propagate}) \\
1, \overline{4}, 2 & \parallel 1, \overline{2} \lor 3, \overline{4} \implies (T\text{-Propagate}) \\
1, \overline{4}, 2, \overline{3} & \parallel 1, \overline{2} \lor 3, \overline{4} \implies (\text{Fail})
\end{align*}
\]

UNSAT
DPLL(T) - Overall algorithm

High-level view gives the same algorithm as a CDCL SAT solver:

```java
while(true){
    while (propagate_gives_conflict()){
        if (decision_level==0) return UNSAT;
        else analyze_conflict();
    }
    restart_if_applicable();
    remove_lemmas_if_applicable();
    if (!decide()) returns SAT; // All vars assigned
}
```

Differences are in:
- propagate_gives_conflict
- analyze_conflict
propagate_gives_conflict() returns Bool

\[\text{do } \{
\]

// unit propagate
if (unit_prop_gives_conflict()) \textbf{then return} true

// check T-consistency of the model
if (solver.is_model_inconsistent()) \textbf{then return} true

// theory propagate
solver.theory_propagate()

\} \textbf{while} (someTheoryPropagation)

\textbf{return} false
DPLL(T) - Propagation (2)

- **Three operations:**
 - Unit propagation (SAT solver)
 - Consistency checks (T-solver)
 - Theory propagation (T-solver)

- **Cheap operations are computed first**

- If **theory is expensive**, calls to T-solver are sometimes **skipped**

- For **completeness**, only necessary to call T-solver at the leaves (i.e. when we have a full propositional model)

- **Theory propagation is not necessary for completeness**
For certain theories, consistency checking requires case reasoning.

Example: consider the theory of arrays and the set of literals

\[\text{read}(\text{write}(A,i,x), j) \neq x \quad \text{read}(\text{write}(A,i,x), j) \neq \text{read}(A,j)\]
For certain theories, consistency checking requires case reasoning.

Example: consider the theory of arrays and the set of literals

\[
\text{read}(\text{write}(A, i, x), j) \neq x \quad \text{read}(\text{write}(A, i, x), j) \neq \text{read}(A, j)
\]

Two cases:

- \(i = j\). LHS rewrites into \(x \neq x\) !!!
For certain theories, consistency checking requires case reasoning.

Example: consider the theory of arrays and the set of literals

\[\text{read}(\text{write}(A, i, x), j) \neq x \quad \text{read}(\text{write}(A, i, x), j) \neq \text{read}(A, j) \]

Two cases:

- \[i = j. \text{ LHS rewrites into } x \neq x \]
- \[i \neq j. \text{ RHS rewrites into } \text{read}(A, j) \neq \text{read}(A, j) \]
For certain theories, consistency checking requires case reasoning.

Example: consider the theory of arrays and the set of literals

\[
\text{read}(\text{write}(A, i, x), j) \neq x \quad \text{read}(\text{write}(A, i, x), j) \neq \text{read}(A, j)
\]

Two cases:

- \(i = j \). LHS rewrites into \(x \neq x \) !!!
- \(i \neq j \). RHS rewrites into \(\text{read}(A, j) \neq \text{read}(A, j) \) !!!

CONCLUSION: \(T \)-inconsistent
A complete T-solver might need to reason by cases via internal case splitting and backtracking mechanisms.

An alternative is to lift case splitting and backtracking from the T-Solver to the SAT engine.

Basic idea: encode case splits as sets of clauses and send them as needed to the SAT engine for it to split on them.

Possible benefits:
- All case-splitting is coordinated by the SAT engine
- Only have to implement case-splitting infrastructure in one place
- Can learn a wider class of lemmas (more details later)
Basic idea: encode case splits as a set of clauses and send them as needed to the SAT engine

Example:

Assume model contains literal \(s = \text{read}(\text{write}(A, i, t), j) \)

DPLL(\(X\)) asks: “is it \(T\)-satisfiable”?

\(T\)-solver says: “I do not know yet, but it will be helpful that you consider these theory lemmas:”

\[
\begin{align*}
&s = s' \land i = j \quad \rightarrow \quad s = t \\
&s = s' \land i \neq j \quad \rightarrow \quad s = \text{read}(A, j)
\end{align*}
\]

We need certain completeness conditions (e.g. once all lits from a certain subset \(L\) has been decided, the \(T\)-solver should answer YES/NO)
Overview of the talk

- Motivation
- SMT
- Theories of Interest
- Eager approach
- Lazy approach
 - Optimizations
 - Theory propagation
 - Conflict analysis in DPLL(T)
 - Combining Theory Solvers
 - Eager vs Lazy
 - Theory solver example
Remember conflict analysis in SAT solvers:

\[C := \text{conflicting clause} \]

\[\textbf{while } C \text{ contains more than one lit of last DL} \]
\[\quad l := \text{last literal assigned in } C \]
\[\quad C := \text{Resolution}(C, \text{reason}(l)) \]

\[\textbf{end while} \]

\[\text{// let } C = C' \lor l \text{ where } l \text{ is UIP backjump(maxDL}(C')) \]
\[\text{add } l \text{ to the model with reason } C \]
\[\text{learn}(C) \]
Conflict analysis in DPLL(T):

\[
\text{if boolean conflict then } C := \text{conflicting clause} \\
\text{else } C := \neg (\text{solver.explain_inconsistency()})
\]

\[
\text{while } C \text{ contains more than one lit of last DL} \\
\quad l := \text{last literal assigned in } C \\
\quad C := \text{Resolution}(C, reason(l))
\]

\[
\text{end while}
\]

// let $C = C' \lor l$ where l is UIP
backjump(maxDL(C'))
add l to the model with reason C
learn(C)
What does `explain_inconsistency` return?

- A (small) conjunction of literals $l_1 \land \ldots \land l_n$ such that:
 - They were in the model when T-inconsistency was found
 - It is T-inconsistent

What is now `reason(l)`?

- If l was unit propagated, reason is the clause that propagated it
- If l was T-propagated?
 - T-solver has to provide an explanation for l, i.e. a (small) set of literals l_1, \ldots, l_n such that:
 - They were in the model when l was T-propagated
 - $l_1 \land \ldots \land l_n \models_T l$
 - Then `reason(l)` is $\neg l_1 \lor \ldots \lor \neg l_n \lor l$
Let M be of the form $\ldots, c = b, \ldots$ and let F contain

$$
\begin{align*}
 h(a) = h(c) \lor p & \quad a = b \lor \neg p \lor a = d \quad a \neq d \lor a = b
\end{align*}
$$

Take the following sequence:

1. **Decide** $h(a) \neq h(c)$
2. **UnitPropagate** p (due to clause $h(a) = h(c) \lor p$)
3. **T-Propagate** $a \neq b$ (since $h(a) \neq h(c)$ and $c = b$)
4. **UnitPropagate** $a = d$ (due to clause $a = b \lor \neg p \lor a = d$)
5. **Conflicting clause** $a \neq d \lor a = b$

Explain($a \neq b$) is $\{h(a) \neq h(c), c = b\}$

$$
\begin{align*}
 h(a) = h(c) \lor c \neq b \lor a \neq b & \quad a = b \lor \neg p \lor a = d \quad a \neq d \lor a = b \\
 h(a) = h(c) \lor p & \quad h(a) = h(c) \lor c \neq b \lor \neg p \\
 h(a) = h(c) \lor c \neq b & \quad h(a) = h(c) \lor c \neq b \lor \neg p
\end{align*}
$$
Overview of the talk

- Motivation
- SMT
- Theories of Interest
- Eager approach
- Lazy approach
 - Optimizations
 - Theory propagation
 - Conflict analysis in DPLL(T)

Combining Theory Solvers

- Eager vs Lazy
- Theory solver example
Need for combination

In software verification, formulas like the following one arise:

\[a = b + 2 \land A = \text{write}(B, a + 1, 4) \land (\text{read}(A, b + 3) = 2 \lor f(a - 1) \neq f(b + 1)) \]

Here reasoning is needed over

- The theory of linear arithmetic (\(T_{\text{LA}} \))
- The theory of arrays (\(T_A \))
- The theory of uninterpreted functions (\(T_{\text{EUF}} \))

Remember that \(T \)-solvers only deal with conjunctions of lits.

Given \(T \)-solvers for the three individual theories, can we combine them to obtain one for \((T_{\text{LA}} \cup T_A \cup T_{\text{EUF}}) \)?

Under certain conditions the Nelson-Oppen combination method gives a positive answer.
Consider the following set of literals:

\[
\begin{align*}
 f(f(x) - f(y)) &= a \\
 f(0) &= a + 2 \\
 x &= y
\end{align*}
\]

There are two theories involved: \(T_{LA(\mathbb{R})} \) and \(T_{EUF} \)

FIRST STEP: purify each literal so that it belongs to a single theory

\[
\begin{align*}
 f(f(x) - f(y)) &= a \implies f(e_1) &= a \implies f(e_1) &= a \\
 e_1 &= f(x) - f(y) \\
 e_1 &= e_2 - e_3 \\
 e_2 &= f(x) \\
 e_3 &= f(y)
\end{align*}
\]
Motivating example - Convex case

Consider the following set of literals:

\[f(f(x) - f(y)) = a \]
\[f(0) = a + 2 \]
\[x = y \]

There are two theories involved: \(\mathbb{T}_{LA(\mathbb{R})} \) and \(\mathbb{T}_{EUF} \)

FIRST STEP: purify each literal so that it belongs to a single theory

\[f(0) = a + 2 \implies f(e_4) = a + 2 \implies f(e_4) = e_5 \]
\[e_4 = 0 \]
\[e_4 = 0 \]
\[e_5 = a + 2 \]
Motivating example - Convex case (2)

SECOND STEP: check satisfiability and exchange entailed equalities

\[
\begin{align*}
EUF & \quad & \text{Arithmetic} \\
\quad & \quad & \\
\end{align*}
\]

The two solvers only share constants: \(e_1, e_2, e_3, e_4, e_5, a\)

To merge the two models into a single one, the solvers have to agree on equalities between shared constants (interface equalities)

This can be done by exchanging entailed interface equalities
Motivating example - Convex case (2)

SECOND STEP: check satisfiability and exchange entailed equalities

<table>
<thead>
<tr>
<th>EUF</th>
<th>Arithmetic</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(e_1) = a$</td>
<td>$e_2 - e_3 = e_1$</td>
</tr>
<tr>
<td>$f(x) = e_2$</td>
<td>$e_4 = 0$</td>
</tr>
<tr>
<td>$f(y) = e_3$</td>
<td>$e_5 = a + 2$</td>
</tr>
<tr>
<td>$f(e_4) = e_5$</td>
<td>$e_2 = e_3$</td>
</tr>
<tr>
<td>$x = y$</td>
<td></td>
</tr>
</tbody>
</table>

The two solvers only share constants: $e_1, e_2, e_3, e_4, e_5, a$

- EUF-Solver says SAT
- Ari-Solver says SAT
- $EUF \models e_2 = e_3$
SECOND STEP: check satisfiability and exchange entailed equalities

<table>
<thead>
<tr>
<th>EUF</th>
<th>Arithmetic</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(e_1) = a$</td>
<td>$e_2 - e_3 = e_1$</td>
</tr>
<tr>
<td>$f(x) = e_2$</td>
<td>$e_4 = 0$</td>
</tr>
<tr>
<td>$f(y) = e_3$</td>
<td>$e_5 = a + 2$</td>
</tr>
<tr>
<td>$f(e_4) = e_5$</td>
<td>$e_2 = e_3$</td>
</tr>
<tr>
<td>$x = y$</td>
<td></td>
</tr>
<tr>
<td>$e_1 = e_4$</td>
<td></td>
</tr>
</tbody>
</table>

The two solvers only share constants: $e_1, e_2, e_3, e_4, e_5, a$

- **EUF-Solver says SAT**
- **Ari-Solver says SAT**
- **Ari $|= e_1 = e_4$**
Motivating example - Convex case (2)

SECOND STEP: check satisfiability and exchange entailed equalities

\[
\begin{align*}
\text{EUF} & & \text{Arithmetic} \\
f(e_1) &= a & e_2 - e_3 &= e_1 \\
f(x) &= e_2 & e_4 &= 0 \\
f(y) &= e_3 & e_5 &= a + 2 \\
f(e_4) &= e_5 & e_2 &= e_3 \\
x &= y & a &= e_5 \\
e_1 &= e_4 & & \\
\end{align*}
\]

The two solvers only share constants: \(e_1, e_2, e_3, e_4, e_5, a\)

- **EUF-Solver says SAT**
- **Ari-Solver says SAT**
- **EUF \models a = e_5**
Motivating example - Convex case (2)

SECOND STEP: check satisfiability and exchange entailed equalities

<table>
<thead>
<tr>
<th>EUF</th>
<th>Arithmetic</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(e_1) = a$</td>
<td>$e_2 - e_3 = e_1$</td>
</tr>
<tr>
<td>$f(x) = e_2$</td>
<td>$e_4 = 0$</td>
</tr>
<tr>
<td>$f(y) = e_3$</td>
<td>$e_5 = a + 2$</td>
</tr>
<tr>
<td>$f(e_4) = e_5$</td>
<td>$e_2 = e_3$</td>
</tr>
<tr>
<td>$x = y$</td>
<td>$a = e_5$</td>
</tr>
<tr>
<td>$e_1 = e_4$</td>
<td></td>
</tr>
</tbody>
</table>

The two solvers only share constants: $e_1, e_2, e_3, e_4, e_5, a$

- **EUF**-Solver says SAT
- **Ari**-Solver says **UNSAT**
- Hence the original set of lits was **UNSAT**
Nelson-Oppen – The convex case

- A theory T is **stably-infinite** iff every T-satisfiable quantifier-free formula has an infinite model

- A theory T is **convex** iff

 $S |_{T} a_1 = b_1 \lor \ldots \lor a_n = b_n \implies S | a_i = b_i$ for some i

Deterministic Nelson-Oppen: [NO79], [TH96], [MZ02]

- Given two **signature-disjoint**, **stably-infinite** and **convex** theories T_1 and T_2

- Given a set of literals S over the signature of $T_1 \cup T_2$

- The $(T_1 \cup T_2)$-satisfiability of S can be checked with the following algorithm:
Deterministic Nelson-Oppen

1. **Purify** S and split it into $S_1 \cup S_2$.
 Let E the set of interface equalities between S_1 and S_2
2. If S_1 is T_1-unsatisfiable then **UNSAT**
3. If S_2 is T_2-unsatisfiable then **UNSAT**
4. If $S_1 \models_{T_1} x = y$ with $x = y \in E \setminus S_2$ **then**

 $S_2 := S_2 \cup \{x = y\}$ and **goto** 3
5. If $S_2 \models_{T_2} x = y$ with $x = y \in E \setminus S_1$ **then**

 $S_1 := S_1 \cup \{x = y\}$ and **goto** 2
6. Report **SAT**
Consider the following UNSATISFIABLE set of literals:

\[
\begin{align*}
1 & \leq x \leq 2 \\
f(1) & = a \\
f(x) & = b \\
a & = b + 2 \\
f(2) & = f(1) + 3
\end{align*}
\]

There are two theories involved: \(T_{LA(Z)} \) and \(T_{EUF} \)

FIRST STEP: purify each literal so that it belongs to a single theory

\[
f(1) = a \implies f(e_1) = a \quad e_1 = 1
\]
Consider the following **UNSATISFIABLE** set of literals:

\[
1 \leq x \leq 2 \\
f(1) = a \\
f(x) = b \\
a = b + 2 \\
f(2) = f(1) + 3
\]

There are **two theories** involved: \(T_{LA(Z)} \) and \(T_{EUF} \)

FIRST STEP: **purify** each literal so that it belongs to a single theory

\[
f(2) = f(1) + 3 \implies e_2 = 2 \\
f(e_2) = e_3 \\
f(e_1) = e_4 \\
e_3 = e_4 + 3
\]
SECOND STEP: check satisfiability and exchange entailed equalities

<table>
<thead>
<tr>
<th>Arithmetic</th>
<th>EUF</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1 \leq x$</td>
<td>$f(e_1) = a$</td>
</tr>
<tr>
<td>$x \leq 2$</td>
<td>$f(x) = b$</td>
</tr>
<tr>
<td>$e_1 = 1$</td>
<td>$f(e_2) = e_3$</td>
</tr>
<tr>
<td>$a = b + 2$</td>
<td>$f(e_1) = e_4$</td>
</tr>
<tr>
<td>$e_2 = 2$</td>
<td></td>
</tr>
<tr>
<td>$e_3 = e_4 + 3$</td>
<td></td>
</tr>
<tr>
<td>$a = e_4$</td>
<td></td>
</tr>
</tbody>
</table>

The two solvers only share constants: $x, e_1, a, b, e_2, e_3, e_4$

- *Ari*-Solver says SAT
- *EUF*-Solver says SAT
- $EUF \models a = e_4$
Motivating example – Non-convex case(2)

SECOND STEP: check satisfiability and exchange entailed equalities

\[
\begin{align*}
\text{Arithmetic} & \quad \text{EUF} \\
1 \leq x & \quad f(e_1) = a \\
x \leq 2 & \quad f(x) = b \\
e_1 = 1 & \quad f(e_2) = e_3 \\
a = b + 2 & \quad f(e_1) = e_4 \\
e_2 = 2 & \\
e_3 = e_4 + 3 & \\
a = e_4 &
\end{align*}
\]

The two solvers only share constants: \(x, e_1, a, b, e_2, e_3, e_4 \)

- Ari-Solver says SAT
- EUF-Solver says SAT
- No theory entails any other interface equality, but...
Motivating example – Non-convex case(2)

SECOND STEP: check satisfiability and exchange entailed equalities

<table>
<thead>
<tr>
<th>Arithmetic</th>
<th>EUF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ≤ x</td>
<td>f(e₁) = a</td>
</tr>
<tr>
<td>x ≤ 2</td>
<td>f(x) = b</td>
</tr>
<tr>
<td>e₁ = 1</td>
<td>f(e₂) = e₃</td>
</tr>
<tr>
<td>a = b + 2</td>
<td>f(e₁) = e₄</td>
</tr>
<tr>
<td>e₂ = 2</td>
<td></td>
</tr>
<tr>
<td>e₃ = e₄ + 3</td>
<td></td>
</tr>
<tr>
<td>a = e₄</td>
<td></td>
</tr>
</tbody>
</table>

The two solvers only share constants: x, e₁, a, b, e₂, e₃, e₄

- **Ari-Solver** says SAT
- **EUF-Solver** says SAT
- **Ari |= T x = e₁ ∨ x = e₂**. Let’s consider both cases.
Motivating example – Non-convex case(2)

SECOND STEP: check satisfiability and exchange entailed equalities

<table>
<thead>
<tr>
<th>Arithmetic</th>
<th>EUF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 \leq x</td>
<td>f(e_1) = a</td>
</tr>
<tr>
<td>x \leq 2</td>
<td>f(x) = b</td>
</tr>
<tr>
<td>e_1 = 1</td>
<td>f(e_2) = e_3</td>
</tr>
<tr>
<td>a = b + 2</td>
<td>f(e_1) = e_4</td>
</tr>
<tr>
<td>e_2 = 2</td>
<td></td>
</tr>
<tr>
<td>e_3 = e_4 + 3</td>
<td>x = e_1</td>
</tr>
<tr>
<td>a = e_4</td>
<td></td>
</tr>
<tr>
<td>x = e_1</td>
<td></td>
</tr>
</tbody>
</table>

- **Ari-Solver** says SAT
- **EUF-Solver** says SAT
- **EUF\models_T a=b**, that when sent to Ari makes it **UNSAT**
SECOND STEP: check satisfiability and exchange entailed equalities

<table>
<thead>
<tr>
<th>Arithmetic</th>
<th>EUF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ≤ x</td>
<td>$f(e_1) = a$</td>
</tr>
<tr>
<td>$x \leq 2$</td>
<td>$f(x) = b$</td>
</tr>
<tr>
<td>$e_1 = 1$</td>
<td>$f(e_2) = e_3$</td>
</tr>
<tr>
<td>$a = b+2$</td>
<td>$f(e_1) = e_4$</td>
</tr>
<tr>
<td>$e_2 = 2$</td>
<td></td>
</tr>
<tr>
<td>$e_3 = e_4 + 3$</td>
<td></td>
</tr>
<tr>
<td>$a = e_4$</td>
<td></td>
</tr>
</tbody>
</table>

Let’s try now with $x = e_2$
Motivating example – Non-convex case(2)

SECOND STEP: check satisfiability and exchange entailed equalities

<table>
<thead>
<tr>
<th>Arithmetic</th>
<th>EUF</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1 \leq x$</td>
<td>$f(e_1) = a$</td>
</tr>
<tr>
<td>$x \leq 2$</td>
<td>$f(x) = b$</td>
</tr>
<tr>
<td>$e_1 = 1$</td>
<td>$f(e_2) = e_3$</td>
</tr>
<tr>
<td>$a = b + 2$</td>
<td>$f(e_1) = e_4$</td>
</tr>
<tr>
<td>$e_2 = 2$</td>
<td>$x = e_2$</td>
</tr>
<tr>
<td>$e_3 = e_4 + 3$</td>
<td></td>
</tr>
<tr>
<td>$a = e_4$</td>
<td></td>
</tr>
<tr>
<td>$x = e_2$</td>
<td></td>
</tr>
</tbody>
</table>

- **Ari-Solver** says SAT
- **EUF-Solver** says SAT
- **EUF $\models_T b = e_3$**, that when sent to Ari makes it **UNSAT**
Motivating example – Non-convex case (2)

SECOND STEP: check satisfiability and exchange entailed equalities

<table>
<thead>
<tr>
<th>Arithmetic</th>
<th>EUF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ≤ x</td>
<td>(f(e_1) = a)</td>
</tr>
<tr>
<td>x ≤ 2</td>
<td>(f(x) = b)</td>
</tr>
<tr>
<td>(e_1 = 1)</td>
<td>(f(e_2) = e_3)</td>
</tr>
<tr>
<td>(a = b + 2)</td>
<td>(f(e_1) = e_4)</td>
</tr>
<tr>
<td>(e_2 = 2)</td>
<td>(x = e_2)</td>
</tr>
<tr>
<td>(e_3 = e_4 + 3)</td>
<td></td>
</tr>
<tr>
<td>(a = e_4)</td>
<td></td>
</tr>
<tr>
<td>(x = e_2)</td>
<td></td>
</tr>
</tbody>
</table>

Since both \(x = e_1 \) and \(x = e_2 \) are **UNSAT**, the set of literals is **UNSAT**
In the previous example Deterministic NO does not work

This was because $T_{LA}(Z)$ is not convex:

$$S_{LA}(Z) \models T_{LA}(Z) \ x = e_1 \lor x = e_2,$$ but

$$S_{LA}(Z) \not\models T_{LA}(Z) \ x = e_1 \text{ and}$$

$$S_{LA}(Z) \not\models T_{LA}(Z) \ x = e_2$$

However, there is a version of NO for non-convex theories

Given a set constants C, an arrangement A over C is:

- A set of equalities and disequalities between constants in C
- For each $x, y \in C$ either $x = y \in A$ or $x \neq y \in A$
Non-deterministic Nelson-Oppen: [NO79, TH96, MZ02]

- Given two signature-disjoint, stably-infinite theories T_1 and T_2
- Given a set of literals S over the signature of $T_1 \cup T_2$
- The $(T_1 \cup T_2)$-satisfiability of S can be checked via:

1. **Purify** S and split it into $S_1 \cup S_2$
 - Let C be the set of shared constants
2. **For every** arrangement A over C **do**
 - If $(S_1 \cup A)$ is T_1-satisfiable and $(S_2 \cup A)$ is T_2-satisfiable
 - report **SAT**
3. Report **UNSAT**

This is another example of Case Reasoning inside a T-Solver
Overview of the talk

- Motivation
- SMT
- Theories of Interest
- Eager approach
- Lazy approach
 - Optimizations
 - Theory propagation
 - Conflict analysis in DPLL(T)
 - Combining Theory Solvers
 - **Eager vs Lazy**
 - Theory solver example
Eager vs Lazy Approach

REMEMBER....

Important and beneficial aspects of the lazy approach:
(even with the optimizations)

Everyone does what he/she is good at:
- SAT solver takes care of Boolean information
- Theory solver takes care of theory information

Theory solver only receives conjunctions of literals

Modular approach:
- SAT solver and T-solver communicate via a simple API
- SMT for a new theory only requires new T-solver
- SAT solver can be embedded in a lazy SMT system with very few new lines of code
Eager vs Lazy Approach (2)

The Lazy Approach idea (SAT Solver + Theory Reasoner) has been applied to other extensions of SAT (x_i's are Boolean):

- Cardinality constraints (e.g. $x_1 + x_2 + \ldots + x_7 \leq 4$)
- Pseudo-Boolean constraints (e.g. $7x_1 + 4x_2 + 3x_3 + 5x_4 \leq 10$)
- ...

Also sophisticated encodings exist for these constraints (Eager Approach)

Lazy approach extremely simple to implement, but is it always competitive w.r.t. an encoding?
Consider the problem with no SAT clauses and two constraints:

$$x_1 + \ldots + x_n \leq n/2$$
$$x_1 + \ldots + x_n > n/2$$

Let us see how a (very) Lazy Approach would behave:

- Problem is obviously unsatisfiable
- Inconsistency explanations are of the form:
Consider the problem with no SAT clauses and two constraints:

\[
\begin{align*}
 x_1 + \ldots + x_n &\leq n/2 \\
 x_1 + \ldots + x_n &> n/2
\end{align*}
\]

Let us see how a (very) Lazy Approach would behave:

- Problem is obviously unsatisfiable
- Inconsistency explanations are of the form:

\[
\begin{align*}
 \neg x_{i_1} \lor \ldots \lor \neg x_{i_{n/2 + 1}} \\
 x_{i_1} \lor \ldots \lor x_{i_{n/2}}
\end{align*}
\]
Consider the problem with no SAT clauses and two constraints:

\[x_1 + \ldots + x_n \leq n/2 \]
\[x_1 + \ldots + x_n > n/2 \]

Let us see how a (very) Lazy Approach would behave:

- Problem is obviously unsatisfiable
- Inconsistency explanations are of the form:
 \[\neg x_{i_1} \lor \ldots \lor \neg x_{i_{n/2+1}} \]
 \[x_{i_1} \lor \ldots \lor x_{i_{n/2}} \]
- All \(\binom{n}{\frac{n}{2}+1} + \binom{n}{n/2} \) explanations are needed to produce an unsatisfiable subset of clauses
Consider the problem with no SAT clauses and two constraints:

\[x_1 + \ldots + x_n \leq n/2 \]
\[x_1 + \ldots + x_n > n/2 \]

Let us see how a (very) Lazy Approach would behave:

- Problem is obviously unsatisfiable
- Inconsistency explanations are of the form:
 \[\neg x_{i_1} \lor \ldots \lor \neg x_{\lfloor n/2 \rfloor + 1} \]
 \[x_{i_1} \lor \ldots \lor x_{\lfloor n/2 \rfloor} \]
- All \(\binom{n}{\lfloor n \rfloor + 1} + \binom{n}{\lfloor n/2 \rfloor} \) explanations are needed to produce an unsatisfiable subset of clauses
- Hence, runtime is exponential in \(n \).
Eager vs Lazy approach (4)

What has happened?

- **Lazy approach** = lazily encoding (parts of) the theory into SAT
- Sometimes, **only parts** of the theory need to be encoded
- But in this example the **whole constraint** is encoded into SAT...
- ...and the encoding used is a **very naive** one
What has happened?

- **Lazy approach** = lazily encoding (parts of) the theory into SAT
- Sometimes, *only parts* of the theory need to be encoded
- But in this example the **whole constraint** is encoded into SAT...
- ...and the encoding used is a **very naive** one
- Best here is a **good SAT encoding** with auxiliary variables
Overview of the talk

- Motivation
- SMT
- Theories of Interest
- Eager approach
- Lazy approach
 - Optimizations
 - Theory propagation
 - Conflict analysis in DPLL(T)
 - Combining Theory Solvers
 - Eager vs Lazy

Theory solver example
Difference logic

- Literals in Difference Logic are of the form $a - b \bowtie k$, where
 - $\bowtie \in \{\leq, \geq, <, >, =, \neq\}$
 - a and b are integer/real variables
 - k is an integer/real

At the formula level,
- $a = b$ is replaced by p and $p \iff a \leq b \land b \leq a$ is added

- If domain is \mathbb{Z} then $a - b < k$ is replaced by $a - b \leq k - 1$
- If domain is \mathbb{R} then $a - b < k$ is replaced by $a - b \leq k - \delta$
 - δ is a sufficiently small real
 - δ is not computed but used symbolically
 (i.e. numbers are pairs (k, δ)

- Hence we can assume all literals are $a - b \leq k$
Difference Logic - Remarks

- Note that any solution to a set of DL literals can be shifted (i.e. if σ is a solution then $\sigma'(x) = \sigma(x) + k$ also is a solution)

- This allows one to process bounds $x \leq k$
 - Introduce fresh variable zero
 - Convert all bounds $x \leq k$ into $x - zero \leq k$
 - Given a solution σ, shift it so that $\sigma(zero) = 0$

- If we allow (dis)equalities as literals, then:
 - If domain is \mathbb{R} consistency check is polynomial
 - If domain is \mathbb{Z} consistency check is NP-hard (k-colorability)
 - $1 \leq c_i \leq k$ with $i = 1 \ldots \#verts$ encodes k colors available
 - $c_i \neq c_j$ if i and j adjacents encode proper assignment
Given $M = \{a-b \leq 2, b-c \leq 3, c-a \leq -7\}$, construct weighted graph $G(M)$

Theorem:

M is T-inconsistent iff $G(M)$ has a negative cycle
Theorem:

\[M \text{ is } T\text{-inconsistent iff } G(M) \text{ has a negative cycle} \]

\[\iff \]

Any negative cycle \(a_1 \xrightarrow{k_1} a_2 \xrightarrow{k_2} a_3 \xrightarrow{\ldots} a_n \xrightarrow{k_n} a_1 \) corresponds to a set of literals:

\[
\begin{align*}
 a_1 - a_2 &\leq k_1 \\
 a_2 - a_3 &\leq k_2 \\
 &\vdots \\
 a_n - a_1 &\leq k_n
\end{align*}
\]

If we add them all, we get \(0 \leq k_1 + k_2 + \ldots + k_n \), which is inconsistent since neg. cycle implies \(k_1 + k_2 + \ldots + k_n < 0 \)
Difference Logic as a Graph Problem (3)

Theorem:

\[M \text{ is } T\text{-inconsistent iff } G(M) \text{ has a negative cycle} \]

\[\Rightarrow \]

Let us assume that there is no negative cycle.

1. Consider additional vertex \(o \) with edges \(o \to v \) for all verts. \(v \)
2. For each variable \(x \), let \(\sigma(x) = -dist(o,x) \)
3. \(\sigma \) is a model of \(M \)
 - If \(\sigma \not\models x - y \leq k \) then \(-dist(o,x) + dist(o,y) > k \)
 - Hence, \(dist(o,y) > dist(o,x) + k \)
 - But \(k = weight(x \to y) \)
Theorem:

\[M \text{ is } T\text{-inconsistent iff } G(M) \text{ has a negative cycle} \]

\[\Rightarrow \]

Let us assume that there is no negative cycle.

1. Consider additional vertex \(o \) with edges \(o \rightarrow v \) for all verts. \(v \)
2. For each variable \(x \), let \(\sigma(x) = -\text{dist}(o,x) \)
3. \(\sigma \) is a model of \(M \)
 - If \(\sigma \not| x - y \leq k \) then \(-\text{dist}(o,x) + \text{dist}(o,y) > k\)
 - Hence, \(\text{dist}(o,y) > \text{dist}(o,x) + k \)
 - But \(k = \text{weight}(x \rightarrow y) \)!!!

Where am I using there is no negative cycle?
Difference Logic as a Graph Problem (3)

Theorem:

\[M \text{ is } T\text{-inconsistent iff } G(M) \text{ has a negative cycle} \]

⇒)

Let us assume that there is no negative cycle.

1. Consider additional vertex \(o \) with edges \(o \rightarrow^0 v \) for all verts. \(v \)

2. For each variable \(x \), let \(\sigma(x) = -dist(o,x) \)
 [exists because there is no negative cycle]

3. \(\sigma \) is a model of \(M \)

 - If \(\sigma \not\models x - y \leq k \) then \(-dist(o,x) + dist(o,y) > k\)
 - Hence, \(dist(o,y) > dist(o,x) + k \)
 - But \(k = weight(x \rightarrow y) \)

Where am I using there is no negative cycle?
Bellman-Ford: negative cycle detection

forall \ v \in V \ do \ d[v] := \infty \ endfor

d[origin] = 0

forall \ i = 1 \ to \ |V| - 1 \ do
 forall \ (u,v) \in E \ do
 forall \ (u,v) \in E \ do
 if \ d[v] > d[u] + weight(u,v) \ then
 d[v] := d[u] + weight(u,v)
 p[v] := u
 endif
 endfor
 endfor
endfor

forall \ (u,v) \in E \ do
 if \ d[v] > d[u] + weight(u,v) \ then
 Negative cycle detected
 Cycle reconstructed following \ p
 endif
endfor
Consistency checks can be performed using Bellman-Ford in time ($O(|V| \cdot |E|)$).

Other more efficient variants exist [WIGG05, SM06].

Incrementality easy:
- Upon arrival of new literal $a \xrightarrow{k} b$ process graph from a

Solutions can be kept after backtracking

Inconsistency explanations are negative cycles (irredundant but not minimal explanations)
Theory propagation

- Addition of $a \xrightarrow{k} b$ entails $c - d \leq k'$ only if
 \[c \xrightarrow{\ast} a \xrightarrow{k} b \xrightarrow{\ast} d\]

- Each edge $a \xrightarrow{k} b$ has its reduced cost $-\sigma(a) + \sigma(b) + k \geq 0$

- Shortest path computation more efficient using reduced costs, since they are non-negative [Dijkstra’s algorithm]

- Theory propagation \approx shortest-path computations

- Explanations are the shortest paths
Bibliography - Some further reading

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Conference/Journal Details</th>
</tr>
</thead>
</table>
References

References

References

References

References

