Search-Based Software Analysis

Lu Zhang
Peking University
zhanglu@sei.pku.edu.cn
Agenda

• What is Search-Based Software Analysis?
• Sample Problems
• Strength of Simpler Search
• Conclusions
What is Search-Based Software Analysis?

• Search-based optimization
• Search for software analysis
• Three paradigms for search
 – Meta-heuristic search
 – Search via a NP problem solver
 – Specific search strategies
Agenda

• What is Search-Based Software Analysis?
• Sample Problems
• Strength of Simpler Search
• Conclusions
Problem 1: Metamorphic-Relation Identification

• Background
 – Test oracle problem
 – Metamorphic testing: detect faults in programs by looking for violation of metamorphic relations (MRs)
 – Metamorphic relations: how a particular change to the input would change the output, e.g.,
 • \(\sin(x) = \sin(x + 2\pi) \)

• Metamorphic relation identification:
 – Manually or automatically identify MRs for a program
Search-based Solution

- Focusing on only polynomial MRs whose relations between inputs and relations between outputs are both polynomial equations

- Formalize polynomial MRs, e.g.,

 \[- c_1 P(I_1) + c_2 P(\alpha I_1 + \beta) + e = 0\]
 \[- c_1 P^2(I_1) + c_2 P(I_1)P(\alpha I_1 + \beta) + c_3 P^2(\alpha I_1 + \beta) + d_1 P(I_1) + d_2 P(\alpha I_1 + \beta) + e = 0\]

- Polynomial MR identification → search for the values of parameters in the polynomial MRs
PSO -> MR Identification

- **Particle Swarm Optimization (PSO)**
 - An optimization algorithm simulating the birds foraging behavior
 - In PSO, each particle has a velocity and a location, which keep changing during the search. The fitness function is to evaluate how close the location of a particle is to an optimal location
 - Searching in a D-dimensional space with N particles
 - **Given:**
 - Velocity of the i-th particle at moment t (t=1,2,...): \(V_i^t = \langle v_{i1}^t, v_{i2}^t, \ldots, v_{iD}^t \rangle \)
 - Location of the i-th particle at moment t: \(L_i^t = \langle l_{i1}^t, l_{i2}^t, \ldots, l_{iD}^t \rangle \)
 - d-th dimension of the personal optimum location that the i-th particle has reached on and before moment t: \(p_{id}^t \)
 - d-th dimension of the global optimum location that the i-th particle has reached on and before moment t: \(p_{gd}^t \)
 - **Then:**
 - Velocity of the i-th particle at moment t+1:
 \[
 v_{id}^{t+1} = \omega v_{id}^t + \xi_1 r_1 (p_{id}^t - l_{id}^t) + \xi_2 r_2 (p_{gd}^t - l_{id}^t)
 \]
 - Location of the i-th particle at moment t+1:
 \[
 l_{id}^{t+1} = l_{id}^t + v_{id}^{t+1}
 \]
PSO -> MR Identification

- **MR identification**
 - For example,
 \[
 c_1 P(x_1, x_2, ..., x_n) +
 c_2 P\left(\sum_{j=1}^{n} a_{1j} x_j + b_1, ..., \sum_{j=1}^{n} a_{nj} x_j + b_n\right) + d = 0
 \]
 - Given a vector \(L \) of values for \(c_1, c_2, a_{ij}, b_i, d \), if \(L \) and input \(I_k \) satisfy this equation, \(f(L, k) = 1 \); otherwise, \(f(L, k) = 0 \).
 - Fitness function: \(\text{fitness}(L) = \sum_{k=1}^{M} f(L, k) \)

- **Further reading:**
 Zhang et al., Search-Based Inference of Polynomial Metamorphic Relations for Scientific Programs, ASE 2014.
Problem 2: Test-Case Prioritization

• **Background of test-case prioritization**
 – Regression testing: retest a new version using existing test cases within a test suite
 – It is expensive to reuse all the test cases
 – To meet some test goals earlier (e.g., reveal more faults and time concerns), the test cases should be reordered

• **Test-case prioritization**
 – Schedule the execution order of test cases to achieve some test goal (i.e., less time but more faults)
Solutions to Test-Case Prioritization

- Test-case prioritization
 - Given:
 - T: a test suite; PT: its set of permutations of all subsets of T; f: a function from PT to numbers denoting the award value of an ordering of test cases
 - Problem:
 Find $T' \in PT$ satisfying that
 $$(\forall T'')(T'' \in PT)(T'' \neq T') (f(T') \geq f(T''))$$

- Typical solutions for test-case prioritization
 - record the coverage information of the old version with T
 - based on the preceding coverage information, prioritize test cases within T for a new version
Solutions to Test-Case Prioritization

• Test-case prioritization
 – Given:
 - T: a test suite; PT: its set of permutations of all subsets of T;
 - f: a function from PT to numbers denoting the award value of an ordering of test cases
 – Problem:
 Find $T' \in PT$ satisfying that
 $\forall T'' (T'' \in PT) (T'' \neq T') (f(T') \geq f(T''))$

• Typical solutions for test-case prioritization
 – record the coverage information of the old version with T
 – based on the preceding coverage information, prioritize test cases within T for a new version
Search-based Solution: ILP -> Test-Case Prioritization

- Integer linear programming (ILP)
 - Solve an optimization problem
 - requirements:
 - all the variables are integers
 - all the functions and constraints are linear
 - Popular problem: Travelling Salesman
- Formalize test-case prioritization by ILP
 - Decision variables
 - Boolean variable x_{ij}: whether the j-th test case in T' is t_i
 - Boolean Variable y_{jk}: whether the first j test cases in T' covers statement s_{tk}
 - Boolean Variable c_{ik}: whether test case t_i covers statement s_{tk}
 - Constraints
 - $\sum_{i=1}^{n} x_{ij} = 1, \sum_{j=1}^{n} x_{ij} = 1$
 - $\sum_{i=1}^{n} c_{ik} \cdot x_{1j} \cdot y_{1k}, y_{jk} \geq \sum_{i=1}^{n} c_{ik} \cdot x_{ij}(j \geq 2), y_{jk} \geq y_{j-1,k}(j \geq 2), \sum_{i=1}^{n} c_{ik} \cdot x_{ij} + y_{j-1,k} \geq y_{jk}(j \geq 2)$
 - Objective function
 - maximize $\sum_{j=1}^{n-1} \sum_{k=1}^{m} y_{jk}$
- Further reading:
 Hao et al., On Optimal Coverage-Based Test-Case Prioritization, Submitted to ISSRE14.
Problem 3: Time-Aware Test-Case Prioritization

- Time-Aware Test-case prioritization
 - Add constraints on the time budget
 - Formalization

 - Given:
 \(T \): a test suite; \(PT \): its set of permutations of all subsets of \(T \); \(f \): a function from \(PT \) to numbers denoting the award value of an ordering of test cases; \(time \): a function from \(PT \) to numbers denoting the execution time of an ordering of test cases; \(time_{max} \): time budget

 - Problem:
 Find \(T' \in PT \) and \(time(T') \leq time_{max} \) satisfying that \((\forall T'')(T'' \in PT)(T'' \neq T')(time(T'')) \leq time_{max})(f(T') \geq f(T''))\)
Time-Aware Test-Case Prioritization

- Time-Aware Test-case prioritization
 - Add constraints on the time budget
 - Formalization
 - Given:
 \(T \): a test suite; \(PT \): its set of permutations of all subsets of \(T \); \(f \): a function from \(PT \) to numbers denoting the award value of an ordering of test cases; \(time \): a function from \(PT \) to numbers denoting the execution time of an ordering of test cases; \(time_{\text{max}} \): time budget
 - Problem:
 Find \(T' \in PT \) and \(time(T') \leq time_{\text{max}} \) satisfying that
 \[(\forall T'')(T'' \in PT)(T'' \neq T')(time(T'') \leq time_{\text{max}})(f(T') \geq f(T'')) \]
Search-based Solution: ILP -> Test-Case Prioritization

• Formalize test-case prioritization by ILP
 – Defined variables
 • Boolean variable x_i : selection of test t_i
 • variable $StN(t_i)$: number of statements covered by test t_i
 – Objective function: $\max \sum_i StN(t_i) \cdot x_i$
 – Constraint System: $\sum_i time(t_i) \cdot x_i \leq time_{\max}$

• Further reading:
 Zhang et al., Time-Aware Test-Case Prioritization using Integer Linear Programming, ISSTA 2009
Problem 4: Test-Suite Reduction

• Background of test-suite reduction
 – Regression testing: retest a new version using existing test cases within a test suite
 – It is expensive to reuse all the test cases
 – To reduce the time required for testing, a representative subset of test cases satisfying the same testing requirements as the given test suite should be found

• Test-suite reduction
 – Reduce the number of test cases guaranteeing that the reduced test suite satisfies the same testing requirements as the original test suite
Solutions to Test-Suite Reduction

• **Test-suite reduction**
 – Given a test suite T, finds its subset T' satisfying that $\forall T'' \subseteq T(f(T'') = f(T') = f(T) \rightarrow |T'| \leq |T''|)$, where f is a function defining to what extent a subset satisfies the specified testing requirement.

• **Typical solutions for test-suite reduction**
 – record the coverage information of the old version with T
 – based on the preceding coverage information, prioritize test cases within T for a new version
Search-based Solution: ILP -> Test-Suite Reduction

• Formalize test-suite reduction by ILP (single-objective)
 – Decision variables
 • Boolean variable x_i: selection of test t_i in the reduced test suite
 • Boolean variable a_{ij}: whether test t_i covers some test requirement r_i
 – Objective function: $\min \sum_j x_j$
 – Constraints: for any i, $\sum_j a_{ij} * x_j \geq 1$

• Further reading:
 Black et al., Bi-Criteria Models for All-Uses Test Suite Reduction, ICSE 2004
Search-based Solution: ILP -> Test-Suite Reduction

- **Formalize test-suite reduction by ILP (single-objective)**
 - Decision variables
 - Boolean variable x_i: selection of test t_i in the reduced test suite
 - Boolean variable a_{ij}: whether test t_i covers some test requirement r_j

Compared with other techniques, including greedy strategy, genetic algorithm, other heuristic algorithms, we got the following findings.
- Generic-based algorithm is bad considering both effectiveness and efficiency.
- ILP based algorithm is more effective than the other algorithms.

Further reading:
Zhong et al., An Experimental Study of Four Typical Test Suite Reduction Techniques, IST 2008
Issues in Existing Test-Suite Reduction

• **Test-suite reduction**
 - Given a test suite T, finds its subset T' satisfying that $\forall T'' \subseteq T (f(T'') = f(T') = f(T) \rightarrow |T'| \leq |T''|)$, where f is a function defining to what extent a subset satisfies the specified testing requirement.

• **Actually, from T to T', the testing requirement (e.g., fault-detection capability) usually reduces.**

• **On-demand test-suite reduction:** guarantee an upper limit $l\%$ on acceptable loss in fault-detection with confidence $c\%$.
Solutions to On-Demand Test-Suite Reduction

- **Test-suite reduction**
 - Given a test suite T, finds its subset T' satisfying that $\forall T'' \subseteq T (f(T'') = f(T') = f(T) \rightarrow |T'| \leq |T''|)$, where f is a function defining to what extent a subset satisfies the specified testing requirement.

- **Typical solutions for test-suite reduction**
 - record the coverage information of the old version with T based on the preceding coverage information, prioritize test cases within T for a new version

Given a test suite T, finds its subset T' satisfying that $f_{lc}(T')$ and $\forall T'' \subseteq T (f_{lc}(T'') \rightarrow |T'| \leq |T''|)$, where $f_{lc}(T')$ denotes the fact that T' is a subset of T and that the loss of T' in fault-detection capability is at most $l\%$ in at least $c\%$ of circumstances.
Search-based Solution: ILP->On-Demand Test-Suite Reduction

• Formalize on-demand test-suite reduction by ILP
 – Defined variables
 • Boolean variable x_i: selection of test t_i
 • Boolean variable $w_{j,q}$: if q test cases in T' cover statement s_j
 • variable $C(i,j)$: if test case t_i covers statement s_j
 • variable $V_c(p_j,q)$: the loss in fault-detection capability for one statement at confidence level $c\%$ when the coverage changes from p_j to q
 – Objective function: $\min \sum_i x_i$
 – Constraint System: $\sum_{q=1}^{p_j} w_{j,q} * V_c(p_j, q) \leq l\%$...

• Further reading:
Hao et al., On-Demand Test Suite Reduction, ICSE 2012
Agenda

• What is Search-Based Software Analysis?
• Sample Problems
• Strength of Simpler Search
• Conclusions
Strength of Simpler Search (1)

• Greedy algorithms
 – Test-case prioritization
 • Greedy > Genetic > ILP
 – Test-suite reduction
 • Greedy ≈ ILP > Genetic
Strength of Simpler Search (2)

- Random Search
 - Automatic bug fix
 - Random > Genetic
Agenda

• What is Search-Based Software Analysis?
• Sample Problems
• Strength of Simpler Search
• Conclusions
Conclusions (1)

- Take-home messages (1)
 - Always try simpler strategies first
 - If an SA problem can be formulated as a search problem, but not an NP problem, it might be a very good candidate for meta-heuristic search
Conclusions (2)

• Take-home messages (2)
 – If an SA problem can be formulated as an NP problem with size inflation, try meta-heuristic search (instead of an NP solver) first
 – If an SA problem can be formulated as an NP problem without size inflation, try an NP solver (instead of meta-heuristic search) first
Conclusions (3)

• Take-home messages (3)
 – If an SA problem cannot be well solved by an NP solver, you may consider using a new search strategy specific to the problem. But some expertise is needed to do that.