Search-Based Software Analysis

Lu Zhang
Peking University
zhanglu@sei.pku.edu.cn

g VO
& b
T
A P

Agenda

« Whatis Search-Based Software
Analysis?

« Sample Problems
» Strength of Simpler Search
« Conclusions

What is Search-Based Software Analysis?

« Search-based optimization
« Search for software analysis

* Three paradigms for search
— Meta-heuristic search
— Search via a NP problem solver
— Specific search strategies

5 Agenda
« What is Search-Based Software
Analysis¢
« Sample Problems
« Strength of Simpler Search
« Conclusions

g3 Problem 1: Metamorphic-
Relation Identification
« Background

— Test oracle problem

— Metamorphic testing: detect faults in programs
by looking for violation of metamorphic relations
(MRs)

— Metamorphic relations: how a particular change
to the input would change the output, e.g..
 sin(x) = sin(x + 2m)

« Metamorphic relation identification:

— Manually or automatically identify MRs for a
program

m > :
.
i Yy

Search-based Solution

* Focusing on only polynomial MRs whose
relations between inputs and relations
between outputs are both polynomial
equations

« Formalize polynomial MRs, e.g..
- ¢, PA) +c,P(ad; +B) +e=0

- ¢,P?(1)) + c,P(0)P(al; + B) + c3P?(al, + B) +
d,P(1,) +d,P(al;+)+e=0

« Polynomial MR identification = search for the
values of parameters in the polynomial MRs

ERBPSO -> MR Identification

« Particle Swarm Optimization (PSO)
— An optimization algorithm simulating the birds foraging
behavior
— InPSO, each particle has a velocity and a location, which
keeF changing during the search. The fitness function is to
evaluate how close the location of a particle is to an
optimal location

— Searching in a D-dimensional space with N particles

« Given:
— Velocity of the i-th particle at moment t (1=1,2,---): V.t=<vy, Vi, ,-++ , vip! >
— Location of the i-th particle at moment t: Li=<I,;!, It -+, o>

— d-th dimension of the personal optimum location that the i-th particle has
reached on and before moment t: p,;

- d-th dimension of the global optimum location that the i-th particle has
reached on and before moment t: p;*
* Then:
— Velocity of the i-th particle at moment t+1:
Vi 1T vy + &y (pgt — lide) + Eyry(pgdt — lidt)
— Location of the i-th particle at moment t+1:
Lt 1 liy, + vidt 1

PSO -> MR Identification

* MR identification

« Forexample,
c,P(Xq, Xy, oo, X)) +
¢ P(X7o1 @y + Dy ein Xy Gpjyy + b0) +d =0

« Given a vector L of values for ¢,, ¢, a; b; d,if L
and input / satisfy this equcl’rion, f(L, kﬁ =1;
otherwise,f (L, k) = 0.

- Fitness function: fitness(L) = Xi_, f(L, k)

» Further reading:

Zhang et al., Search-Based Inference of Polynomial
Metamorphic Relations for Scientific Programs, ASE 2014.

Problem 2: Test-Case

Prioritization
« Background of test-case prioritization

— Regression testing: retest a new version using
existing test cases within a test suite

— It is expensive to reuse all the test cases

— To meet some test goals earlier (e.g., reveal
more faults and time concerns), the test
cases should be reordered

« Test-case prioritization

— Schedule the execution order of test cases to
achieve some test goal (i.e., less time but
more faults)

gix % Solutions to
Test-Case Prioritization

« Test-case prioritization
- Given:

I. a test suite; PF. its set of permutations of all subsets of

I, . afunction from PTto numbers denoting the award
value of an ordering of test cases

— Problem:

Find T' € PT satisfying that
(VT'")T" € PTX(T" #T") (f(T") = f(T"))

- Typical solutions for test-case prioritization

- re.gr:r?rrd the coverage information of the old version
Wi

— based on the preceding coverage information,
prioritize test cases within 7for a new version

gix % Solutions to
Test-Case Prioritization

« Test-case prioritization
— Given:
I a test suite; PT. its set of permutations of all subsets of

I, . a function from Prto numbers denoting the award
value of an ordering of test cases

— Problem:

Find T' € PT satisfying that
(vT'")Y(T" e PTY(T" #T") (f(T") = f(T"))

- Typical solutions for test-case prioritization

- re.gr:r?rrd the coverage information of the old version
wi

— based on the preceding coverage information,
prioritize test cases within 7for a new version

Search-based Solution:
ILP -> Test-Case Prioritization

« Integer linear programming (ILP)
— Solve an optimization problem
— requirements:
» dall the variables are integers
» dall the functions and constraints are linear
— Popular problem: Travelling Salesman

« Formalize test-case prioritization by ILP
— Decision variables
- Boolean variable x; : whether the j-th test case in T’ is ;
« Boolean Variable y;: whether the first j test cases in T’ covers statement st,
« Boolean Variable ¢, : whether test case 1; covers statement st,

— Constraints
=1 x; =1, Z?=1 x; =1
Y=t Ci * Xy _ Vi Vie = Di=1 Cuc * X 2 2),yjk 2 yj _ 1'k(j > 2), Xz Co * Xij +) _ 1k 2 yik(j = 2)
— Obijective function
* maximize $72} T, v,
« Furtherreading:
Hao et al., On Optimal Coverage-Based Test-Case Prioritization, Submitted to ISSRE14.

g S Problem 3: Time-Aware Test-

Case Prioritization
« Time-Aware Test-case prioritization
— Add constraints on the time budget

— Formalization
 Given:

. a test suite; PF. its set of permutations of all subsets
of I; £ a function from P7to numbers denoting the
award value of an ordering of test cases; fime: a
function from P7Tto numbers denoting the execution

time of an ordering of test cases; fime,, .. time
budget

* Problem:

Find T' € PT and time(T") < time,,,, Satisfying that
(VT'")(T" € PT)(T" # T")(time(T"") < time,,,,.) (f(T") =
f(T"))

g Time-Aware Test-Case

| PI’I?I’ITIZCITIOH
« Time-Aware Test-case prioritization

— Add constraints on the time budget

— Formalization
 Given:

I. a test suite; PF. its set of permutations of all subsets
of 7, £ a function from P7rto numbers denoting the
award value of an ordering of test cases; fime: a
function from PTto numbers denoting the execution
time of an ordering of test cases; fime,, . time
budget

* Problem:

FINd T' € PT and time(T") < time,,,, satisfying that
(VT'")(T" € PT)(T" # T")(time(T") < time,,4,.) (f(T") =
f(T"))

g% Search-based Solution:
ILP -> Test-Case Prioritization

« Formalize test-case prioritization by ILP

— Defined variables
« Boolean variable x; : selection of test t,

« variable StN(t;): number of statements covered by
test t,

— ODbjective function: max };; StN(¢t;) * x;
— Constraint System: }; time(t;) * x; < timey, gy

* Furtherreading:

Zhang et al., Time-Aware Test-Case Prioritization using Integer
Linear Programming, ISSTA 2009

®Problem 4: Test-Suite Reduction

« Background of test-suite reduction

— Regression testing: retest a new version using
existing test cases within a test suite

— It is expensive to reuse all the test cases

— To reduce the time required for ’res’rin?, a
representative subset of test cases satisfying
the same testing requirements as the given
test suite should be found

« Test-suite reduction

— Reduce the number of test cases
guaranteeing that the reduced test suite
satisfies the same testing requirements as the
original test suite

§olutions to Test-Suite Reduction

« Test-suite reduction

— Given a test suite T, finds its subset T’ satisfying
that v c T(f(T") = f(T") = f(T) = |T'| = IT"|),
where f is a function defining to what extent a
subset satisfies the specified testing requirement.

» Typical solutions for test-suite reduction

— record the coverage information of the old
version with T

— based on the preceding coverage information,
prioritize test cases within T for a new version

g2 Search-based Solution:
ILP -> Test-Suite Reduction

« Formalize test-suite reduction by ILP (single-
objective)

— Decision variables

« Boolean variable x; : selection of test t.in the reduced
test suite

 Boolean variable Q;: whether test t, covers some test
requirementtr,

— Objective function: minimize },; x
— Constraints: foranyi, 2; a;*x; =1

« Furtherreading:

Black et al., Bi-Criteria Models for All-Uses Test Suite
Reduction, ICSE 2004

Search-based Solution:
ILP -> Test-Suite Reduction

« Formalize test-suite reduction by ILP (single-
objective)

— Decision variables

. Bo$leon variable x; : selection of test t,in the reduced test
suite

 Boolean variable Q;: whether test t. covers some test
requirementr;

Compared with other techniques, including greedy strategy, genetic algorithm,
other heuristic algorithms, we got the following findings.

* Generic-based algorithm is bad considering both effectiveness and efficiency.
* |ILP based algorithm is more effective than the other algorithms.

Further reading:
Zhong et al., An Experimental Study of Four Typical Test Suite Reduction Techniques,
IST 2008

EI IU IS " amw v)

Issues in Existing Test-Suite

| Reduction
« Test-suite reduction

— Given a test suite T, finds its subset T’ satisfying
that v c T(f(T") = f(T") = f(T) - |T'| < |[T"].
where f is a function defining to what extent a
subset satisfies the specified testing requirement.

« Actually, fromTto T’ , the testing
requirement (e.g., fault-detection
capability) usually reduces.

« On-demand test-suite reduction: guarantee

an upper limit I% on acceptable loss in fault-
detection with confidence c%

g S8olutions to On-Demand Test-
~ Suite Reduction
 Test-suite reduction

— Given a test suite T, finds its subset T’ satisfying
that v c T(f(T") = f(T") = f(T) = |T'| = IT"|),
where f is a function defining to what extent a
subset satisfies the specified testing requirement.

» Typical solutions for test-suit~ 1eduction

"AI\I\V’A 'I'L\f\ PV oA Wialda Ve Vel :V\'FI\"MN'FI‘I\V\ I\'F 'I'L\f\ I\IA

Given a test suite T, finds its subset T’ satisfying that

f (T and VT" € T(flL (T") = |T'| < |T"]), where f(T’)
denotes the fact that T’ is a subset of T and that the loss of T’
in fault-detection capability is at most |% in at least c% of
circumstances.

g S3earch-based Solution: ILP->On-
Demand Test-Suite Reduction

. IFL(I)DrmG"ZG on-demand test-suite reduction by

— Defined variables
« Boolean variable x;: selection of test 7,

 Boolean variable w; . if gtest casesin 7’ cover
statement s;

- variable C{ij}). if test case 7;,covers statement s;

- variable V_(p.q/: the loss in fault-detection capability
for one stafement at confidence level cZwhen the
coverage changes from p;to q

— Objective function: min };; «x;
— Constraint System: Z’;f:le’q «Ve(pj,q) < 1% ...

« Furtherreading:
Hao et al., On-Demand Test Suite Reduction, ICSE 2012

Agenda

« Whatis Search-Based Software
Analysise

« Sample Problems
» Strength of Simpler Search
« Conclusions

Strength of Simpler Search (1)
« Greedy algorithms

—Test-case prioritization
« Greedy > Genetic > ILP

—Test-suite reduction
« Greedy = ILP > Genetic

"\T"eng’rh of Simpler Search (2)

« Random Search

— Automatic bug fix
« Random > Genetic

r \-b ™,
b k’- ’ﬁ‘

Agenda

« Whatis Search-Based Software
Analysis¢

« Sample Problems
« Strength of Simpler Search
« Conclusions

e Conclusions (1)
« Take-home messages (1)

—Always try simpler strategies first

—If an SA problem can be
formulated as a search problem,
but not an NP problem, it might
be a very good candidate for
meta-heuristic search

Conclusions (2)

« Take-home messages (2)

—If an SA problem can be formulated
as an NP problem with size inflation,
try meta-heuristic search (instead of
an NP solver) first

—If an SA problem can be formulated
as an NP problem without size
inflation, try an NP solver (instead of
meta-heuristic search) first

B Conclusions (3)
« Take-home messages (3)

—If an SA problem cannot be well
solved by an NP solver, you may
consider using a new search
strategy specific to the problem.
But some expertise is needed to
do that.

