
Search-Based Software Analysis

Lu Zhang
Peking University
zhanglu@sei.pku.edu.cn

Agenda
• What is Search-Based Software

Analysis?

• Sample Problems

• Strength of Simpler Search

• Conclusions

What is Search-Based Software Analysis?

• Search-based optimization

• Search for software analysis

• Three paradigms for search

– Meta-heuristic search

– Search via a NP problem solver

– Specific search strategies

Agenda
• What is Search-Based Software

Analysis?

• Sample Problems

• Strength of Simpler Search

• Conclusions

Problem 1: Metamorphic-
Relation Identification

• Background

– Test oracle problem

– Metamorphic testing: detect faults in programs
by looking for violation of metamorphic relations
(MRs)

– Metamorphic relations: how a particular change
to the input would change the output, e.g.,
• sin 𝑥 = sin(𝑥 + 2𝜋)

• Metamorphic relation identification:

– Manually or automatically identify MRs for a
program

Search-based Solution

• Focusing on only polynomial MRs whose
relations between inputs and relations
between outputs are both polynomial
equations

• Formalize polynomial MRs, e.g.,

– c1P I1 + c2P α𝐼1+ 𝛽 + 𝑒 = 0

– c1P
2 I1 + c2P I1 P α𝐼1+ 𝛽 + 𝑐3𝑃

2 α𝐼1+ 𝛽 +
𝑑1𝑃 𝐼1 + 𝑑2𝑃(α𝐼1+ 𝛽) + 𝑒 = 0

• Polynomial MR identification  search for the
values of parameters in the polynomial MRs

PSO -> MR Identification

• Particle Swarm Optimization (PSO)
– An optimization algorithm simulating the birds foraging

behavior
– In PSO, each particle has a velocity and a location, which

keep changing during the search. The fitness function is to
evaluate how close the location of a particle is to an
optimal location

– Searching in a D-dimensional space with N particles
• Given:

– Velocity of the i-th particle at moment t (t=1,2,…): 𝑉𝑖
𝑡=<vi1

t, vi2
t ,… , viD

t >
– Location of the i-th particle at moment t: L𝑖

𝑡=<li1
t, li2

t ,… , liD
t >

– d-th dimension of the personal optimum location that the i-th particle has
reached on and before moment t: 𝑝𝑖𝑑

𝑡

– d-th dimension of the global optimum location that the i-th particle has
reached on and before moment t: 𝑝𝑔𝑑

𝑡

• Then:
– Velocity of the i-th particle at moment t+1:
𝑣𝑖𝑑

𝑡 + 1 = 𝜔𝑣𝑖𝑑
𝑡 + 𝜉1𝑟1 𝑝𝑖𝑑

𝑡 − 𝑙𝑖𝑑𝑡 + 𝜉2𝑟2(𝑝𝑔𝑑𝑡 − 𝑙𝑖𝑑𝑡)
– Location of the i-th particle at moment t+1:

𝑙𝑖𝑑
𝑡 + 1 = 𝑙𝑖𝑑𝑡 + 𝑣𝑖𝑑𝑡

+ 1

PSO -> MR Identification

• MR identification
• For example,
c1P x1, x2, … , xn +
c2P 𝑎1𝑗𝑥𝑗 + 𝑏1, … ,

𝑛
𝑗=1 𝑎𝑛𝑗𝑥𝑗 + 𝑏𝑛

𝑛
𝑗=1 + 𝑑 = 0

• Given a vector L of values for c1, c2, aij, bi, d, if L
and input Ik satisfy this equation, 𝑓 𝐿, 𝑘 = 1;
otherwise,𝑓 𝐿, 𝑘 = 0.

• Fitness function: 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝐿 = 𝑓(𝐿, 𝑘)𝑀
𝑘=1

• Further reading:
Zhang et al., Search-Based Inference of Polynomial
Metamorphic Relations for Scientific Programs, ASE 2014.

Problem 2: Test-Case
Prioritization

• Background of test-case prioritization
– Regression testing: retest a new version using

existing test cases within a test suite

– It is expensive to reuse all the test cases

– To meet some test goals earlier (e.g., reveal
more faults and time concerns), the test
cases should be reordered

• Test-case prioritization
– Schedule the execution order of test cases to

achieve some test goal (i.e., less time but
more faults)

Solutions to
Test-Case Prioritization

• Test-case prioritization
– Given:
 T: a test suite; PT: its set of permutations of all subsets of
T; f: a function from PT to numbers denoting the award
value of an ordering of test cases
– Problem:
Find T′ ∈ 𝑃𝑇 satisfying that
∀𝑇′′ 𝑇′′ ∈ 𝑃𝑇 𝑇′′ ≠ 𝑇′ (𝑓 𝑇′ ≥ 𝑓 𝑇′′)

• Typical solutions for test-case prioritization
– record the coverage information of the old version

with T
– based on the preceding coverage information,

prioritize test cases within T for a new version

Solutions to
Test-Case Prioritization

• Test-case prioritization
– Given:
 T: a test suite; PT: its set of permutations of all subsets of
T; f: a function from PT to numbers denoting the award
value of an ordering of test cases
– Problem:
Find T′ ∈ 𝑃𝑇 satisfying that
∀𝑇′′ 𝑇′′ ∈ 𝑃𝑇 𝑇′′ ≠ 𝑇′ (𝑓 𝑇′ ≥ 𝑓 𝑇′′)

• Typical solutions for test-case prioritization
– record the coverage information of the old version

with T
– based on the preceding coverage information,

prioritize test cases within T for a new version

Search-based Solution:
ILP -> Test-Case Prioritization

• Integer linear programming (ILP)

– Solve an optimization problem

– requirements:

• all the variables are integers

• all the functions and constraints are linear

– Popular problem: Travelling Salesman

• Formalize test-case prioritization by ILP

– Decision variables

• Boolean variable xij : whether the j-th test case in T’ is ti

• Boolean Variable yjk: whether the first j test cases in T’ covers statement stk

• Boolean Variable cik: whether test case ti covers statement stk

– Constraints
• 𝑥𝑖𝑗 = 1, 𝑥𝑖𝑗 = 1

𝑛
𝑗=1

𝑛
𝑖=1

• 𝑐𝑖𝑘 ∗ 𝑥𝑖1 = 𝑦1𝑘, 𝑦𝑗𝑘 ≥
 𝑐𝑖𝑘 ∗ 𝑥𝑖𝑗 𝑗 ≥ 2 , 𝑦𝑗𝑘 ≥ 𝑦𝑗 − 1, 𝑘

𝑗 ≥ 2 , 𝑐𝑖𝑘 ∗ 𝑥𝑖𝑗 + 𝑦𝑗 − 1, 𝑘
≥ 𝑦𝑗𝑘(𝑗 ≥ 2)𝑛

𝑖=1
𝑛
𝑖=1 𝑛

𝑖=1

– Objective function

• 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑦𝑗𝑘
𝑚
𝑘=1

𝑛−1
𝑗=1

• Further reading:
Hao et al., On Optimal Coverage-Based Test-Case Prioritization, Submitted to ISSRE14.

Problem 3: Time-Aware Test-
Case Prioritization

• Time-Aware Test-case prioritization
– Add constraints on the time budget

– Formalization
• Given:

T: a test suite; PT: its set of permutations of all subsets
of T; f: a function from PT to numbers denoting the
award value of an ordering of test cases; time: a
function from PT to numbers denoting the execution
time of an ordering of test cases; timemax: time
budget

• Problem:

Find T′ ∈ 𝑃𝑇 𝑎𝑛𝑑 𝑡𝑖𝑚𝑒 𝑇′ ≤ 𝑡𝑖𝑚𝑒𝑚𝑎𝑥 satisfying that
∀𝑇′′ 𝑇′′ ∈ 𝑃𝑇 𝑇′′ ≠ 𝑇′ 𝑡𝑖𝑚𝑒 𝑇′′ ≤ 𝑡𝑖𝑚𝑒𝑚𝑎𝑥 (𝑓 𝑇

′ ≥
𝑓 𝑇′′)

Time-Aware Test-Case
Prioritization

• Time-Aware Test-case prioritization
– Add constraints on the time budget

– Formalization
• Given:

T: a test suite; PT: its set of permutations of all subsets
of T; f: a function from PT to numbers denoting the
award value of an ordering of test cases; time: a
function from PT to numbers denoting the execution
time of an ordering of test cases; timemax: time
budget

• Problem:

Find T′ ∈ 𝑃𝑇 𝑎𝑛𝑑 𝑡𝑖𝑚𝑒 𝑇′ ≤ 𝑡𝑖𝑚𝑒𝑚𝑎𝑥 satisfying that
∀𝑇′′ 𝑇′′ ∈ 𝑃𝑇 𝑇′′ ≠ 𝑇′ 𝑡𝑖𝑚𝑒 𝑇′′ ≤ 𝑡𝑖𝑚𝑒𝑚𝑎𝑥 (𝑓 𝑇

′ ≥
𝑓 𝑇′′)

Search-based Solution:
ILP -> Test-Case Prioritization

• Formalize test-case prioritization by ILP

– Defined variables

• Boolean variable xi : selection of test ti

• variable StN(ti): number of statements covered by
test ti

– Objective function: 𝑚𝑎𝑥 𝑆𝑡𝑁(𝑖 𝑡𝑖) ∗ 𝑥𝑖

– Constraint System: 𝑡𝑖𝑚𝑒 𝑡𝑖 ∗ 𝑥𝑖𝑖 ≤ 𝑡𝑖𝑚𝑒𝑚𝑎𝑥

• Further reading:
Zhang et al., Time-Aware Test-Case Prioritization using Integer
Linear Programming, ISSTA 2009

Problem 4: Test-Suite Reduction
• Background of test-suite reduction

– Regression testing: retest a new version using
existing test cases within a test suite

– It is expensive to reuse all the test cases
– To reduce the time required for testing, a

representative subset of test cases satisfying
the same testing requirements as the given
test suite should be found

• Test-suite reduction
– Reduce the number of test cases

guaranteeing that the reduced test suite
satisfies the same testing requirements as the
original test suite

Solutions to Test-Suite Reduction
• Test-suite reduction

– Given a test suite T, finds its subset T’ satisfying
that ∀𝑇′′ ⊆ 𝑇(𝑓 𝑇′′ = 𝑓 𝑇′ = 𝑓(𝑇) → |𝑇′| ≤ |𝑇′′|),
where f is a function defining to what extent a
subset satisfies the specified testing requirement.

• Typical solutions for test-suite reduction

– record the coverage information of the old
version with T

– based on the preceding coverage information,
prioritize test cases within T for a new version

Search-based Solution:
ILP -> Test-Suite Reduction

• Formalize test-suite reduction by ILP (single-
objective)
– Decision variables

• Boolean variable xi : selection of test ti in the reduced
test suite

• Boolean variable aij: whether test ti covers some test
requirement ri

– Objective function: 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑥𝑗 𝑗

– Constraints: for any i, 𝑎𝑖𝑗 ∗ 𝑥𝑗 𝑗 ≥ 1

• Further reading:
Black et al., Bi-Criteria Models for All-Uses Test Suite
Reduction, ICSE 2004

Search-based Solution:
ILP -> Test-Suite Reduction

• Formalize test-suite reduction by ILP (single-
objective)
– Decision variables

• Boolean variable xi : selection of test ti in the reduced test
suite

• Boolean variable aij: whether test ti covers some test
requirement ri

– Objective function: 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑥𝑗 𝑗

– Constraints: for any i, 𝑎𝑖𝑗 ∗ 𝑥𝑗 𝑗 ≥ 1

• Further reading:
Jennifer Black, Emanuel Melachrinoudis, and David Kaeli,
“Bi-Criteria Models for All-Uses Test Suite Reduction,"
Proceedings of 26th International Conference on Software
Engineering (ICSE 2004)

Compared with other techniques, including greedy strategy, genetic algorithm,
other heuristic algorithms, we got the following findings.
• Generic-based algorithm is bad considering both effectiveness and efficiency.
• ILP based algorithm is more effective than the other algorithms.

Further reading:
Zhong et al., An Experimental Study of Four Typical Test Suite Reduction Techniques,
IST 2008

Issues in Existing Test-Suite
Reduction

• Test-suite reduction

– Given a test suite T, finds its subset T’ satisfying
that ∀𝑇′′ ⊆ 𝑇(𝑓 𝑇′′ = 𝑓 𝑇′ = 𝑓(𝑇) → |𝑇′| ≤ |𝑇′′|),
where f is a function defining to what extent a
subset satisfies the specified testing requirement.

• Actually, from T to T’, the testing
requirement (e.g., fault-detection
capability) usually reduces.

• On-demand test-suite reduction: guarantee
an upper limit l% on acceptable loss in fault-
detection with confidence c%

Solutions to On-Demand Test-
Suite Reduction

• Test-suite reduction

– Given a test suite T, finds its subset T’ satisfying
that ∀𝑇′′ ⊆ 𝑇(𝑓 𝑇′′ = 𝑓 𝑇′ = 𝑓(𝑇) → |𝑇′| ≤ |𝑇′′|),
where f is a function defining to what extent a
subset satisfies the specified testing requirement.

• Typical solutions for test-suite reduction

– record the coverage information of the old
version with T

– based on the preceding coverage information,
prioritize test cases within T for a new version

Given a test suite T, finds its subset T’ satisfying that
fl, c T

′ and ∀𝑇′′ ⊆ 𝑇(𝑓𝑙
, 𝑐
𝑇′′ → |𝑇′| ≤ |𝑇′′|), where flc(T’)

denotes the fact that T’ is a subset of T and that the loss of T’
in fault-detection capability is at most l% in at least c% of
circumstances.

Search-based Solution: ILP->On-
Demand Test-Suite Reduction

• Formalize on-demand test-suite reduction by
ILP
– Defined variables

• Boolean variable xi : selection of test ti

• Boolean variable wj,q: if q test cases in T’ cover
statement sj

• variable C(i,j): if test case ti covers statement sj
• variable Vc(pj,q): the loss in fault-detection capability

for one statement at confidence level c% when the
coverage changes from pj to q

– Objective function: 𝑚𝑖𝑛 𝑥𝑖𝑖

– Constraint System: 𝑤𝑗, 𝑞 ∗ 𝑉𝑐(𝑝𝑗, 𝑞)
𝑝𝑗
𝑞=1 ≤ 𝑙%…

• Further reading:
Hao et al., On-Demand Test Suite Reduction, ICSE 2012

Agenda
• What is Search-Based Software

Analysis?

• Sample Problems

• Strength of Simpler Search

• Conclusions

Strength of Simpler Search (1)

• Greedy algorithms

– Test-case prioritization

• Greedy > Genetic > ILP

– Test-suite reduction

• Greedy ≈ ILP > Genetic

Strength of Simpler Search (2)

• Random Search

–Automatic bug fix
• Random > Genetic

Agenda
• What is Search-Based Software

Analysis?

• Sample Problems

• Strength of Simpler Search

• Conclusions

Conclusions (1)

• Take-home messages (1)

–Always try simpler strategies first

–If an SA problem can be
formulated as a search problem,
but not an NP problem, it might
be a very good candidate for
meta-heuristic search

Conclusions (2)

• Take-home messages (2)

– If an SA problem can be formulated
as an NP problem with size inflation,
try meta-heuristic search (instead of
an NP solver) first

– If an SA problem can be formulated
as an NP problem without size
inflation, try an NP solver (instead of
meta-heuristic search) first

Conclusions (3)

• Take-home messages (3)

–If an SA problem cannot be well
solved by an NP solver, you may
consider using a new search
strategy specific to the problem.
But some expertise is needed to
do that.

