
高庆

2014.10.08



About LLVM
 LLVM：Low-level virtual machine

 A framework for writing compilers (including tools for 
static analysis)

 Written in C++

 Main author: Chris Lattner



LLVM IR: 
Intermediate Representation
 Input to LLVM



Example 1



Example 2
 Partial-SSA form



Example 3



How do LLVM work –
analyzed object
 Input: IR

 Analyzing unit: Module

 Modules can be combined to a larger module

 Useful for linking



How do LLVM work -
implementation
 Composition

 Header files

 Source files



Using LLVM
 Writing frontend compilers

 Writing backend tools

 Wrting Tools using both frontend and backend



Writing frontend compilers
 Only need to compile source code to IR

 Existing compilers that compile to IR:
 C/C++

 Ruby

 Python

 Haskell

 Java

 D

 PHP

 Pure

 Lua

 etc.



Clang: LLVM Frontend C/C++ Compiler
 Similar to gcc: easy to use

 Faster speed

 Better modularity

 Can be used separately from LLVM: Compile to 
executables





Writing backend tools
 Simpliest way: Using LLVM Passes

 Module pass

 Function pass

 BasicBlock pass



Writing backend tools
 All passes are registered and managed by pass 

manager

 Each pass is identified by its field address: ID

 Running order of passes are written by tool developer



Program analysis using LLVM
 Writing intra-procedure analysis tools

 Using Clang CFG

 Using LLVM passes

 Define-use chains are already provided
 Value::use_iterator

 Alias analysis
 Inherit alias analysis base class

 Pointer analysis
 DSA



Combining Clang and LLVM
 Clang provides ASTs in source level code 

 LLVM provides more powerful program analysis tools

 LLVM gold plugin

 Used to perform link-time optimization

 Based on GNU gold linker



Example: Memory-leak fixing
 Pointer analysis is performed at IR during linking

 Existing tool: DSA

 Data flow analysis is performed via Clang CFG

 Contain the information of source code location for 
fixing



Thanks!


