
INTRODUCTION TO LLVM
Bo Wang

SA 2016 Fall

OUTLINE

 LLVM Basic

 LLVM IR

 LLVM Pass

What is LLVM?

 LLVM is a compiler infrastructure designed as a

set of reusable libraries with well-defined

interfaces.
 Implemented in C++

 Several front-ends

 Several back-ends

 First release: 2003

 The original author: Chris Lattner (PhD of UIUC)

 Open source http://llvm.org/

LLVM is a Compilation

Infrastructure

It is a framework that comes with a lots of tools to compile and

optimize code.

1. PATH/clang –emit-llvm –c hello.c –o hello.bc

2. PATH/lli hello.bc

3. PATH/llvm-dis < hello.bc | less
or

PATH/llvm-dis hello.bc

or

PATH/clang –emit-llvm –S hello.c

A First Look

Why to learn LLVM?

 Intensively used in the academia:

 Widely used in the industry
 LLVM is supported by Apple

 ARM, NVIDIA, Mozilla, etc.

 Clean and modular interfaces

 Awards: ACM Software System Award 2012
 UNIX, TCP/IP, WWW, Java, Apahe, Eclipse, gcc,

make, Vmware, LLVM...

Big Picture of LLVM

 LLVM implements the entire compilation flow.
 Front-end, e.g., clang (C), clang++ (C++)

 Middle-end, e.g., analyses and optimizations

 Back-end, for different computer architectures, e.g.,

MIPS, x86, ARM

Middle-end: LLVM IR

 IR: Intermediate Representation
 RISC like instruction set

 Well typed representation

 SSA format: Each variable noun has only one

definition

 Three types of format

 in memory (JIT)

 byte code (.bc)

 human readable (.ll)

A First Look at IR

1st.c

1st.ll

CMD : YOUR_BUILD_PATH/bin/clang -emit-llvm -S 1st.c

 All the types of IR:

 llvm/include/llvm/IR/Instruction.def

 Document:

 http://llvm.org/docs/LangRef.html

LLVM-IR Core

LLVM Core Hierarchy

 Module contains Functions/GlobalVariables
 Module is unit of compilation/analysis/optimization

 Function contains BasicBlocks/Arguments
 Functions roughly correspond to functions in C

 BasicBlock contains list of instructions
 Each block ends in a control flow instruction

 Instruction is opcode + vector of operands
 All operands have types

 Instruction result is typed

The Module

 What is the modules?
 Modules represent the top-level structure in an

LLVM program.

 An LLVM module is effectively a translation unit or a

collection of translation units merged together.

 Why C need modules?
 Python : interpreter-based

 Java : All members of a class within a java src

 C/C++ : linkage, the scope of identifiers

The Function

 Name

 Argument list

 Return type

 Extends from GlobalValue, has properties of

linkage visibility.

The Value

 Value: can be treated as arbitrary num of

registers.

 Locals start with %, globals with @

 All instructions that produce values can have a

name (Not assignments: store, br)

Type

 Not exactly what PL people think of as types

 All values have a static type

 Integer: iN; for C --- i1, i8, i16, i32, i64…

 Float: float, double, half

 Arrays: can get num of elements

 Structures: can get members, like {i32, i32, i8}

 Pointers: can get the pointed value

 Void

Note on Integer Types

 There are no signed or unsigned integers

 LLVM views integers as bit vectors

 Frontends destroyed signed/unsigned

information

 Operations are interpreted as signed or

unsigned based on instructions they are used in
 icmp sgt v.s. icmp ugt

 sdiv v.s. udiv

BasicBlock & Instruction
 Classify Instructions

 Terminator Instructions: ret, switch, br (cond &

uncond)...

 Binary operators: add, sub…

 Logical operators: and, or, shl…

 Memory operators: alloca, load, store...

 Cast operators …

 Others: icmp, phi, call...

 Contains a list of Instructions

 In general, every basic block must end with a

Terminator Instruction

More Detail of Phi nodes

 Phi nodes – construct to handle cases where a

 variable may have more than one value
 May be self referential (in loops)

 Inside a block – select statement sometimes used

 In LLVM:
 Must be at the beginning of the block

 Must have exactly 1 entry for every predecessor

 Must have at least one entry

 May include undef values

LLVM Pass

 Normal Compiler Organization

Passes shall stay

here!

LLVM Pass

 LLVM applies a chain of analyses and transformations on the

target program.

 Each of these analyses or transformations is called a pass.
 Some passes, which are machine independent, are invoked by

opt.

 A pass may require information provided by other passes.

Such dependencies must be explicitly stated.

LLVM Pass

 A pass is an instance of the LLVM class Pass

 There are many kinds of passes

A First Look at LLVM Passes
 Memory To Register (-mem2reg)

1

2

YOURPATH/opt -mem2reg 1st.bc -S -o

1stm2r.ll

YOURPATH/clang -emit-llvm -S 1st.c -o 1st.ll

A First Look at LLVM Passes
 Draw a CGF (-mem2reg)

1. sudo apt-get install graphviz

2. opt –dot-cfg hello.bc

3. dot –Tpng –o cfg.png cfg.foo.dot

Review: Liveness Analysis

Review: Textbook Liveness Analysis
 Liveness analysis: Backwards, may, union.

Review: Textbook Liveness Analysis

 Complexity

 Time
 Worst case: O(n4)

 Typical case: O(N) to O(N2)

 Space
 O(N2)

SSA Form Liveness Analysis

Can you point

where i2 is alive in

this program?

SSA Form Liveness Analysis

Can you point where

i2 is alive in this program?

Why the phi-node i4

is excluded?

SSA Form Liveness Analysis

Without traversing the CFG

to reach a fixed point.

Space: O(N)

Time: O(N) to O(N2)

Is Traditional DA Useless?

 Where should we add a phi-function for the

defination of i at L2.

Is Traditional DA Useless?

 The phi-function at L1 exists even though it is

not useful at all.

 We can add a liveness check to the algorithm

that inserts phi-functions.

The LLVM Pass in Action

 Naive Liveness Analysis for LLVM IR

 Function Pass

 LLVM API
 Iterating basic blocks, instructions and operands.

 Instruction casting

 ...

 The code

 http://pan.baidu.com/s/1pLRfCEn

http://pan.baidu.com/s/1pLRfCEn

