
INTRODUCTION TO LLVM
Bo Wang

SA 2016 Fall

OUTLINE

 LLVM Basic

 LLVM IR

 LLVM Pass

What is LLVM?

 LLVM is a compiler infrastructure designed as a

set of reusable libraries with well-defined

interfaces.
 Implemented in C++

 Several front-ends

 Several back-ends

 First release: 2003

 The original author: Chris Lattner (PhD of UIUC)

 Open source http://llvm.org/

LLVM is a Compilation

Infrastructure

It is a framework that comes with a lots of tools to compile and

optimize code.

1. PATH/clang –emit-llvm –c hello.c –o hello.bc

2. PATH/lli hello.bc

3. PATH/llvm-dis < hello.bc | less
or

PATH/llvm-dis hello.bc

or

PATH/clang –emit-llvm –S hello.c

A First Look

Why to learn LLVM?

 Intensively used in the academia:

 Widely used in the industry
 LLVM is supported by Apple

 ARM, NVIDIA, Mozilla, etc.

 Clean and modular interfaces

 Awards: ACM Software System Award 2012
 UNIX, TCP/IP, WWW, Java, Apahe, Eclipse, gcc,

make, Vmware, LLVM...

Big Picture of LLVM

 LLVM implements the entire compilation flow.
 Front-end, e.g., clang (C), clang++ (C++)

 Middle-end, e.g., analyses and optimizations

 Back-end, for different computer architectures, e.g.,

MIPS, x86, ARM

Middle-end: LLVM IR

 IR: Intermediate Representation
 RISC like instruction set

 Well typed representation

 SSA format: Each variable noun has only one

definition

 Three types of format

 in memory (JIT)

 byte code (.bc)

 human readable (.ll)

A First Look at IR

1st.c

1st.ll

CMD : YOUR_BUILD_PATH/bin/clang -emit-llvm -S 1st.c

 All the types of IR:

 llvm/include/llvm/IR/Instruction.def

 Document:

 http://llvm.org/docs/LangRef.html

LLVM-IR Core

LLVM Core Hierarchy

 Module contains Functions/GlobalVariables
 Module is unit of compilation/analysis/optimization

 Function contains BasicBlocks/Arguments
 Functions roughly correspond to functions in C

 BasicBlock contains list of instructions
 Each block ends in a control flow instruction

 Instruction is opcode + vector of operands
 All operands have types

 Instruction result is typed

The Module

 What is the modules?
 Modules represent the top-level structure in an

LLVM program.

 An LLVM module is effectively a translation unit or a

collection of translation units merged together.

 Why C need modules?
 Python : interpreter-based

 Java : All members of a class within a java src

 C/C++ : linkage, the scope of identifiers

The Function

 Name

 Argument list

 Return type

 Extends from GlobalValue, has properties of

linkage visibility.

The Value

 Value: can be treated as arbitrary num of

registers.

 Locals start with %, globals with @

 All instructions that produce values can have a

name (Not assignments: store, br)

Type

 Not exactly what PL people think of as types

 All values have a static type

 Integer: iN; for C --- i1, i8, i16, i32, i64…

 Float: float, double, half

 Arrays: can get num of elements

 Structures: can get members, like {i32, i32, i8}

 Pointers: can get the pointed value

 Void

Note on Integer Types

 There are no signed or unsigned integers

 LLVM views integers as bit vectors

 Frontends destroyed signed/unsigned

information

 Operations are interpreted as signed or

unsigned based on instructions they are used in
 icmp sgt v.s. icmp ugt

 sdiv v.s. udiv

BasicBlock & Instruction
 Classify Instructions

 Terminator Instructions: ret, switch, br (cond &

uncond)...

 Binary operators: add, sub…

 Logical operators: and, or, shl…

 Memory operators: alloca, load, store...

 Cast operators …

 Others: icmp, phi, call...

 Contains a list of Instructions

 In general, every basic block must end with a

Terminator Instruction

More Detail of Phi nodes

 Phi nodes – construct to handle cases where a

 variable may have more than one value
 May be self referential (in loops)

 Inside a block – select statement sometimes used

 In LLVM:
 Must be at the beginning of the block

 Must have exactly 1 entry for every predecessor

 Must have at least one entry

 May include undef values

LLVM Pass

 Normal Compiler Organization

Passes shall stay

here!

LLVM Pass

 LLVM applies a chain of analyses and transformations on the

target program.

 Each of these analyses or transformations is called a pass.
 Some passes, which are machine independent, are invoked by

opt.

 A pass may require information provided by other passes.

Such dependencies must be explicitly stated.

LLVM Pass

 A pass is an instance of the LLVM class Pass

 There are many kinds of passes

A First Look at LLVM Passes
 Memory To Register (-mem2reg)


1

2

YOURPATH/opt -mem2reg 1st.bc -S -o

1stm2r.ll

YOURPATH/clang -emit-llvm -S 1st.c -o 1st.ll

A First Look at LLVM Passes
 Draw a CGF (-mem2reg)

1. sudo apt-get install graphviz

2. opt –dot-cfg hello.bc

3. dot –Tpng –o cfg.png cfg.foo.dot

Review: Liveness Analysis

Review: Textbook Liveness Analysis
 Liveness analysis: Backwards, may, union.

Review: Textbook Liveness Analysis

 Complexity

 Time
 Worst case: O(n4)

 Typical case: O(N) to O(N2)

 Space
 O(N2)

SSA Form Liveness Analysis

Can you point

where i2 is alive in

this program?

SSA Form Liveness Analysis

Can you point where

i2 is alive in this program?

Why the phi-node i4

is excluded?

SSA Form Liveness Analysis

Without traversing the CFG

to reach a fixed point.

Space: O(N)

Time: O(N) to O(N2)

Is Traditional DA Useless?

 Where should we add a phi-function for the

defination of i at L2.

Is Traditional DA Useless?

 The phi-function at L1 exists even though it is

not useful at all.

 We can add a liveness check to the algorithm

that inserts phi-functions.

The LLVM Pass in Action

 Naive Liveness Analysis for LLVM IR

 Function Pass

 LLVM API
 Iterating basic blocks, instructions and operands.

 Instruction casting

 ...

 The code

 http://pan.baidu.com/s/1pLRfCEn

http://pan.baidu.com/s/1pLRfCEn

