
INTRODUCTION TO LLVM

Bo Wang
wangbo_pku_15[AT]163.com

SA Class, 2017 Fall

OUTLINE

 LLVM Basic
 LLVM IR
 LLVM Pass

What is LLVM?
 LLVM is a compiler infrastructure designed as a

set of reusable libraries with well-defined
interfaces.
 Implemented in C++
 Several front-ends
 Several back-ends
 First release: 2003
 The original author: Chris Lattner (PhD of UIUC)
 Open source http://llvm.org/

Fortran
C/C++
Java
Your cool language

X86
ARM
PowerPC
SPARC
MIPS

LLVM is aCompilation Infra ‐Structure

It is a framework that comes with a lots of tools to compile and
optimize code. clang, clang++, llc, lli, llvm-dis, opt...

LLVM is aCompilation Infra ‐Structure

● Compile a C program:

Usually, clang/clang++ have faster compilation
times than gcc, and the compilation error
message is much more readable.

$> echo "int main(){return 26;}" > test.c
$> ~/llvm/build/bin/clang test.c
$> ./a.out
$> echo $?
 26

Why to learn LLVM?
● Intensively used in the academia:

● Widely used in the industry
– LLVM is supported by Apple
– ARM, NVIDIA, Mozilla, etc.

● Clean and modular interfaces
● Awards: ACM Software System Award 2012

– UNIX, TCP/IP, WWW, Java, Apahe, Eclipse, gcc, make,
Vmware, LLVM...

In Prof. Xiong’s Group:
• ICSE’15 (MemLeak)
• ICSE’16 (Compiler Testing)
• ICSE’17 (Compiler Testing)
• ISSTA’17 (Testing)

Big Picture of LLVM

● LLVM implements the entire compilation flow.
– Front-end, e.g., clang (C), clang++ (C++)

– Middle-end, e.g., analyses and optimizations

– Back-end, for different computer architectures, e.g.,
 MIPS, x86, ARM

Off-the-shell Optimizations
$> opt –help
General options:
 -O0 - Optimization level 0. Similar to clang -O0
 -O1 - Optimization level 1. Similar to clang -O1
 -O2 - Optimization level 2. Similar to clang -O2
 -O3 - Optimization level 3. Similar to clang -O3
 -Os - Like -O2 with extra optimizations for size. Similar to clang -Os
 -Oz - Like -Os but reduces code size further. Similar to clang -Oz

Optimizations available:
…...
-globaldce - Dead Global Elimination
-dot-cfg - Print CFG of function to 'dot' file
-dot-callgraph - Print call graph to 'dot' file
-dot-dom - Print dominance tree of function to 'dot' file
-dce - Dead Code Elimination
-adce - Aggressive Dead Code Elimination
-always-inline - Inliner for always_inline functions
…...

Levels of Optimizations

$> llvm-as < /dev/null | opt -O1 -disable-output -debug-pass=Arguments
Pass Arguments: -tti -tbaa -scoped-noalias -assumption-cache-tracker...
…
...

llvm-as: assembler of LLVM. It reads human-readable LLVM-IR,
translates it to LLVM bytecode, and writes the result in to a file.

You can get your passes used by -O1 level.
In my system, -O1 gives me:
Pass Arguments: -targetlibinfo -tti -tbaa -scoped-noalias -assumption-cache-tracker
 -profile-summary-info -forceattrs -inferattrs -ipsccp -globalopt -domtree -mem2reg
 -deadargelim -domtree -basicaa -aa -instcombine -simplifycfg -pgo-icall-prom -basiccg
-globals-aa -prune-eh -always-inline -functionattrs -domtree -sroa -early-cse
-speculative-execution -lazy-value-info -jump-threading -correlated-propagation
-simplifycfg -domtree -basicaa -aa -instcombine -tailcallelim…

Virtual Register Allocation
● One of the most basic optimizations that opt maps memory slots into

variables.

● This optimization is very useful, because clang maps every variable
to memory

#include<stdio.h>
int main(){

int c1 = 11;
int c2 = 15;
int c3 = c1 + c2;
printf("%d\n", c3);

}

$>clang -c -emit-llvm test.c -o test.bc
$>opt --view-cfg test.bc #maybe you need sudo apt-get install xdot

Virtual Register Allocation
● One of the most basic optimizations that opt maps memory slops into

variables.

● We can map memory slots into registers with the mem2reg pass.

#include<stdio.h>
int main(){

int c1 = 11;
int c2 = 15;
int c3 = c1 + c2;
printf("%d\n", c3);

}

$>opt -mem2reg test.bc > test.reg.bc
$>opt --view-cfg test.reg.bc #maybe you need sudo apt-get install xdot

Constant Propagation
● Constant folding by constprop pass

#include<stdio.h>
int main(){

int c1 = 11;
int c2 = 15;
int c3 = c1 + c2;
printf("%d\n", c3);

}

$>opt -constprop test.reg.bc > test.cp.bc
$>opt --view-cfg test.cp.bc #maybe you need sudo apt-get install xdot

OUTLINE

 LLVM Basic
 LLVM IR
 LLVM Pass

A First Look at IR

1st.c

1st.ll

CMD : YOUR_BUILD_PATH/bin/clang -emit-llvm -S 1st.c

All the types of IR:
● llvm/include/llvm/IR/Instruction.def

Document:
● http://llvm.org/docs/LangRef.html

Middle-end: LLVM IR

● IR: Intermediate Representation
– RISC like instruction set: add, mul, or, branch, load,

store...

– Well typed representation: %0 = load i32* %addr

– SSA format: Each variable noun has only one
definition

– The LLVM optimizations manipulate these
bytecodes

– We can program directly on them.

– We can also interpret them $> lli test.bc

Back-end: From IR to Machine Code

● llc: the tool to perform translation from IR to
architecture specified machine code.

$> llc –version
……
$> llc -march=x86 test.cp.bc -o test.x86.S
$> cat test.x86.S
…...

LLVM-IR Core

LLVM Core Hierarchy
● Module contains Functions/GlobalVariables

– Module is unit of compilation/analysis/optimization

● Function contains BasicBlocks/Arguments
– Functions roughly correspond to functions in C

● BasicBlock contains list of instructions
– Each block ends in a control flow instruction

● Instruction is opcode + vector of operands
– All operands have types

– Instruction result is typed

The Module

● What is the modules?
– Modules represent the top-level structure in an

LLVM program.

– An LLVM module is effectively a translation unit or a
collection of translation units merged together.

● Why C need modules?
– Python : interpreter-based

– Java : All members of a class within a java src

– C/C++ : linkage, the scope of identifiers

The Function

● Name
● Argument list
● Return type
● Extends from GlobalValue, has properties of

linkage visibility.

The Value

● Value: can be treated as arbitrary num of
registers.

● Locals start with %, globals with @
● All instructions that produce values can have a

name (Not assignments: store, br)

Type

● Not exactly what PL people think of as types
● All values have a static type
● Integer: iN; for C --- i1, i8, i32, i64…
● Float: float, double, half
● Arrays: can get num of elements
● Structures: can get members, like {i32, i32, i8}
● Pointers: can get the pointed value
● Void

Note on Integer Types

● There are no signed or unsigned integers
● LLVM views integers as bit vectors
● Frontends destroyed signed/unsigned

information
● Operations are interpreted as signed or

unsigned based on instructions they are used in
– icmp sgt v.s. icmp ugt

– sdiv v.s. udiv

BasicBlock & Instruction
● Classify Instructions

– Terminator Instructions: ret, switch, br (cond &
uncond)...

– Binary operators: add, sub…

– Logical operators: and, or, shl…

– Memory operators: alloca, load, store...

– Cast operators …

– Others: icmp, phi, call...

● Contains a list of Instructions
● In general, every basic block must end with a

Terminator Instruction

More Detail of Phi nodes

● Phi nodes – construct to handle cases where a

variable may have more than one value
– May be self referential (in loops)

– Inside a block – select statement sometimes used

● In LLVM:
– Must be at the beginning of the block

– Must have exactly 1 entry for every predecessor

– Must have at least one entry

– May include undef values

OUTLINE

 LLVM Basic
 LLVM IR
 LLVM Pass

LLVM Pass

● Normal Compiler Organization

Passes shall stay here!

LLVM Pass

● LLVM applies a chain of analyses and transformations on the
target program.

● Each of these analyses or transformations is called a pass.
● Some passes, which are machine independent, are invoked by

opt.

● A pass may require information provided by other passes.
Such dependencies must be explicitly stated.

LLVM Pass

● A pass is an instance of the LLVM class Pass
● There are many kinds of passes

A First Look at LLVM Passes
● Memory To Register (-mem2reg)

1

2

YOURPATH/opt -mem2reg 1st.bc -S -o 1stm2r.ll

YOURPATH/clang -emit-llvm -S 1st.c -o 1st.ll

Writing Hello World Pass

● The hello world pass is in the path
llvm/lib/Transforms/Hello/

● Don’t forget the CMake files in the path and its
parent path.

● Don’t forget pass ID and pass registration
● Run the pass with opt
● Learn errs()

$> clang -c -emit-llvm hello.c -o hello.bc
$> opt -load ~/llvm/build/lib/LLVMHello.so -hello < hello.bc > /dev/null

http://llvm.org/docs/WritingAnLLVMPass.htm

Counting Opcode Pass
● Let’s write a pass that counts the number of

times that each opcode appears in a given
function.

● Learn how iterate the data structures.

Counting Opcode Pass
#include "llvm/Pass.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/raw_ostream.h"
#include <map>
using namespace llvm;
namespace {
 struct CountOp : public FunctionPass {
 std::map<std::string, int> opCounter;
 static char ID;
 CountOp() : FunctionPass(ID) {}
 virtual bool runOnFunction(Function &F) {
 errs() << "Function " << F.getName() << '\n';
 for (Function::iterator bb = F.begin(), e = F.end(); bb != e; ++bb) {
 for (BasicBlock::iterator i = bb->begin(), e = bb->end(); i != e; ++i) {
 if(opCounter.find(i->getOpcodeName()) == opCounter.end()) {
 opCounter[i->getOpcodeName()] = 1;
 } else {
 opCounter[i->getOpcodeName()] += 1;
 }
 }
 }
 std::map <std::string, int>::iterator i = opCounter.begin();
 std::map <std::string, int>::iterator e = opCounter.end();
 while (i != e) {
 errs() << i->first << ": " << i->second << "\n";
 i++;
 }
 errs() << "\n";
 opCounter.clear();
 return false;
 }
 };
}
char CountOp::ID = 0;
static RegisterPass<CountOp> X("opCounter", "Counts opcodes per functions", false, false);

1) Make dir
2) Add CmakeList.txt (follow the

 form of Hello pass)
3) Modify CMakeList.txt in the

 parent folder
4) Add cpp file with the right-hand

 code
5) Make and run

Counting Opcode Pass
● Let’s write a pass that counts the number of

times that each opcode appears in a given
function.

● Learn how iterate the data structures.

$> sudo make
$> clang -c -emit-llvm hello.c -o hello.bc
$> opt -load ~/llvm/build/lib/CountOp.so -opCounter < hello.bc > /dev/null

Reading DCE of LLVM

● Dead instruction elimination
– A single basicblock pass

● Dead code elimination
– A function pass with fixed point algorithm

– Call dead instruction elimination pass until fixed.

● Learn how to remove an instruction, discern the type of
an instruction and find the usage of a value

● What is ADCE?

– Starts from the exit points of a function

– Exit points: ret, memory options...

– Only preserve instructions related to the exit points

● llvm/lib/Transforms/Scalar/DCE.cpp
● llvm/lib/Transforms/Utils/Local.cpp

Review: Textbook Liveness Analysis
● Liveness analysis: Backwards, may, union.
● Important in register allocation

Review: Textbook Liveness Analysis

● Complexity
● Time

– Worst case: O(n4)

– Typical case: O(N) to O(N2)

● Space
– O(N2)

SSA Form Liveness Analysis

Can you point
where i2 is alive in
this program?

SSA Form Liveness Analysis

Can you point where
i2 is alive in this program?

SSA Form Liveness Analysis

● Without traversing the CFG
to reach a fixed point.

● Space: O(N)
● Time: O(N) to O(N2)

Is Traditional DA Useless?

● Where should we add a phi-function for the
defination of i at L2.

Is Traditional DA Useless?
● The phi-function at L1 exists even though it is

not useful at all.
● We can add a liveness check to the algorithm

that inserts phi-functions.

LLVM Pass in Action – A Challenge Job

● Naive Liveness Analysis for LLVM IR
● Function Pass
● LLVM API

– Iterating basic blocks, instructions and operands.

– Instruction casting

– Fix-point algorithm

– ...

Thank you

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

