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History

* One breakthrough paper
- Cousot & Cousot ‘77 (?)

» Inspired by
- Dataflow analysis
- Denotational semantics

* Enthusiastically embraced by the community

- At least the functional community . . .
- At least the first half of the paper . ..
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A Tiny Language

» Consider a language with only integers and
multiplication.

e=/|lexe

u:Exp — Int
u(/) = /
e xe) = ule) xule)

Profs. Aiken, Barrett & Dill CS 357
Lecture 5



An Abstraction

Define an abstract semantics that computes only
the sign of the result.

o:Exp — {+,-,0}
+ if/>0 x|+ 0 —
o(r) = 10 if/=0 T+ 0 =
- if /<0 olo 0 O
olg *e) = o(g) x a(e) |- 0 +
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Soundness

- We can show that this abstraction is correct in the
sense that it correctly predicts the sign of an
expression.

* Proof is by structural induction on e.

u(e) >0 < o(e) =
u(le)=0< o(e)=0
ule) <0 < o(e) = -
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Another View of Soundness

The soundness proof is clunky
- each case repeats the same idea.

Instead, directly associate each abstract value with
the set of concrete values it represents.

¥ : {"',O,_} N 2Im‘

r(+) {/’ |7 > O}
y(0) = {0}
() = {ili<0}
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Another View (Cont.)

The concretization function

- Mapping from abstract values to (sets of) concrete
values

Let

- Dbe the concrete domain,
- A the abstract domain.

Ex

u(e) € y(o(e))

\ 4
c b
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Abstract Interpretation

- This is an abstract interpretation.

- Computation in an abstract domain
- In this case {+,0,-}.

+ The abstract semantics is sound
- approximates the standard semantics.

- The concretization function establishes the
connection between the two domains.
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Adding -

» Extend our language with unary -

u(-e) = —ule) -

o(-e) = -o(e)
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Adding +

» Adding addition is not so easy.
- The abstract values are not closed under addition.

ue +¢)
o(g +¢)

u(e)+ u(e)
o(g) + o(e)
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Solution

* We need another abstract value to represent a result
that can be any integer.

* Finding a domain closed under all the abstract
operations is often a key design problem.

O +| +1
o +| O
—

|
— 4 + +]|+
|
|

7(T) =Int

I
e e e B
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Extending Other Operations

We also need to extend the other abstract operations
to work with T.

x|+ 0 - T

0l 000
-0+ 7T

-|- 0 + T

TITOTT
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Examples

Abstract computation loses information

w(@1+2)+-3) = 0

o(@+2)+-3) = (+ + +) + (-H)=T
No loss of information

#((5%3)+6)
o((b*D)+6)

|l
W
—

l
—~
n
X
i
~—
i
+
|l
i
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Adding / (Integer Division)

Adding / is straightforward except for the case of
division by O.

+ If we divide each integer in a set by O, what set of
integers results? The empty set.

/|l+ 0 - T L
+/+ 0O - T 1
(1)=0 OfL L 1L L 1
-/- 0 + T 1
TIT OT T 1L
R e e I
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Adding / (Cont.)

As before we need to extend the other abstract
operations.

- In this case, every entry involving bottom is bottom
- all operations are strictin bottom

X
X | + |

X
|l |l
—
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The Abstract Domain

Our abstract domain forms a /attice.
- A partial order x <y < y(x) < y(y)

- Every finite subset has a least upper bound (lub) &
greatest lower bound (glb).

We write A for an abstract domain

- aset of values + an ordering /‘K
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Lattice Lingo

* A lattice is complete if every subset (finite or
infinite) has lub’ s and glb’ s.
- Every finite lattice is complete

* Thus every lattice has a top/bottom element.
- Usually needed in abstract interpretations.
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The Abstraction Function

* The abstraction function maps concrete values to
abstract values.
- The dual of concretization.

- The smallest value of A4 that is the abstraction of a set of
concrete values.

a2 S A

a(5)=|ub({—|/'<O/\/'e.5},{0|065},{+|/>O/\/’e$})
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A General Definition

* An abstract interpretation consists of
- An abstract domain A4 and concrete domain O

- Concretization and abstraction functions forming a Galois
insertion.

- A (sound) abstract semantic function.

Galois Insertion:

Vx e2° xcy(alx)) id < yox

Vaec A x =a(y(x)) o 1d = aoy
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Galois Insertions

The abstract domain can be thought of as dividing the
concrete domain into subsets (not disjoint).

The abstraction function maps a subset of the domain
to the smallest containing abstract value.

7

/d < YolX /CD\A

/d = aoy

Profs. Aiken, Barrett & Dill CS 357 20
Lecture 5



Picture

» In correct abstract interpretations, we expect the
following diagram to commute.

A
o 1)
/4
IUEZvD/
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General Conditions for Correctness

Three conditions guarantee correctness in
general:

a and ¥ form a Galois insertion
id<yoa, id=aoy

a and y are monotonic
x<y=alx)<a(y)

Abstract operations op are locally correct:

7(op(s;,....5,)) 2 0p(¥(5,)...., 7(5,))
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Generic Correctness Proof

Proof by induction on the structure of e: ,u(e) S 7/(0(6))

ule op &)

= ule) op u(e) def. of u

c y(o(g)) op r(o(e)) by induction
v(o(e) op o(e)) local correctness

N

Hole op &) def of o
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A Second Notion of Correctness

+ We can define correctness using abstraction instead
of concretization.

u(e) e y(o(e)) = al{u(e)}) < o(e)

= direction

u(e) € y(o(e))

a{u(e)}) < a(y(o(e))) monotonicity
a({u(e)}) < o(e) aoy=id
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Correctness (Cont.)

- The other direction . ..

u(e) e y(o(e)) = al{u(e)}) < o(e)

< direction

a({u(e)}) < o(e)
y(a({u(e)})) < y(o(e)) monotonicity
u(e) € y(o(e)) id<yoa
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A Language with Input

The next step is to add language features besides new
operations.

We begin with input, modeled as a single free variable
X In expressions.

e=/|lexe|-e]|.. |x
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Semantics

* The meaning function now has type

w: Exp - Int — Int

- We write the function curried with the expression as
a subscript.

w(j) = /
u(y) = J
Hooo (J) = 1, (J) *u, (J)
Moo () = 1, (J) +u, (J)
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Abstract Semantics

- Abstract semantic function:
o' Exp > A > A

- Also write this semantics curried.

o,(j) =i

o (f) = J

oo, (J) = 0.(f) * o, (/)
0,0 (f) = o.(f) + 0, ()
/ = a({/})
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Correctness

* The correctness condition needs to be generalized.
» This is the first real use of the abstraction function.
* The following are all equivalent:

AA O, >A‘\
Vi. 1) €y (alh) ,

U, Sp Yoo, 0

oou,<,0,°o0

QI/\

2° 1, 27’/
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Local Correctness

- We also need a modified local correctness condition.

op (o, G..... (o, (D) < ¥ (0B, (Do, ()
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Proof of Correctness

Thm 1,(f) € ¥(o.()))

Proof (by induction)
Basis.  u,(j) =7 € y(7)=y(c,()))

1, ()= J € v(j) = r(o, (/)

Step

......

op(ut, (J), ...t () def. of u
op(y(o, (J)))....7(c, (4)) induction
y(op(o,(f)....0.(4))) local correctness

(e eﬂ)(j)) def. of o

.....
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If-Then-Else

e=.. | ife=etheneelsee |..

1, (1) if 1, (1) = n,, (/')J

H e, then e, else e, (1) = ( e, (7) i p, (1) # p, (/)

Oif g=e then g else ¢, (/) - 663 (/) L 064 (/)

Note the lub operation in the abstract function;
this is why we need lattices as domains.

Profs. Aiken, Barrett & Dill CS 357 32
Lecture 5



Correctness of If-Then-Else

- Assume the true branch is taken.
* (The argument for the false branch is symmetric.)

#,, (7)
e o, () by induction
c 7o, () Uyo, ()
- 7(0'63 (HUo, (7)) monotonicity of y
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Recursion

Add recursive definitions
- of a single variable for simplicity

- The semantic function is

w1 Exp - Int - Int,

program = def f(x)=e
e=..|f(e)
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Revised Meaning Function

» Define an auxiliary semantics taking a function (for
the free variable ) and an integer (for x).

¢ Exp - (Int - Int ) > Int - Int,

e (X)) = g1 (g)()))
w(9)J) =J
He e, (G J) = 11, (9)(f) + 12, (9)(J)
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Meaning of Recursive Functions

p: Exp — Int - Int,
1 Exp—> (Int —» Int,) - Int > Int,

Consider a function deff = e

Define an ascending chain £,,%,... in Int —> Int,
f,=Ax.1
7€+1 = /“l;(f)

Define u, = J£
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Abstract Semantics Revised

* Define an analogous auxiliary function for the
abstract semantics.

o Exp>(A>A)>AA

0y (9)7) = g(oL(g)(1))
o, (g)(r) =7
Grve,(9)0) = 0, (9)(7) + 0, (g)(/)
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Abstract Semantics Revised II

- We need one more condition for the abstract
semantics.

+ All abstract functions are required to be
monotonic.

+ Thm. Any monotonic function on a complete
lattice has a least fixed point.

Profs. Aiken, Barrett & Dill CS 357 38
Lecture 5



Abstract Meaning of Recursion

o Exp>A>A
ot Expo>(A>A)>ASA

Consider a function deff = e

Define an ascending chain 7o,71,...in A > A
770 =Aa. L
77/'+1 — 0;(7?/)

Define o, =| J7,
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Correctness

L)) —L—1£())

< _S
7{(‘/) A / fl(J)
< <

() ——7o())
Corresponding elements of the chain stand in the correct relationship.
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Correctness (Cont.)

vi. £(j) e r(F()))
= Jf()) e Uy(?,-(j)) chains stabilize

>0 >0

— Uﬁ(j) c 7/(U77/(7)j monotonicity of »

/>0 />0

= u(j)e 7/(0,:(..7)) by definition
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Example

def f(x) = if x = Othenlelse x * f(x +-1)

Abstraction:

|fp(a’(if X = Othenlelse x * f(x+ ‘1)))

Simplified:
lfp(ﬁ.&.+u(§ x f(x + —)))
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Strictness

+ We will assume our language is strict.

- Makes little difference in quality of analysis for
this example.

+ Assume that F(L1) =L
- Therefore it is sound to define £(L1)=L
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Calculating the LFP

ifp(2Fax+u(x x fx ¥ )

?L—O+T
STl L]t
— |L|=]10]|+]|T
fi1=

L+ +]+]+
?L—O+T
LT IT+]T
?J_—O+T
TlLTITITT
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Notes

» In this case, the abstraction yields no
useful information!

 Note that sequence of functions forms a
strictly ascending chain until stabilization

f<fi<hi<fi=fi=fi=.

» But the sequence of values at particular
points may not be strictly ascending:

£(1) < £ =A@ < £H) = £ = £ =
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Notes (Cont.)

+ Lesson: The fixed point is being computed in
the domain (A 5> A) > A—> A

- The fixed point is not being computed in A > A

* Make sure you check the domain of the fixed
point operator.
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Strictness Analysis

Profs. Aiken, Barrett & Dill CS 357 Lecture 5
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Strictness Analysis Overview

* Inlazy functional languages, it may be desirable to
change cal/l-by-need (lazy evaluation) to call-by-value.

* CBN requires building “thunks” (closures) to capture
the lexical environment of unevaluated expressions.

- CBV evaluates its argument immediately, which is
wasteful (or even wrong) if the argument is never
evaluated under CBN.
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Correctness

Substituting CBV for CBN is always correct if we
somehow know that a function evaluates its
argument(s).

A function 7is strictif f(L) =L

Observation: if fis strict, then it is correct to pass
arguments to 7 by value.
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Outline

Deciding whether a function is strict is undecidable.
Mycroft’ s idea: Use abstract interpretation.

Correctness condition: If 7is non-strict, we must
report that it is non-strict.
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The Abstract Domain

+ Continue working with the same language (1 recursive
function of 1 variable).

New abstract domain 2:
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Concretization/Abstraction

The concretization/abstraction functions say
- 0 means the computation definitely diverges
- 1 means nothing is known about the computation
- Dis the concrete domain

y(0)={L} a({L})=0
y(1)=D a(S5)=1if S={L}
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Abstract Semantics

* Next step is to define an abstract semantics

* Transform f:Int — Int to 1_‘:2 > 2

- Transform values v:Int +to \_/ 2

 To test strictness check if 1?(0) =0
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Abstract Semantics (Cont.)

+ An astands for an abstract value (O or 1).
+ Treat 0,1 as false, true respectively.

o.(g)a) = a
oi(g)a) =1
o' (g)la) = o.(g)a)

0..e,(g)a) = o,(g)a)rao,(g)a)
G'f(e)(g)(a) = g(o.(g)(a))
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The Rest of the Rules

Orie, (9)a) = o,(g)a) o, (g)a)
o, . (g)a) = o, (9)a)r o, (g)a)

Ol ey thene, e e, (9N@) = 0 (g)a@) no, (g)a) A(o(9)a) v o, (g)a))

_ ’
Gdeffze o pr O,
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An Example

def f(x) = ifx = Othenlelse x * f(x+-1)
lfp(a’(if x = Othenlelse x * f(x+ -1)))
Ifp(Af.AxX) = 2a.a

(la.a) 0=0  The function is strict in x.
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Calculating the LFP

lfp(/l?./b_(.; AL A (1 v (X A ?& A 1))))

— 0|1
fo—oo
- |01
f1=01
— 0|1
fz—01
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Another Example

+ Generalize to recursive functions of two variables.
def f(x,y) = if x = O then O else f(x +-1,f(x,y))
fp(o'(if x = O then 0 else f(x +-1,f(x,y)))) =

fFPAFAX,Y). X AlA(lv..)) =
A(X,y). X
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Example (Cont.)

* For multi-argument functions, check each argument
combination of the form (1,..,1,0,1,..,1).

(ﬁ(x,y). >_<) (0,1) =0 X can be passed by valuve.

(Z(X,y), >_<) (1,0) =1 Unsafe fo pass Y by value.

Profs. Aiken, Barrett & Dill CS 357 59
Lecture 5



Summary of Strictness Analysis

Mycroft’ s technique is sound and practical.

- Widely implemented for lazy functional languages.

- Makes modest improvement in performance (a few %).
- The theory of abstract interpretation is critical here.

* Mycroft’ s technique treats all values as atomic.
- No refinement for components of lists, tuples, etc.

* Many research papers take up improvements for data
types, higher-order functions, etc.
- Most of these are very slow.
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Conclusions

* The Cousotd&Cousot paper(s) generated an
enormous amount of other research.

- Abstract interpretation as a theory and abstract
interpretation as a method of constructing tools
are often confused.

» Slogan of most researchers:

Finite Lattices + Monotonic Functions =
Program Analysis
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Where is Abstract Interpretation Weak?

* Theory is completely general

* The part of the original paper people
understand is limited
- Finite domains + monotonic functions
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Data Structures and the Heap

* Requires a finite abstraction
- Which may be tuned to the program

- More often is “empty list, list of length 1, unknown
length”

» Similar comments apply to analyzing heap
properties

- E.g., acell has O references, 1 references, many
references
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Size of Domains

» Large domains = slow analysis

* In practice, domains are forced to be small
- Chain height is the critical measure

+ The focus in abstract interpretation is on
correctness

- Not much insight into efficient algorithms
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Context Sensitivity

* No particular insight into context senstivity

* Any reasonable technique is an abstract
intferpretation
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Higher-Order Functions

* Makes clear how to handle higher-order
functions
- Model as abstract, finite functions

- Ordering on functions is pointwise
» Problem: huge domains

* Break with the dependence on control-flow
graphs
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Forwards vs. Backwards

+ The forwards vs. backwards mentality
permeates much of the abstract
interpretation literature

* But nothing in the theory says it has to be
that way
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