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History 

• One breakthrough paper 
– Cousot & Cousot ‘77 (?) 

 

• Inspired by 
– Dataflow analysis 

– Denotational semantics 

 

• Enthusiastically embraced by the community 
– At least the functional community . . . 

– At least the first half of the paper . . . 
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A Tiny Language 

• Consider a language with only integers and 
multiplication. 
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An Abstraction 

• Define an abstract semantics that computes only 
the sign of the result. 
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Soundness 

• We can show that this abstraction is correct in the 
sense that it correctly predicts the sign of an 
expression. 

• Proof is by structural induction on e. 

( ) 0 ( )
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Another View of Soundness 

• The soundness proof is clunky 
– each case repeats the same idea. 

• Instead, directly associate each abstract value with 
the set of concrete values it represents. 
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( ) | 0
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( ) | 0

Int
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Another View (Cont.) 

• The concretization function 
– Mapping from abstract values to (sets of) concrete 

values  

• Let  
– D be the concrete domain,  

– A the abstract domain. 

( ) ( ( ))e e  






Exp

A

2D
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Abstract Interpretation 

• This is an abstract interpretation. 
– Computation in an abstract domain  

– In this case {+,0,-}. 

 

• The abstract semantics is sound 
–  approximates the standard semantics. 

 

• The concretization function establishes the 
connection between the two domains. 
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Adding - 

• Extend our language with unary - 

( ) ( ) 0
            

0( ) ( )

e e

e e
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Adding + 

• Adding addition is not so easy. 

• The abstract values are not closed under addition. 

1 2 1 2

1 2 1 2

0
( ) ( ) ( ) ?

  
( ) ( ) ( ) 0 0

       

?
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Solution 

• We need another abstract value to represent a result 
that can be any integer. 

• Finding a domain closed under all the abstract 
operations is often a key design problem. 

0 T

T T
(T) Int            0 0 T

T T

T T T T T
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Extending Other Operations 

• We also need to extend the other abstract operations 
to work with T. 

0 T

0 T
0 T

                  0 0 0 0 0
0 T

0 T

T T 0 T T
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Examples 

((1 2) 3) 0

((1 2) 3) ( ) ( ) T

((5 5) 6) 31

((5 5) 6) ( )









   

         

  

         

Abstract computation loses information 

No loss of information 
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Adding / (Integer Division) 

• Adding / is straightforward except for the case of 
division by 0. 

• If we divide each integer in a set by 0, what set of 
integers results?  The empty set. 

/ 0 T

0 T

0( )             
0 T

T T 0 T T
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Adding / (Cont.) 

• As before we need to extend the other abstract 
operations. 

• In this case, every entry involving bottom is bottom 
– all operations are strict in bottom 

x

x
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The Abstract Domain 

• Our abstract domain forms a lattice. 
– A partial order 

– Every finite subset has a least upper bound (lub) & 
greatest lower bound (glb). 

• We write A for an abstract domain  
– a set of values + an ordering 

 

( ) ( )x y x y   

 0



T
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Lattice Lingo 

• A lattice is complete if every subset (finite or 
infinite) has lub’s and glb’s. 
– Every finite lattice is complete 

 

• Thus every lattice has a top/bottom element. 
– Usually needed in abstract interpretations. 
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The Abstraction Function 

• The abstraction function maps concrete values to 
abstract values. 
– The dual of concretization. 

– The smallest value of A that is the abstraction of a set of 
concrete values. 

      

Int: 2 A

( ) lub | 0 , 0| 0 , | 0S i i S S i i S
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A General Definition 

• An abstract interpretation consists of 
– An abstract domain A and concrete domain D 

– Concretization and abstraction functions forming a Galois 
insertion. 

– A (sound) abstract semantic function. 

2 . ( ( ))

. ( ( ))

Dx x x

a A x x

 

 

  

  

id

id

 

 

 

 

Galois insertion: 

or 
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Galois Insertions 

• The abstract domain can be thought of as dividing the 
concrete domain into subsets (not disjoint). 

• The abstraction function maps a subset of the domain 
to the smallest containing abstract value. 

id

id
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Picture 

• In correct abstract interpretations, we expect the 
following diagram to commute. 

 




 


Exp

A

2D
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General Conditions for Correctness 

1 1

    

         ,

   

         ( ) (

and form a Galois insertion

and are monotonic

Abstract operations are locally

)

 op 
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Three conditions guarantee correctness in 
general: 
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Generic Correctness Proof 

1 2

1 2

1 2

1 2

1 2

( )

( ) ( ) def. of 

( ( )) ( ( )) by induction

( ( ) ( )) local correctness
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Proof by induction on the structure of e: ( ) ( ( ))e e  
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A Second Notion of Correctness 

• We can define correctness using abstraction instead 
of concretization. 
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Correctness (Cont.) 

• The other direction . . . 

( ) ( ( )) ({ ( )}) ( )

 direction

({ ( )}) ( )

( ({ ( )})) ( ( )) monotonicity

( ) ( ( ))

e e e e

e e

e e

e e id
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A Language with Input 

• The next step is to add language features besides new 
operations. 

• We begin with input, modeled as a single free variable 
x in expressions. 

| | | ... |e i e e e x  
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Semantics 

• The meaning function now has type 

 

• We write the function curried with the expression as 
a subscript. 

:  Exp  Int  Int  

1 2 1 2

1 2 1 2
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Abstract Semantics 

• Abstract semantic function: 

 

• Also write this semantics curried. 
:  Exp  A  A  

1 2 1 2

1 2 1 2
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Correctness 

• The correctness condition needs to be generalized. 

• This is the first real use of the abstraction function. 

• The following are all equivalent: 



e

e
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Local Correctness 

• We also need a modified local correctness condition. 

   
1 1

( ( )),..., ( ( )) ( ( ),..., ( ))
n ne e e eop j j op j j      



Profs. Aiken, Barrett & Dill     CS 357     

Lecture 5 

31 

Proof of Correctness 
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If-Then-Else 

3 1 2

1 2 3 4

1 24

3 41 2 3 4

if  then  else 

if  then  else 

...  |  if  then  else   | ...

( ) if ( ) ( )
( )

( ) if ( ) ( ) 

( ) ( )  ( )

e e e

e e e e
e e e
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• Note the lub operation in the abstract function; 
this is why we need lattices as domains. 
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Correctness of If-Then-Else 

 

3

3

3 4

3 4

( )

( ( )) by induction

( ( )) ( ( ))
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• Assume the true branch is taken. 

• (The argument for the false branch is symmetric.) 
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Recursion 

• Add recursive definitions  
– of a single variable for simplicity 

• The semantic function is 

    def ( )

... | ( )

program f x e

e f e

 



:  Exp Int Int  
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Revised Meaning Function 

• Define an auxiliary semantics taking  a function (for 
the free variable f) and an integer (for x). 

1 2 1 2

( )

:  Exp (Int Int ) Int Int
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( )( ) ( )( ) ( )( )

ef e

x

e e e e

g j g g j

g j j

g j g j g j



 



  

 



    

 

 

   



Profs. Aiken, Barrett & Dill     CS 357     

Lecture 5 

36 

Meaning of Recursive Functions 

0 1

0

1

f

Consider a function    

Define an ascending chain

:  Exp Int Int

:  Exp (Int  Int ) Int Int
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Abstract Semantics Revised 

• Define an analogous auxiliary function for the 
abstract semantics. 

1 2 1 2

( )

:  Exp (A A) A A

( )( ) ( ( )( ))
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Abstract Semantics Revised II 

• We need one more condition for the abstract 
semantics. 

 

• All abstract functions are required to be 
monotonic. 

 

• Thm.  Any monotonic function on a complete 
lattice has a least fixed point. 
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Abstract Meaning of Recursion 

0 1

0

1

f

Consider a function    

Define an ascendin
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Correctness 

0( )f j

1( )f j

2( )f j







0( )f j

1( )f j

2( )f j

 



Corresponding elements of the chain stand in the correct relationship. 
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Correctness (Cont.) 

0 0

0 0

. ( ) ( ( ))

( ) ( ( )) chains stabilize

( ) ( ) monotonicity of 

( ) ( ( )) by definition
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Example 

  

  

def f(x)    if x  0 then 1 else x  f(x -1)

lfp if x  0 then 1 else x  f(x -1)

lfp f. x. x f(x )



 

   

   

    

Abstraction: 

Simplified: 
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Strictness 

• We will assume our language is strict. 
– Makes little difference in quality of analysis for 

this example. 

• Assume that 

• Therefore it is sound to define   

( )f  

( )f  
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Calculating the LFP 

  

0

1

2

3

lfp f. x. x f(x )

0 T

0 T

0 T

T T T

0 T

T T T T

f

f

f

f
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Notes 

• In this case, the abstraction yields no 
useful information! 

• Note that sequence of functions forms a 
strictly ascending chain until stabilization 

 

• But the sequence of values at particular 
points may not be strictly ascending: 

0 1 2 3 54 ...f f f f f f     

0 1 2 3 54( ) ( ) ( ) ( ) ( ) ( ) ...f f f f f f           
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Notes (Cont.) 

• Lesson: The fixed point is being computed in 
the domain 

 

• The fixed point is not being computed in  

 

• Make sure you check the domain of the fixed 
point operator. 

(A A) A A  

A A
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Strictness Analysis 
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Strictness Analysis Overview 

• In lazy functional languages, it may be desirable to 
change call-by-need (lazy evaluation) to call-by-value. 

 

• CBN requires building “thunks” (closures) to capture 
the lexical environment of unevaluated expressions. 

 

• CBV evaluates its argument immediately, which is 
wasteful (or even wrong) if the argument is never 
evaluated under CBN. 
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Correctness 

• Substituting CBV for CBN is always correct if we 
somehow know that a function  evaluates its 
argument(s). 

 

• A function f is strict if 

 

• Observation: if f is strict, then it is correct to pass 
arguments to f by value. 

( )f  
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Outline 

• Deciding whether a function is strict is undecidable. 

 

• Mycroft’s idea: Use abstract interpretation. 

 

• Correctness condition: If f is non-strict, we must 
report that it is non-strict. 
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The Abstract Domain 

• Continue working with the same language (1 recursive 
function of 1 variable). 

• New abstract domain 2: 

0

1
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Concretization/Abstraction 

• The concretization/abstraction functions say 
– 0 means the computation definitely diverges 

– 1 means nothing is known about the computation 

– D is the concrete domain 

   

 

(0) ( ) 0

(1) ( ) 1  if  D S S
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Abstract Semantics 

• Next step is to define an abstract semantics 

 

• Transform                         to  

 

• Transform values             to  

 

• To test strictness check if    
 

f:Int Int f:2 2

v : 2v:Int

f(0) 0
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Abstract Semantics (Cont.) 

1 2 1 2

( )

( )( )

( )( ) 1

( )( ) ( )( )

( )( ) ( )( ) ( )( )

' ( )( ) ( ( )( ))

x

i

e e

e e e e

ef e

g a a

g a

g a g a

g a g a g a

g a g g a





 

  

 





 

 

 

   



• An a stands for an abstract value (0 or 1). 

• Treat 0,1 as false, true respectively. 
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The Rest of the Rules 

 

1 2 1 2

1 21 2

1 2 3 41 2 3 4

/

if  then  else 

def f  

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( ) ( )( )

lfp 

e e e e

e ee e

e e e ee e e e

ee

g a g a g a

g a g a g a

g a g a g a g a g a
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An Example 

  

 

def f(x)    if x  0 then 1 else x  f(x -1)

lfp if x  0 then 1 else x  f(x -1)

lfp f. x.x .

( . ) 0 0      The function is strict in x.

a a

a a
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Calculating the LFP 

  

0

1

2

lfp f. x.x 1 1 (x f(x 1))

0 1

0 0

0 1

0 1

0 1

0 1

f

f

f
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Another Example 

• Generalize to recursive functions of two variables. 

  

def f(x,y)    if x  0 then 0 else f(x -1,f(x,y))

lfp if x  0 then 0 else f(x -1,f(x,y))

lfp( f. (x, y). x 1 (1 ...))

(x, y). x
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Example (Cont.) 

• For multi-argument functions, check each argument 
combination of the form (1,…,1,0,1,…,1). 

 

 

(x, y). x (0,1) 0

(x, y). x (1,0) 1









X can be passed by value. 

Unsafe to pass Y by value. 
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Summary of Strictness Analysis 

• Mycroft’s technique is sound and practical. 
– Widely implemented for lazy functional languages. 

– Makes modest improvement in performance (a few %). 

– The theory of abstract interpretation is critical here. 

 

• Mycroft’s technique treats all values as atomic. 
– No refinement for components of lists, tuples, etc. 

 

• Many research papers take up improvements for data 
types, higher-order functions, etc. 
– Most of these are very slow. 
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Conclusions 

• The Cousot&Cousot paper(s) generated an 
enormous amount of other research. 

• Abstract interpretation as a theory and abstract 
interpretation as a method of constructing tools 
are often confused. 

• Slogan of most researchers: 

 

Finite Lattices + Monotonic Functions = 
Program Analysis  
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Where is Abstract Interpretation Weak? 

• Theory is completely general 

 

• The part of the original paper people 
understand is limited 
– Finite domains + monotonic functions 
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Data Structures and the Heap 

• Requires a finite abstraction 
– Which may be tuned to the program 

– More often is “empty list, list of length 1, unknown 
length” 

 

• Similar comments apply to analyzing heap 
properties 
– E.g., a cell has 0 references, 1 references, many 

references 
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Size of Domains 

• Large domains = slow analysis 

 

• In practice, domains are forced to be small 
– Chain height is the critical measure 

 

• The focus in abstract interpretation is on 
correctness 
– Not much insight into efficient algorithms 
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Context Sensitivity 

• No particular insight into context senstivity 

 

• Any reasonable technique is an abstract 
interpretation 
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Higher-Order Functions 

• Makes clear how to handle higher-order 
functions 
– Model as abstract, finite functions 

– Ordering on functions is pointwise 
• Problem: huge domains 

 

• Break with the dependence on control-flow 
graphs 
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Forwards vs. Backwards 

• The forwards vs. backwards mentality 
permeates much of the abstract 
interpretation literature 

 

• But nothing in the theory says it has to be 
that way 


