
Profs. Aiken, Barrett & Dill CS 357 Lecture 5 1

Abstract Interpretation

Lecture 5

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

2

History

• One breakthrough paper
– Cousot & Cousot ‘77 (?)

• Inspired by
– Dataflow analysis

– Denotational semantics

• Enthusiastically embraced by the community
– At least the functional community . . .

– At least the first half of the paper . . .

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

3

A Tiny Language

• Consider a language with only integers and
multiplication.

1 2 1 2

|

:

()

() () ()

e i e e

Exp Int

i i

e e e e

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

4

An Abstraction

• Define an abstract semantics that computes only
the sign of the result.

1 2 1 2

 :Exp ,-,0

if 0 0
() 0 if 0 0

if 0 0 0 0 0

() () () 0

i

i i

i

e e e e

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

5

Soundness

• We can show that this abstraction is correct in the
sense that it correctly predicts the sign of an
expression.

• Proof is by structural induction on e.

() 0 ()

() 0 () 0

() 0 ()

e e

e e

e e

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

6

Another View of Soundness

• The soundness proof is clunky
– each case repeats the same idea.

• Instead, directly associate each abstract value with
the set of concrete values it represents.

: { ,0, } 2

() | 0

(0) 0

() | 0

Int

i i

i i

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

7

Another View (Cont.)

• The concretization function
– Mapping from abstract values to (sets of) concrete

values

• Let
– D be the concrete domain,

– A the abstract domain.

() (())e e

Exp

A

2D

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

8

Abstract Interpretation

• This is an abstract interpretation.
– Computation in an abstract domain

– In this case {+,0,-}.

• The abstract semantics is sound
– approximates the standard semantics.

• The concretization function establishes the
connection between the two domains.

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

9

Adding -

• Extend our language with unary -

() () 0

0() ()

e e

e e

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

10

Adding +

• Adding addition is not so easy.

• The abstract values are not closed under addition.

1 2 1 2

1 2 1 2

0
() () () ?

() () () 0 0

?

e e e e

e e e e

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

11

Solution

• We need another abstract value to represent a result
that can be any integer.

• Finding a domain closed under all the abstract
operations is often a key design problem.

0 T

T T
(T) Int 0 0 T

T T

T T T T T

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

12

Extending Other Operations

• We also need to extend the other abstract operations
to work with T.

0 T

0 T
0 T

 0 0 0 0 0
0 T

0 T

T T 0 T T

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

13

Examples

((1 2) 3) 0

((1 2) 3) () () T

((5 5) 6) 31

((5 5) 6) ()

Abstract computation loses information

No loss of information

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

14

Adding / (Integer Division)

• Adding / is straightforward except for the case of
division by 0.

• If we divide each integer in a set by 0, what set of
integers results? The empty set.

/ 0 T

0 T

0()
0 T

T T 0 T T

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

15

Adding / (Cont.)

• As before we need to extend the other abstract
operations.

• In this case, every entry involving bottom is bottom
– all operations are strict in bottom

x

x

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

16

The Abstract Domain

• Our abstract domain forms a lattice.
– A partial order

– Every finite subset has a least upper bound (lub) &
greatest lower bound (glb).

• We write A for an abstract domain
– a set of values + an ordering

() ()x y x y

 0

T

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

17

Lattice Lingo

• A lattice is complete if every subset (finite or
infinite) has lub’s and glb’s.
– Every finite lattice is complete

• Thus every lattice has a top/bottom element.
– Usually needed in abstract interpretations.

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

18

The Abstraction Function

• The abstraction function maps concrete values to
abstract values.
– The dual of concretization.

– The smallest value of A that is the abstraction of a set of
concrete values.

Int: 2 A

() lub | 0 , 0| 0 , | 0S i i S S i i S

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

19

A General Definition

• An abstract interpretation consists of
– An abstract domain A and concrete domain D

– Concretization and abstraction functions forming a Galois
insertion.

– A (sound) abstract semantic function.

2 . (())

. (())

Dx x x

a A x x

id

id

Galois insertion:

or

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

20

Galois Insertions

• The abstract domain can be thought of as dividing the
concrete domain into subsets (not disjoint).

• The abstraction function maps a subset of the domain
to the smallest containing abstract value.

id

id

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

21

Picture

• In correct abstract interpretations, we expect the
following diagram to commute.

Exp

A

2D

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

22

General Conditions for Correctness

1 1

 ,

 () (

and form a Galois insertion

and are monotonic

Abstract operations are locally

)

 op

 (op(,...,)) op((),..., (

 corr

))

ect:

n n

id id

x y x y

s s s s

Three conditions guarantee correctness in
general:

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

23

Generic Correctness Proof

1 2

1 2

1 2

1 2

1 2

()

() () def. of

(()) (()) by induction

(() ()) local correctness

(()) def of

e op e

e op e

e op e

e op e

e op e

Proof by induction on the structure of e: () (())e e

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

24

A Second Notion of Correctness

• We can define correctness using abstraction instead
of concretization.

() (()) ({ ()}) ()

() (())

({ ()}) ((())) monotonicity

({ ()})

 direc

)

ti

(

on

e e e e

e e

e e

e e id

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

25

Correctness (Cont.)

• The other direction . . .

() (()) ({ ()}) ()

 direction

({ ()}) ()

(({ ()})) (()) monotonicity

() (())

e e e e

e e

e e

e e id

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

26

A Language with Input

• The next step is to add language features besides new
operations.

• We begin with input, modeled as a single free variable
x in expressions.

| | | ... |e i e e e x

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

27

Semantics

• The meaning function now has type

• We write the function curried with the expression as
a subscript.

: Exp Int Int

1 2 1 2

1 2 1 2

()

()

() () ()

() () ()

... ...

i

x

e e e e

e e e e

j i

j j

j j j

j j j

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

28

Abstract Semantics

• Abstract semantic function:

• Also write this semantics curried.
: Exp A A

1 2 1 2

1 2 1 2

()

()

() () ()

() () ()

... ...

({ })

i

x

e e e e

e e e e

j i

j j

j j j

j j j

i i

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

29

Correctness

• The correctness condition needs to be generalized.

• This is the first real use of the abstraction function.

• The following are all equivalent:

e

e

A

2D

A

. () ((({ })))e e

e eD

e eA

i i i

2D

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

30

Local Correctness

• We also need a modified local correctness condition.

1 1

(()),..., (()) ((),..., ())
n ne e e eop j j op j j

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

31

Proof of Correctness

1

1

1

(,...,)

Thm () (())

Proof (by induction)

Basis. () () (())

 () () (())

Step

()

((),..., ()) def. of

((()),..., (()) induction

((

n

n

n

e e

i i

x x

op e e

e e

e e

j j

j i i j

j j j j

j

op j j

op j j

op

1

1(,...,)

(),..., ())) local correctness

(()) def. of
n

n

e e

op e e

j j

j

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

32

If-Then-Else

3 1 2

1 2 3 4

1 24

3 41 2 3 4

if then else

if then else

... | if then else | ...

() if () ()
()

() if () ()

() () ()

e e e

e e e e
e e e

e ee e e e

e e e e e

i i i
i

i i i

i i i

• Note the lub operation in the abstract function;
this is why we need lattices as domains.

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

33

Correctness of If-Then-Else

3

3

3 4

3 4

()

(()) by induction

(()) (())

() () monotonicity of

e

e

e e

e e

i

i

i i

i i

• Assume the true branch is taken.

• (The argument for the false branch is symmetric.)

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

34

Recursion

• Add recursive definitions
– of a single variable for simplicity

• The semantic function is

 def ()

... | ()

program f x e

e f e

: Exp Int Int

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

35

Revised Meaning Function

• Define an auxiliary semantics taking a function (for
the free variable f) and an integer (for x).

1 2 1 2

()

: Exp (Int Int) Int Int

()() (()())

()()

()() ()() ()()

ef e

x

e e e e

g j g g j

g j j

g j g j g j

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

36

Meaning of Recursive Functions

0 1

0

1

f

Consider a function

Define an ascending chain

: Exp Int Int

: Exp (Int Int) Int Int

def f e

, ,... Int Int in

Define

()

.

e ii

i
i

f f

f x

f f

f

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

37

Abstract Semantics Revised

• Define an analogous auxiliary function for the
abstract semantics.

1 2 1 2

()

: Exp (A A) A A

()() (()())

()()

()() ()() ()()

ef e

x

e e e e

g i g g i

g i i

g i g i g i

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

38

Abstract Semantics Revised II

• We need one more condition for the abstract
semantics.

• All abstract functions are required to be
monotonic.

• Thm. Any monotonic function on a complete
lattice has a least fixed point.

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

39

Abstract Meaning of Recursion

0 1

0

1

f

Consider a function

Define an ascendin

: Exp A A

': Exp (

g chain

A A) A A

def f e

, in

Defi

,... A

.

(

n

A

)

e

i ie

i

i

f f

f a

f f

f

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

40

Correctness

0()f j

1()f j

2()f j

0()f j

1()f j

2()f j

Corresponding elements of the chain stand in the correct relationship.

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

41

Correctness (Cont.)

0 0

0 0

. () (())

() (()) chains stabilize

() () monotonicity of

() (()) by definition

ii

ii
i i

ii
i i

f f

i f j f j

f j f j

f j f j

j j

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

42

Example

def f(x) if x 0 then 1 else x f(x -1)

lfp if x 0 then 1 else x f(x -1)

lfp f. x. x f(x)

Abstraction:

Simplified:

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

43

Strictness

• We will assume our language is strict.
– Makes little difference in quality of analysis for

this example.

• Assume that

• Therefore it is sound to define

()f

()f

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

44

Calculating the LFP

0

1

2

3

lfp f. x. x f(x)

0 T

0 T

0 T

T T T

0 T

T T T T

f

f

f

f

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

45

Notes

• In this case, the abstraction yields no
useful information!

• Note that sequence of functions forms a
strictly ascending chain until stabilization

• But the sequence of values at particular
points may not be strictly ascending:

0 1 2 3 54 ...f f f f f f

0 1 2 3 54() () () () () () ...f f f f f f

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

46

Notes (Cont.)

• Lesson: The fixed point is being computed in
the domain

• The fixed point is not being computed in

• Make sure you check the domain of the fixed
point operator.

(A A) A A

A A

Profs. Aiken, Barrett & Dill CS 357 Lecture 5 47

Strictness Analysis

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

48

Strictness Analysis Overview

• In lazy functional languages, it may be desirable to
change call-by-need (lazy evaluation) to call-by-value.

• CBN requires building “thunks” (closures) to capture
the lexical environment of unevaluated expressions.

• CBV evaluates its argument immediately, which is
wasteful (or even wrong) if the argument is never
evaluated under CBN.

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

49

Correctness

• Substituting CBV for CBN is always correct if we
somehow know that a function evaluates its
argument(s).

• A function f is strict if

• Observation: if f is strict, then it is correct to pass
arguments to f by value.

()f

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

50

Outline

• Deciding whether a function is strict is undecidable.

• Mycroft’s idea: Use abstract interpretation.

• Correctness condition: If f is non-strict, we must
report that it is non-strict.

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

51

The Abstract Domain

• Continue working with the same language (1 recursive
function of 1 variable).

• New abstract domain 2:

0

1

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

52

Concretization/Abstraction

• The concretization/abstraction functions say
– 0 means the computation definitely diverges

– 1 means nothing is known about the computation

– D is the concrete domain

(0) () 0

(1) () 1 if D S S

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

53

Abstract Semantics

• Next step is to define an abstract semantics

• Transform to

• Transform values to

• To test strictness check if

f:Int Int f:2 2

v : 2v:Int

f(0) 0

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

54

Abstract Semantics (Cont.)

1 2 1 2

()

()()

()() 1

()() ()()

()() ()() ()()

' ()() (()())

x

i

e e

e e e e

ef e

g a a

g a

g a g a

g a g a g a

g a g g a

• An a stands for an abstract value (0 or 1).

• Treat 0,1 as false, true respectively.

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

55

The Rest of the Rules

1 2 1 2

1 21 2

1 2 3 41 2 3 4

/

if then else

def f

()() ()() ()()

()() ()() ()()

()() ()() ()() ()() ()()

lfp

e e e e

e ee e

e e e ee e e e

ee

g a g a g a

g a g a g a

g a g a g a g a g a

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

56

An Example

def f(x) if x 0 then 1 else x f(x -1)

lfp if x 0 then 1 else x f(x -1)

lfp f. x.x .

(.) 0 0 The function is strict in x.

a a

a a

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

57

Calculating the LFP

0

1

2

lfp f. x.x 1 1 (x f(x 1))

0 1

0 0

0 1

0 1

0 1

0 1

f

f

f

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

58

Another Example

• Generalize to recursive functions of two variables.

def f(x,y) if x 0 then 0 else f(x -1,f(x,y))

lfp if x 0 then 0 else f(x -1,f(x,y))

lfp(f. (x, y). x 1 (1 ...))

(x, y). x

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

59

Example (Cont.)

• For multi-argument functions, check each argument
combination of the form (1,…,1,0,1,…,1).

(x, y). x (0,1) 0

(x, y). x (1,0) 1

X can be passed by value.

Unsafe to pass Y by value.

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

60

Summary of Strictness Analysis

• Mycroft’s technique is sound and practical.
– Widely implemented for lazy functional languages.

– Makes modest improvement in performance (a few %).

– The theory of abstract interpretation is critical here.

• Mycroft’s technique treats all values as atomic.
– No refinement for components of lists, tuples, etc.

• Many research papers take up improvements for data
types, higher-order functions, etc.
– Most of these are very slow.

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

61

Conclusions

• The Cousot&Cousot paper(s) generated an
enormous amount of other research.

• Abstract interpretation as a theory and abstract
interpretation as a method of constructing tools
are often confused.

• Slogan of most researchers:

Finite Lattices + Monotonic Functions =
Program Analysis

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

62

Where is Abstract Interpretation Weak?

• Theory is completely general

• The part of the original paper people
understand is limited
– Finite domains + monotonic functions

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

63

Data Structures and the Heap

• Requires a finite abstraction
– Which may be tuned to the program

– More often is “empty list, list of length 1, unknown
length”

• Similar comments apply to analyzing heap
properties
– E.g., a cell has 0 references, 1 references, many

references

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

64

Size of Domains

• Large domains = slow analysis

• In practice, domains are forced to be small
– Chain height is the critical measure

• The focus in abstract interpretation is on
correctness
– Not much insight into efficient algorithms

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

65

Context Sensitivity

• No particular insight into context senstivity

• Any reasonable technique is an abstract
interpretation

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

66

Higher-Order Functions

• Makes clear how to handle higher-order
functions
– Model as abstract, finite functions

– Ordering on functions is pointwise
• Problem: huge domains

• Break with the dependence on control-flow
graphs

Profs. Aiken, Barrett & Dill CS 357

Lecture 5

67

Forwards vs. Backwards

• The forwards vs. backwards mentality
permeates much of the abstract
interpretation literature

• But nothing in the theory says it has to be
that way

