
软件分析

程序合成：其他方法

熊英飞

北京大学

合一化程序合成STUN
Synthesis through Unification

•针对If表达式的特殊合成方法
• STUN系列求解器Eusolver, Euphony,

PolyGen在SyGuS比赛的CLIA Track中表现
最优

•假设合成的程序具有如下形式
• Expr
→ ite Cond Expr Expr

∣ Term

2

Rajeev Alur
Upenn教授

STUN思想、Eusolver
和Euphony方法的提出者

吉如一
北京大学博士生
PolyGen提出人

基本流程(1/3)

x y ret covering
terms

Cond

x=3 x<y

1 2 2 y false true

3 3 3 x,y true false

5 2 5 x false false

3

• 首先枚举一组Cond和Term
• 对于Term，记录所覆盖的example
• 基于Cond，记录将example分成的两个组

• 假设枚举到x, y, 1三个表达式和x=3, x<y两个条件

基本流程(2/3)

x y ret covering
terms

Cond

x=3 x<y

1 2 2 y false true

3 3 3 x,y true false

5 2 5 x false false

4

•选择覆盖所有例子的Term集合

• 在这里选择x和y

基本流程(3/3)

x y ret covering
terms

Cond

x=3 x<y

1 2 2 y false true

3 3 3 x,y true false

5 2 5 x false false

5

• 用决策树算法选择Cond构造最终程序
• 选择一组Cond对example分类，让每个分类都能被一个所选Term
覆盖

• 类似于机器学习中的决策树构建算法

• 选择x<y可以把原来的example分成两类，第一类包含第一个example，
被x覆盖，第二类包含后两个example，被y覆盖

• 得到if(x<y) then x else y

控制程序的总大小

•奥卡姆剃刀原则：如非必要，勿增实体
• 映射到程序合成：合成尽量小的程序

•如何控制合成程序的总大小？

• Eusolver和Euphony
• 控制Term和Cond的大小

• 从小到大枚举，给出大小上限

• 从比较小的上限开始，逐步放宽

• 控制Term的个数
• 采用尽量少的Term来覆盖

• 控制Cond的个数
• 采用决策树算法来得到尽量小的决策树

6

控制程序的总大小

• 问题：决策树算法为模糊分类设计，不适合精确的
程序合成
• 假设三个表达式a, b, c可以覆盖所有样例且没有重叠

• 某个boolExpr可以把样例分成如下两类
• 类1：98个样例可以被a覆盖，1个样例被b覆盖，1个样例被c覆
盖

• 类2：98个样例被b覆盖，1个样例被a覆盖，1个样例被c覆盖

• 该条件有很好的信息熵增益

• 但对生成程序几乎没有帮助，因为每类还需要继续区分三
个表达式

• PolyGen采用更有保障的随机采样来控制程序的总大
小

7

约束求解法

8

约束求解法

•将程序合成问题整体转换成约束求解问题，由
SMT求解器求解

•代表工作：基于构件的程序合成
Component-Based Program Synthesis
• 获得ICSE十年最有影响力论文奖

•将产生式看做构件，并且数量有限
• 1号产生式：𝐸𝑥𝑝𝑟𝑜1 → 𝐸𝑥𝑝𝑟𝑖11 + 𝐸𝑥𝑝𝑟𝑖12

9

Sumit Gulwani
微软研究院研究员
14年获SIGPLAN
Robin Milner青年
研究者奖

+
o1

i11 i12

基于构件的程序合成

10

+ - ite x y

+ -

o1

o2

o3

o4

o5 o6 o7

i11 i12

i21 i22

i31 i32

i41 i42

i51 i53i52

1 2 3 4 5 6 7 8 9

添加标签变量：
• 𝑙𝑖11, 𝑙𝑖22, …
• 𝑙𝑜1, 𝑙𝑜2, …
• 𝑙𝑜：程序输出

构件

连接点

𝑙𝑜6 = 𝑙𝑖31 = 4

产生约束
• 对于任意测试𝑡产生约束，如：

• 𝑣𝑥 = 1 ∧ 𝑣𝑦 = 2 → 𝑣𝑜 = 2

• 对所有构件产生语义约束：
• 𝑣𝑜1 = 𝑣𝑖11 + 𝑣𝑖12

• 对所有的构件产生非终结符约束：
• 𝑁𝑜1 = "Expr"

• 对所有的输入输出标签对产生连接约束：
• 𝑙𝑜1 = 𝑙𝑖21 → 𝑣𝑜1 = 𝑣𝑖21
• 𝑙𝑜1 = 𝑙𝑖21 → 𝑁𝑜1 = 𝑁𝑖21

• 对所有的输入输出标签产生编号范围约束:
• 𝑙𝑜1 ≥ 1 ∧ 𝑙𝑜1 ≤ 9（假设总共9个构件）

• 𝑙𝑖11 ≥ 1

• 对所有的𝑜𝑖对产生唯一性约束
• 𝑙𝑜1 ≠ 𝑙𝑜2

• 对统一构件的输入和输出产生防环约束
• 𝑙𝑖11 < 𝑙𝑜1

• 结合CEGIS可以求解任意规约
11

能否去掉连接点和
输出标签𝑙𝑜x…，直
接用𝑙𝑖𝑥𝑥的值表示应
该连接第几号输出？

额外变量：
• 𝑣𝑜1：程序执行

中o1位置的值
• 𝑁𝑜1：o1位置的

非终结符

空间表示法

12

Sumit Gulwani
微软研究院研究员

14年获SIGPLAN Robin Milner青年
研究者奖

提出自顶向下的VSA程序合成方法

王新宇
密西根大学
助理教授

提出自底向上的FTA程序合成方法

例子：化简的max问题

•语法：

•规约：

•期望答案：ite (x <= y) y x

13

复习：可观察等价

•可观察等价observational equivalence
• 运行所有测试检测 𝑓 = 𝑓′

• 认为等价的程序有可能不等价
• 但在CEGIS框架中没有问题，因为我们目标是找到一个满足所
有样例的程序而非满足完整规约的程序

• 用于自底向上，是目前效果最好的等价性削减策略之一

•为什么效果好？
• 大量的程序在样例上都返回同样的结果，带来非常大的
搜索空间节省

• 如布尔表达式，单样例的时候最多有两个不等价程序

14

问题1：多样例的影响

•样例越多，返回值的空间就越大
• n个样例的布尔表达式有2𝑛个可能返回值

•可观察等价的效果就越差

15

问题2：和CEGIS交互

• CEGIS每轮会新增一个样例

•标准可观察等价剪枝无法利用之前的计算，会导
致对之前的样例重复计算

16

基于空间表示的合成

•通过某种数据结构表示程序的集合

•对于每个样例产生一个程序的集合

•对于集合依次求交得到最终程序的集合

•效果
• 单个样例时：可观察等价剪枝在单个样例时能发挥作
用

• 多个样例时：单个样例已经排除了大量程序，求交只
用考虑部分程序

• 样例逐步增加时：之前的求交结果保留，不会重复计
算

17

基本思路

• 可观察等价思路：在当前样例中返回相同值且从同
一个非终结符展开的程序是等价的
• 用非终结符加上返回值约束来表示等价程序集合

• 如：[2]Expr

• 该表示可以看做一个新的非终结符，称为带约束非终结符

• 构建带约束上下文无关文法来表示程序空间，如：
• [2]Expr → [1]Expr+[1]Expr
• 对应的，称Expr → Expr+Expr为原始文法规则

• 对于每个样例产生一个上下文无关文法
• 表示满足该样例的程序集合

• 通过对上下文无关文法求交得到满足所有样例的文
法

18

如何从样例得到文法
• 在可观察等价剪枝的过程中构建文法

• 维护一个非终结符集合和产生式集合

• 初试非终结符包括输入变量：[2]x, [1]y

• 反复用原产生式匹配非终结符，得到新产生式和新的非终结符。

• 重复上述过程直到得到起始符号和期望输出

• 删除从起始符号和期望输出不可达的产生式

19

[2]x
[1]y

[2]Expr

[1]Expr

[3]Expr

[2]Expr→[2]x

[1]Expr→[1]y

[3]Expr→[2]Expr+[1]Expr

Expr→x

Expr→ y

Expr→Expr+Expr

非终结符集合 产生式集合

从样例得到文法例子1

•语法：
• S-> S + S | x | y | z

•例子1：
• ret=“acc”

• x=“a”

• y=“cc”

• z=“c”

•剪枝：
• 生成的串不是ret的子
串则剪掉

生成文法：

• [a]S→x

• [c]S→z

• [cc]S->[c]S+[c]S | y

• [ac]S->[a]S+[c]S

• [acc]S->[a]S+[cc]S
 | [ac]S+[c]S

20

从样例得到文法例子2

•语法：
• S-> S + S | x | y | z

•例子2：
• ret=“aac”

• x=“a”

• y=“ac”

• z=“c”

•剪枝：
• 生成的串不是ret的子
串则剪掉

生成文法：

• [a]S→x

• [c]S→z

• [ac]S->[a]S+[c]S | y

• [aa]S->[a]S+[a]S

• [aac]S->[a]S+[ac]S
 | [aa]S+[c]S

21

文法求交

•上下文无关语言求交之后不一定是上下文无关语
言
• 反例：

•本质原因：同一个字符串被解析成不同的AST树

•解决思路：对语法树集合求交而不是对语言求交
• 如果在原始文法上两颗语法树相同，则相同

22

𝑆 → 𝐴𝐶
𝐴 → 𝑎𝐴𝑏 ∣ 𝑎𝑏
𝐶 → 𝑐𝐶 ∣ 𝑐

𝑆′ → 𝐴′𝐶′
𝐴′ → 𝑎𝐴′ ∣ 𝑎
𝐶′ → 𝑏𝐶′𝑐 ∣ 𝑏𝑐

𝑆 ∩ 𝑆′不是上下文无关语言

文法求交

• 给每一个产生式赋唯一ID
• P1: S → S + S

• P2: S → 1

• 可以把产生式改写成如下形式
• S → P1 S, S

• S → P2
• 其中𝑃1, 𝑃2, …看做终结符

• 括号保证了字符串被解析为唯一的结构，即文法求
交等价于语法树集合求交

• 实际不需要做这样的改写，只要产生语法树集合求
交的效果就行

23

文法求交
•给定原始产生式

• 𝑁0 → 𝑃 𝑁1, 𝑁2, …

•如果两个文法中分别存在两个带约束产生式
• [𝑐0]𝑁 → 𝑃 𝑐1 𝑁1, 𝑐2 𝑁2, …

• 𝑐0
′ 𝑁 → 𝑃 𝑐1

′ 𝑁1, 𝑐2
′ 𝑁2, …

•求交得到
• [𝑐0, 𝑐0

′]𝑁 → 𝑃 𝑐1, 𝑐1
′ 𝑁1, 𝑐2, 𝑐2

′ 𝑁2, …

•对两个文法中所有这样的产生式求交，然后删掉
无法从起始符号到达的产生式即可。

•从效率考虑，可先从起始符号出发，只对从起始
符号可达的产生式求交。

24

文法求交例子

25

[acc]S->[a]S+[cc]S | [ac]S+[c]S
[ac]S->[a]S+[c]S
[cc]S->[c]S+[c]S | y
[a]S→x
[c]S→z

[aac]S->[a]S+[ac]S | [aa]S+[c]S
[ac]S->[a]S+[c]S | y
[aa]S->[a]S+[a]S
[a]S→x
[c]S→z

∩

=
[acc, aac]S -> [a, a]S+[cc, ac]S | [a, aa]S+[cc, c]S |
[ac, a]S+[c, ac]S | [ac, aa]S+[c, c]S
[a, a]S -> x
[c, c]S -> z
[cc, ac]S -> [c, a]S+[c, c]S | y
[a, aa]S -> 𝜖
[cc, c]S -> 𝜖
[ac, a]S-> 𝜖
[c, ac]S-> 𝜖
[ac, aa]S -> [a, a]S+[c, a]S
[c, a]S -> 𝜖

自顶向下的空间表示法合成

•能否自顶向下构造文法？

•反向语义：
• 给定输出，什么样的输入能产生该输出

•给定
• [2]Expr

•根据反向语义可以得到
• [2]x, [2]y, [0]Expr+[2]Expr, [1]Expr+[1]Expr,

[2]Expr+[0]Expr, ite([true]BoolExpr, [2]Expr, [*]Expr),
ite([false]BoolExpr, [*]Expr, [2]Expr)

• [*]表示任意值

27

Witness Function

• 一般把反向语义和剪枝合并定义为Witness function

• 输入：
• 样例输入，如{x=1,y=2}
• 期望输出上的约束，如[2]，表示返回值等于2
• 期望非终结符，如Expr

• 输出：
• 一组展开式和非终结符上的约束列表，如

• [2]y, [1]Expr+[1]Expr, if([true]BoolExpr, [2]Expr, [*]Expr), if([false]BoolExpr,
[*]Expr, [2]Expr)

• 注意样例上无解的子问题已经被剪枝

• Witness Function需要由用户提供

• 但针对每个DSL只需要提供一次

28 注：在原始文献中，witness函数细化为witness和skolemization两种函数，这里简单起见不再区分。

自顶向下构造文法

•给定输入输出样例，递归调用witness function，
将约束和原非终结符同时作为新非终结符

• [2]Expr→y∣[1]Expr+[1]Expr ∣
if([true]BoolExpr)[2]Expr [∗]Expr ∣
if([false]BoolExpr)…

• [1]Expr→x

• [∗]Expr→…

• [true]BoolExpr→true∣¬[false]BoolExpr∣[2]Expr≤[2]Ex
pr∣[1]Expr≤[2]Expr∣[1]Expr≤[1]Expr∣…

29

自顶向下构造文法

•根据witness function的实现，有可能出现非终结
符无法展开的情况

•文法生成后，递归删除所有展开式为空的非终结
符

•假设x=y=2

• [3]Expr→[2]Expr+[1]Expr∣[1]Expr+[2]Expr

• [2]Expr→x∣y

• [1]Expr→ϵ

30

While(有非终结符展开为空) {
删除该非终结符
删除所有包含该非终结符的产生式

}
删除所有不在右边出现的非终结符

自底向上vs自顶向下

• 自顶向下最早出现在Excel的FlashFill系统
• 采用VSA（Version Space Algebra上下文无关文法对求交封闭的子集）
来表示空间

• 自底向上最早采用FTA（Finite Tree Automata有限树自动机）
来表示空间
• FTA本质上和VSA等价

• 两种方法有不同的适用范围
• 自顶向下适用于从输出出发选项较少的情况

• 如：字符串拼接

• 自底向上适用于从输入出发选项较少的情况
• 如：实数运算

• 实践中也可以把两种方法结合起来
• 先用自底向上枚举一定数量的表达式，然后采用自顶向下的方法合
成

• Lee, Woosuk. "Combining the top-down propagation and bottom-up
enumeration for inductive program synthesis." POPL (2021): 1-28.

31

基于概率的方法

32

很多应用需要概率大的程序

33

程序估计Program Estimation

• 输入:
• 一个程序空间Prog
• 一条规约Spec
• 概率模型P，用于计算程序的概率

• 输出:
• 一个程序prog，满足

• 𝑝𝑟𝑜𝑔 = argmax𝑝𝑟𝑜𝑔∈𝑃𝑟𝑜𝑔∧𝑝𝑟𝑜𝑔⊢𝑠𝑝𝑒𝑐 𝑃(𝑝𝑟𝑜𝑔)

• 给定不同的P，可以实现不同任务。
• 如果P估计程序满足给定自然语言需求的概率，那么可以
完成从自然语言的代码生成

• 如果P估计程序满足规约的概率，那么可以用来加速传统
程序合成

34

基本算法：穷举

•用枚举的方法遍历空间中的程序

•对每个程序计算概率

•返回概率最大的程序

•能否优化这个过程？

35

扩展枚举算法求解程
序估计问题

玲珑框架L2S（包括本部分内容+语法上的静态预分析）

36

熊英飞
北京大学副教授

王博
北京交通大学讲师
北京大学博士

规则展开概率模型

•按某种固定顺序选择节点展开

• 𝑃(𝑝𝑟𝑜𝑔) = ς𝑖 𝑃 𝑟𝑢𝑙𝑒𝑖 𝑟𝑢𝑙𝑒1, … 𝑟𝑢𝑙𝑒𝑖−1
• 𝑟𝑢𝑙𝑒𝑖：展开程序所用的文法规则

•可以用任意统计模型或机器学习模型实现

37

E

E >12

hours

E

E >12

E E -> E “> 12” E -> “hours”

程序估计问题作为路径查找
问题

38

E

E >12

hours

E

E >12

E E -> E “> 12” E -> “hours”

E

E >12

value

E -> “value”

E

E + E

E -> E “+” E

……

• 节点为部分或完整程序
• 边为文法规则
• 路径的权为边的权的乘积
• 目标节点为满足规约的完整程序

如何求解概率最大的程序？

•采用求解路径查找问题的标准算法

•迪杰斯特拉算法

•定向搜索（Beam Search）

• A*算法

•当概率模型预测程序满足约束的概率时，这些算
法帮助避免探索概率低的程序，达到加速效果

39

迪杰斯特拉算法

•定义节点的权为到达该节点的路径的最大权

•维护一个可达节点列表，并记录每个节点的权

•选择权最大的节点, 把该节点直接关联的新节点
加入列表

•如果某个节点已经没有未探索出边，则从列表中
删除

•反复上一步直到找到目标节点

40

注：在本问题中只能被一条路径到达，而在一般路径查找问题中，每个节
点可以被多条路径达到，所以通用算法还需到达了旧节点时更新最大权。

迪杰斯特拉算法求解的例子

• <E,1>

• <E+E,0.5>, <E-E, 0.4>, <x, 0.05>, <y, 0.05>

• <E-E, 0.4>, <x+E, 0.3>, <(E+E)+E, 0.1>, <y+E, 0.1>,
<x, 0.05>, <y, 0.05>

• <x+E, 0.3>, <x-E, 0.2>, <y-E, 0.1>, <(E+E)+E, 0.1>,
<y+E, 0.1>, , <x, 0.05>, <y, 0.05>, <(E+E)-E, 0.05>,
<(E-E)-E, 0.05>

• ……

41

定向搜索（Beam Search）

•在迪杰斯特拉算法中不保留所有节点，只保留概
率最大的k个

•近似算法，不保证最优，也不保证找到结果

42

A*算法

• 节点n的权=到达该节点的权*h(n)
• h(n)=剩余路径权的上界

• 其他同迪杰斯特拉算法

• 如何知道剩余路径权的上界？
• 假设存在函数 ෠𝑃 𝑟𝑢𝑙𝑒 ，满足

• ∀𝑝𝑟𝑜𝑔: ෠𝑃 𝑟𝑢𝑙𝑒 ≥ 𝑃 𝑟𝑢𝑙𝑒 𝑝𝑟𝑜𝑔
• 在概率模型简单的时候可以遍历获得上界

• 在语法展开式上做静态分析，分析出每个非终结符的概率
上界
• 从 E->E+E | x | y |…
• 得到方程 ෠𝑃 𝐸 = max(෠𝑃 𝐸 → 𝐸 + 𝐸 ෠𝑃 𝐸 ෠𝑃 𝐸 , ෠𝑃(

)
𝐸 →

𝑥 , ෠𝑃 𝐸 → 𝑦 ,…)

• 剩余路径权的上界为所有未展开非终结符概率上界的积

43

剪枝

•之前描述的剪枝过程仍然可以用于求解程序估计
问题

•判断出一个部分程序无法满足规约时，从列表中
移除对应节点

44

和大模型的关系

•规则展开概率模型等价于将代码建模为文法规则
编码的序列
• 保证文法正确性

• 生成过程保留文法结构，可以应用程序分析剪枝

•大模型将代码和文本统一建模为Token序列
• 不保证文法正确性

• 生成过程不保留文法结构，Token序列甚至不和词法
分析对应，程序分析需要先实现partial parser

•大模型也能采用之前介绍的所有搜索算法，但由
于计算资源消耗多，所以通常采用随机采样

45

和大模型结合

•可以将程序表示成文法规则序列来训练大模型

•在各个规模的实验均表明显著优于Token序列表
示

•原因：
• 和语义对应得更好

• 更容易解析

46

原因1：和语义更好的对应

• 相同语义
• if (x<0) y=y+1;
• if (x < 0) {

y = y + 1;
}

• 不同语义
• for i in range(1, 6):

x = x + 1
sum = sum + x

• for i in range(1, 6):
x = x + 1

sum = sum + x

47

在语法规则序列下相似
在单词序列下不同

在语法规则序列下不同
在单词序列下相似

原因2：更容易解析

•编程语言的解析越容易，模型表现就越好。
• 在更大模型（1-1.5B），Python语言的更多表示上的结果一致。

48

原因2：更容易解析

• 语法序列表示属于LL(1)

• 比大多数主流编程语言都要容易解析
• Python：非上下文无关语言

• Java：LR

49

作业

1. 如果当前只有一个输入输出样例，考虑自底向上合成，基于空间
表示的方法相对可观察等价在效率上是否存在优势？如果存在，
请给出一个例子；如果不存在，请说明理由。

2. 如果当前只有一个输入输出样例，对比自底向上的空间表示合成
和合一化程序合成，语法如下：

• 𝐸 → 𝑖𝑡𝑒 𝐶 𝑇 𝑇

• 𝐶 → 𝑥 > 1 ∣ 𝑥 > 𝑦 ∣ 𝑦 < 1 ∣ ⋯

• 𝑇 → 𝑥 ∣ 𝑦 ∣ 𝑥 + 𝑦 ∣ ⋯

其中C和T的所有产生式的右边都不再有非终结符。在这个场景中，
合一化程序合成相比空间表示的程序合成在效率上是否存在优势？
如果存在，请给出一个例子；如果不存在，请说明理由。

50

参考文献

• Rajeev Alur, Pavol Cerný, Arjun Radhakrishna: Synthesis Through
Unification. CAV (2) 2015: 163-179

• Ruyi Ji, Jingtao Xia, Yingfei Xiong, Zhenjiang Hu. Generalizable Synthesis
Through Unification. OOPSLA'21: Object Oriented Programming
Languages, Systems and Applications, October 2021.

• Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, Ashish Tiwari: Oracle-guided
component-based program synthesis. ICSE (1) 2010: 215-224

• Polozov O , Gulwani S . FlashMeta: a framework for inductive program
synthesis[C]// Acm Sigplan International Conference on Object-oriented
Programming. ACM, 2015.

• Xinyu Wang, Isil Dillig, and Rishabh Singh。 Synthesis of Data
Completion Scripts using Finite Tree Automata. OOPSLA, 2017

• Yingfei Xiong, Bo Wang. L2S: a Framework for Synthesizing the Most
Probable Program under a Specification. ACM Transactions on Software
Engineering Methodology, Online First, Dec 2021.

52

	幻灯片 1: 软件分析 程序合成：其他方法
	幻灯片 2: 合一化程序合成STUN Synthesis through Unification
	幻灯片 3: 基本流程(1/3)
	幻灯片 4: 基本流程(2/3)
	幻灯片 5: 基本流程(3/3)
	幻灯片 6: 控制程序的总大小
	幻灯片 7: 控制程序的总大小
	幻灯片 8: 约束求解法
	幻灯片 9: 约束求解法
	幻灯片 10: 基于构件的程序合成
	幻灯片 11: 产生约束
	幻灯片 12: 空间表示法
	幻灯片 13: 例子：化简的max问题
	幻灯片 14: 复习：可观察等价
	幻灯片 15: 问题1：多样例的影响
	幻灯片 16: 问题2：和CEGIS交互
	幻灯片 17: 基于空间表示的合成
	幻灯片 18: 基本思路
	幻灯片 19: 如何从样例得到文法
	幻灯片 20: 从样例得到文法例子1
	幻灯片 21: 从样例得到文法例子2
	幻灯片 22: 文法求交
	幻灯片 23: 文法求交
	幻灯片 24: 文法求交
	幻灯片 25: 文法求交例子
	幻灯片 27: 自顶向下的空间表示法合成
	幻灯片 28: Witness Function
	幻灯片 29: 自顶向下构造文法
	幻灯片 30: 自顶向下构造文法
	幻灯片 31: 自底向上vs自顶向下
	幻灯片 32: 基于概率的方法
	幻灯片 33: 很多应用需要概率大的程序
	幻灯片 34: 程序估计Program Estimation
	幻灯片 35: 基本算法：穷举
	幻灯片 36: 扩展枚举算法求解程序估计问题
	幻灯片 37: 规则展开概率模型
	幻灯片 38: 程序估计问题作为路径查找问题
	幻灯片 39: 如何求解概率最大的程序？
	幻灯片 40: 迪杰斯特拉算法
	幻灯片 41: 迪杰斯特拉算法求解的例子
	幻灯片 42: 定向搜索（Beam Search）
	幻灯片 43: A*算法
	幻灯片 44: 剪枝
	幻灯片 45: 和大模型的关系
	幻灯片 46: 和大模型结合
	幻灯片 47: 原因1：和语义更好的对应
	幻灯片 48: 原因2：更容易解析
	幻灯片 49: 原因2：更容易解析
	幻灯片 50: 作业
	幻灯片 52: 参考文献

