
Logic Foundations
Basics: Functional Programming in Coq

熊英飞 胡振江
信息学院计算机系

2021年3月12日

1

函数式程序设计

• 纯函数：链接程序和数学对象的纽带
• ⾼阶函数：函数是可操作的值
• 代数数据类型：易于处理各种数据结构
• 多态类型系统：代码的抽象和重用

2

Data and Function

Enumerate Types

Booleans
Numbers

3

Enumerate Types

4

Inductive day : Type :=
| monday
| tuesday
| wednesday
| thursday
| friday
| saturday
| sunday.

Days of the Week

Enumerate Types

5

Definition next_weekday (d:day) : day :=
match d with
| monday => tuesday
| tuesday => wednesday
| wednesday => thursday
| thursday => friday
| friday => monday
| saturday => monday
| sunday => monday
end.

Function Definition

Enumerate Types

6

Compute (next_weekday friday).

Compute (next_weekday (next_weekday saturday)).

Expression Evaluation

Enumerate Types

7

Check next_weekday.
(* next_weekday: day -> day *)

Check next_weekday
: day -> day.

Check (next_weekday (next_weekday saturday)).
(* next_weekday (next_weekday saturday) : day *)

Type Checking

Enumerate Types

8

Example test_next_weekday:
(next_weekday (next_weekday saturday)) = tuesday.

Proof. simpl. reflexivity. Qed.

Recording the expected result

Enumerate Types

9

Require Extraction.
Extraction Language Scheme.
Extraction next_weekday.

Code Extraction from Definition

(define next_weekday (lambda (d)
(match d

((Monday) `(Tuesday))
((Tuesday) `(Wednesday))
((Wednesday) `(Thursday))
((Thursday) `(Friday))
((Friday) `(Monday))
((Saturday) `(Monday))
((Sunday) `(Monday)))))

Enumerate Types

10

Require Extraction.
Extraction Language OCaml.
Recursive Extraction next_weekday.

Code Extraction from Definition

(type day =
| Monday
| Tuesday
| Wednesday
| Thursday
| Friday
| Saturday
| Sunday

(** val next_weekday : day -> day **)

let next_weekday = function
| Monday -> Tuesday
| Tuesday -> Wednesday
| Wednesday -> Thursday
| Thursday -> Friday
| _ -> Monday

Enumerate Types

11

Require Extraction.
Extraction Language Haskell.
Recursive Extraction next_weekday.

Code Extraction from Definition

module Main where
import qualified Prelude
data Day =

Monday
| Tuesday
| Wednesday
| Thursday
| Friday
| Saturday
| Sunday

next_weekday d =
case d of {
Monday -> Tuesday;
Tuesday -> Wednesday;
Wednesday -> Thursday;
Thursday -> Friday;
_ -> Monday}

关于作业提交形式

• 对于 .v 不要删除作业，不要改动作业的头尾：
(** **** Exercise: 1 star, standard (nandb)
…

(** [] *)
• 证明通过的用Qed. 其余的用 Admitted.
• 自我打分：

coqc -Q . LF Basics.v
coqc -Q . LF BasicsTest.v

12

Booleans

13

Inductive bool : Type :=
| true
| false.

Definition negb (b:bool) : bool :=
match b with
| true => false
| false => true
end.

Definition andb (b1:bool) (b2:bool) : bool :=
match b1 with
| true => b2
| false => false
end.

Definition orb (b1:bool) (b2:bool) : bool :=
match b1 with
| true => true
| false => b2
end.

Booleans

14

Example test_orb1: (orb true false) = true.
Proof. simpl. reflexivity. Qed.
Example test_orb2: (orb false false) = false.
Proof. simpl. reflexivity. Qed.
Example test_orb3: (orb false true) = true.
Proof. simpl. reflexivity. Qed.

Notation "x && y" := (andb x y).
Notation "x || y" := (orb x y).

Example test_orb5: false || false || true = true.
Proof. simpl. reflexivity. Qed.

New Types from Old

15

Inductive rgb : Type :=
| red
| green
| blue.

Inductive color : Type :=
| black
| white
| primary (p : rgb).

New Types from Old

16

Definition monochrome (c : color) : bool :=
match c with
| black => true
| white => true
| primary p => false
end.

Definition isred (c : color) : bool :=
match c with
| black => false
| white => false
| primary red => true
| primary _ => false
end.

Modules

17

Module Playground.
Definition b : rgb := blue.

End Playground.

Definition b : bool := true.

Check Playground.b : rgb.
Check b : bool.

Tuples

18

Inductive bit : Type :=
| B0
| B1.

Inductive nybble : Type :=
| bits (b0 b1 b2 b3 : bit).

Check (bits B1 B0 B1 B0)
: nybble.

Tuples

19

Definition all_zero (nb : nybble) : bool :=
match nb with
| (bits B0 B0 B0 B0) => true
| (bits _ _ _ _) => false

end.

Compute (all_zero (bits B1 B0 B1 B0)).
(* ===> false : bool *)
Compute (all_zero (bits B0 B0 B0 B0)).
(* ===> true : bool *)

Numbers

20

Inductive nat : Type :=
| O
| S (n : nat).

Definition pred (n : nat) : nat :=
match n with

| O => O
| S n' => n'

end.

Definition minustwo (n : nat) : nat :=
match n with

| O => O
| S O => O
| S (S n') => n'

end.

Numbers

21

Fixpoint evenb (n:nat) : bool :=
match n with
| O => true
| S O => false
| S (S n') => evenb n'
end.

Fixpoint plus (n : nat) (m : nat) : nat :=
match n with

| O => m
| S n' => S (plus n' m)

end.

Fixpoint mult (n m : nat) : nat :=
match n with

| O => O
| S n' => plus m (mult n' m)

end.

Numbers

22

Fixpoint minus (n m:nat) : nat :=
match n, m with
| O , _ => O
| S _ , O => n
| S n', S m' => minus n' m'
end.

Fixpoint exp (base power : nat) : nat :=
match power with

| O => S O
| S p => mult base (exp base p)

end.

Numbers

23

Notation "x + y" := (plus x y)
(at level 50, left associativity)
: nat_scope.

Notation "x - y" := (minus x y)
(at level 50, left associativity)
: nat_scope.

Notation "x * y" := (mult x y)
(at level 40, left associativity)
: nat_scope.

Basic Proof Techniques

Proof by Simplification

Proof by Rewriting
Proof by Case Analysis

24

Proof by Simplification

25

Theorem plus_O_n : forall n : nat, 0 + n = n.
Proof.
intros n. simpl. reflexivity. Qed.

Theorem plus_O_n' : forall n : nat, 0 + n = n.
Proof.
intros n. reflexivity. Qed.

Theorem plus_O_n'' : forall n : nat, 0 + n = n.
Proof.
intros m. reflexivity. Qed.

Proof by Rewriting

26

Theorem plus_id_example : forall n m:nat,
n = m ->
n + n = m + m.

Proof.
(* move both quantifiers into the context: *)
intros n m.
(* move the hypothesis into the context: *)
intros H.
(* rewrite the goal using the hypothesis: *)
rewrite -> H.
reflexivity. Qed.

Proof by Rewriting

27

Check mult_n_O.
(* ===> forall n : nat, 0 = n * 0 *)

Theorem mult_n_0_m_0 : forall p q : nat,
(p * 0) + (q * 0) = 0.
Proof.

intros p q.
rewrite <- mult_n_O.
rewrite <- mult_n_O.
reflexivity. Qed.

Proof by Case Analysis

28

Fixpoint eqb (n m : nat) : bool :=
match n with
| O => match m with

| O => true
| S m' => false
end

| S n' => match m with
| O => false
| S m' => eqb n' m'
end

end.

Notation "x =? y" := (eqb x y) (at level 70) : nat_scope.

Proof by Case Analysis

29

Theorem plus_1_neq_0_firsttry : forall n : nat,
(n + 1) =? 0 = false.

Proof.
intros n. destruct n as [| n'] eqn:E.
- reflexivity.
- reflexivity. Qed.

Theorem andb_commutative : forall b c, andb b c = andb c b.
Proof.

intros b c. destruct b eqn:Eb.
- destruct c eqn:Ec.

+ reflexivity.
+ reflexivity.

- destruct c eqn:Ec.
+ reflexivity.
+ reflexivity.

Qed.

Proof by Case Analysis

30

Theorem plus_1_neq_0_firsttry : forall n : nat,
(n + 1) =? 0 = false.

Proof.
intros [|n].
- reflexivity.
- reflexivity. Qed.

Theorem andb_commutative : forall b c, andb b c = andb c b.
Proof.

intros [] [].
- reflexivity.
- reflexivity.
- reflexivity.
- reflexivity.

Qed.

Fixpoints and Structural Recursion

31

Fixpoint plus' (n : nat) (m : nat) : nat :=
match n with
| O => m
| S n' => S (plus' n' m)
end.

What this means is that we are performing a structural
recursion over the argument n -- i.e., that we make
recursive calls only on strictly smaller values of n.

作业

• 完成 Basics.v中的⾄少10个练习题。

32

