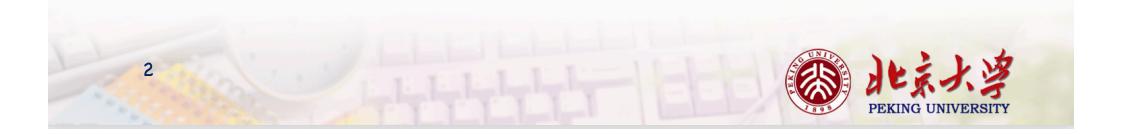
Logic Foundations Induction: Proof by Induction

熊英飞 胡振江信息学院计算机系2021年3月16日

An Example

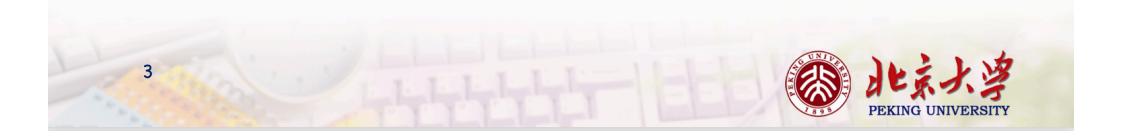
Theorem plus_n_O_firsttry : forall n:nat, n = n + o.

Proof. intros n. simpl. (* Does nothing! *) Abort.



An Example

```
Theorem plus_n_O_secondtry : forall n:nat,
 n = n + o.
Proof.
intros n. <u>destruct n as [| n'] eqn:E.</u>
 -(*n=o*)
 reflexivity. (* so far so good... *)
 -(* n = S n' *)
  simpl. (* ...but here we are stuck again *)
Abort.
```



An Example

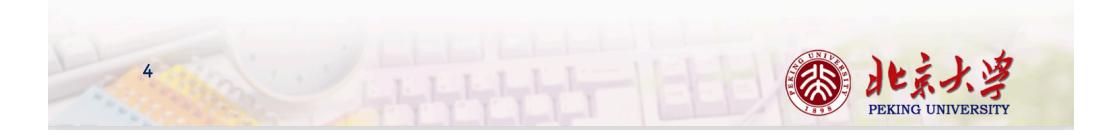
Theorem plus_n_O : forall n:nat, n = n + o.

Proof.

intros n. induction n as [| n' IHn'].

- (* n = o *) reflexivity.
- (* n = S n' *) simpl. rewrite <- IHn'.

reflexivity. Oed.



Another Example

Theorem minus_n_n : forall n, minus n n = o.

Proof.

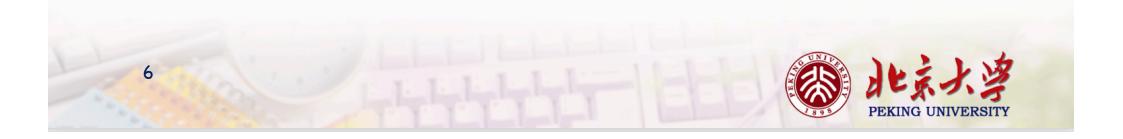
intros n. induction n as [| n' IHn'].
 - (* n = o *)
 simpl. reflexivity.
 - (* n = S n' *)
 simpl. rewrite -> IHn'. reflexivity.
Oed.

Proofs Within Proofs

```
Theorem mult_o_plus' : forall n m : nat,
(o + n) * m = n * m.
```

Proof.

intros n m.
assert (H: o + n = n). { reflexivity. }
rewrite -> H.
reflexivity.
Qed.



Proofs Within Proofs

Theorem plus_rearrange_firsttry : forall n m p q : nat, (n + m) + (p + q) = (m + n) + (p + q).

Proof.

intros n m p q.
(* We just need to swap (n + m) for (m + n)... seems
like plus_comm should do the trick! *)
rewrite -> plus_comm.
(* Doesn't work... Coq rewrites the wrong plus! :-(*)
Abort.

Proofs Within Proofs

```
Theorem plus_rearrange : forall n m p q : nat,
(n + m) + (p + q) = (m + n) + (p + q).
```

Proof.

```
intros n m p q.
assert (H: n + m = m + n).
{ rewrite -> plus_comm. reflexivity. }
rewrite -> H. reflexivity.
Qed.
```


Formal vs. Informal Proof

- Informal proofs are algorithms; formal proofs are code.
- A proof is an act of communication.
 - A "valid" proof is one that makes the reader believe P.
 - There is no universal standard.

9

• The formal proof is much more explicit in some ways (e.g., the use of reflexivity) but much less explicit in others (e.g., the proof state).

Write formal proof more algorithmically!

作业

• 完成 Induction.v中的至少10个练习题。

