Logic Foundations

Tactics：More Basic Tactics

熊英飞 胡振江
信息学院计算机系
2021年3月26日

The apply Tactic

A Silly Example

We often encounter situations where the goal to be proved is exactly the same as some hypothesis in the context or some previously proved lemma．

```
Theorem silly1 : forall (n m o p : nat),
    n=m ->
    [n;o] = [n;p] ->
    [n;o] = [m;p].
Proof.
    intros n m o p eq1 eq2.
rewrite <- eq1.
rewrite -> eq2. reflexivity.
```

Oed.

A Silly Example

We often encounter situations where the goal to be proved is exactly the same as some hypothesis in the context or some previously proved lemma.

```
Theorem silly1 : forall (n m o p : nat),
    n=m ->
    [n;o] = [n;p] ->
    [n;o]= [m;p].
Proof.
    intros n m o p eq1 eq2.
rewrite <- eq1.
apply eqz.
Qed.
```


Another Silly Example

The apply tactic also works with conditional hypotheses and lemmas: if the statement being applied is an implication, then the premises of this implication will be added to the list of subgoals needing to be proved.

```
Theorem silly2 : forall (n m o p : nat),
    n=m ->
    (n = m -> [n;o] = [m;p]) ->
    [n;o] = [m;p].
Proof.
intros n m o p eq1 eq2.
apply eq2. apply eq1. Oed.
Theorem sillyza : forall (n m : nat),
    (n,n) = (m,m) ->
    (forall (q r : nat), (q,q) = (r,r) -> [q] = [r]) ->
    [n] = [m].
Proof.
intros n m eq1 eq2.
```


The＂apply with＂Tactics

```
Example trans_eq_example : forall (a b c d e f : nat),
        [a;b] = [c;d] ->
        [c;d] = [e;f] ->
        [a;b] = [e;f].
Proof.
intros a b c d e f eq1 eq2.
rewrite -> eq1. rewrite -> eq2. reflexivity. Qed.
```

generalization
Theorem trans_eq : forall (X:Type) ($\mathrm{n} \mathrm{moo}: \mathrm{X}$),
$\mathrm{n}=\mathrm{m}$-> $\mathrm{m}=\mathrm{o}->\mathrm{n}=0$.
Proof.
intros Xn m o eq1 eq2. rewrite -> eq1. rewrite -> eq2.
reflexivity. Qed.

The＂apply with＂Tactics

```
Example trans_eq_example : forall (abcdef:nat),
        \([\mathrm{a} ; \mathrm{b}]=[\mathrm{c} ; \mathrm{d}]->\)
        \([\mathrm{c} ; \mathrm{d}]=[\mathrm{e} ; \mathrm{f}]->\)
        \([\mathrm{a} ; \mathrm{b}]=[\mathrm{e} ; \mathrm{f}]\).
Proof.
intros a b c d e f eq1 eq2.
apply trans_eq with (m:=[c;d]).
apply eq1. apply eq2. Qed.
```

application
Theorem trans＿eq ：forall（X：Type）（n m o ：X）， $\mathrm{n}=\mathrm{m}->\mathrm{m}=0->\mathrm{n}=0$ ．
Proof．
intros $X \mathrm{n}$ m o eq1 eq2．rewrite－＞eq1．rewrite－＞eq2． reflexivity．Qed．

The injection and discriminate Tactics

Injection：Injectivity of Constuctors

```
Theorem S_injective : forall (n m : nat),
    S n=S m ->
    n=m
Proof.
    intros n m H1.
    assert (H2: n = pred (S n)). { reflexivity. }
    rewrite H2. rewrite H1. reflexivity.
Oed.
```

```
Theorem S_injective' : forall (n m : nat),
    S n = S m ->
    n=m
Proof.
    intros n m H.
    injection H as Hnm. apply Hnm.
Oed.
```


Injection: : Injectivity of Constuctors

```
Theorem injection_ex1 : forall (n m o : nat),
    [n;m] = [o; o] ->
    [n] = [m].
Proof.
    intros nmoH.
    injection H as H1 H2.
    rewrite H1. rewrite H2. reflexivity.
Oed.
```


Discriminate：Disjointness of Constructors

```
Theorem eqb_o_l : forall n,
    o =? n = true -> n = o.
Proof.
    intros n.
    destruct n as [| n'] eqn:E.
    - (* n = o *)
    intros H. reflexivity.
    -(* n = S n' *)
    simpl.
    intros H. discriminate H.
Oed.
```

```
1 subgoal
```

n, n' : nat
$\mathrm{E}: \mathrm{n}=\mathrm{S} \mathrm{n}^{\prime}$
H : false = true
(1/1)
$\mathrm{S} \mathrm{n}^{\prime}=0$

Principle of explosion（爆炸原理）：从矛盾中推出一切

The "f_equal" Tactic

```
Theorem f_equal : forall (A B : Type) (f g: A -> B) (x y: A),
f=g -> x = y -> fx = g y.
Proof. intros A B fgxy eq1 eq2. rewrite eq1. rewrite eq2. reflexivity. Qed.
Theorem eq_implies_succ_equal : forall (n m : nat),
    n=m -> S n=S m.
Proof. intros n m H. apply f_equal. reflexivity. apply H. Qed.
Theorem eq_implies_succ_equal' : forall (n m : nat),
    n=m -> S n=S m.
Proof. intros n m H. f_equal. apply H. Qed.
```


Using Tactics on Hypotheses

Forward Reasoning

```
Theorem sillyz' : forall (n : nat),
    ( }\textrm{n}=
true = (n =? 5) ->
true = ((S (S n)) =? 7).
```


Proof.

```
intros n eq H .
symmetry in \(H\). apply eq in \(H\). symmetry in \(H\). apply H. Oed.
```

```
1 subgoal
n : nat
eq : (n =? 5) = true ->
    (S (S n) =? 7) = true
H:(n =? 5) = true
true = (S (S n) =? 7)
    (1/1)
```


Revisit: Backward Reasoning

```
Theorem silly2 : forall (n m o p : nat),
    \(\mathrm{n}=\mathrm{m}\)->
    \((n=m->[n ; o]=[m ; p])->\)
    \([\mathrm{n} ; \mathrm{o}]=[\mathrm{m} ; \mathrm{p}]\).
Proof.
intros n m o p eq1 eq2.
apply eq2. apply eq1. Qed.
```

1 subgoal
$n, m:$ nat
eq1 $:(n, n)=(m, m)$
eq2 $:$ forall $q r:$ nat,
$\quad(q, q)=(r, r)->$
$[q]=[r]$
$[n]=[m]$

```
1 subgoal
n,m : nat
eq1 : (n, n) = (m, m)
eq2 : forall q r: nat,
    (q,q) = (r,r) ->
    [q] = [r]
```

$$
(n, n)=(m, m)
$$

Varying the Induction Hypothesis

Problem 1：Introducing variable too early

```
Theorem double_injective_FAILED : forall n m,
    double n= double m ->
    n=m
```


Proof．

```
    intros n m. induction n as [| n' IHn'].
    -(* n=O *) simpl. intros eq. destruct m as [| m'] eqn:E.
    + (* m = O *) reflexivity.
    + (* m = S m' *) discriminate eq.
    -(* n = S n' *) intros eq. destruct m as [| m'] eqn:E.
    +(* m = O *) discriminate eq.
    +(* m = S m' *) apply f_equal.
Abort.
```

 "if double \(n=\) double \(m\) then \(n=m\) " implies
 "if double \((\mathrm{S} n\)) = double \(m\) then \(\mathrm{S} n=m\) "
 Induction on n when m is already in the context doesn＇t work because we are then trying to prove a statement involving every n but just a single m ．

A Solution

Theorem double＿injective ：forall n m， double $\mathrm{n}=$ double m －＞ $\mathrm{n}=\mathrm{m}$ ．

Proof．

intros n ．induction n as［｜ $\mathrm{n}^{\prime} \mathrm{IHn}$＇］．
－（＊$n=O$＊）simpl．intros m eq．destruct m as［｜m＇］eqn：E．
$+(* m=0$＊）reflexivity．

+ （＊m＝S m＇＊）discriminate eq．
－（＊$n=S n^{\prime}{ }^{*}$ ）simpl．
intros m eq．
destruct m as［｜$\left.m^{\prime}\right]$ eqn：E．
+ （＊m＝O＊） discriminate eq．
+ （＊m＝S m＇＊）
apply f＿equal．reflexivity． apply IHn ＇．simpl in eq．injection eq as goal．apply goal． Oed．

Generalize：Quantified Variable Rearrangement

```
Theorem double_injective_take2 : forall n m,
    double n = double m ->
    n=m
```


Proof．

```
intros n m．
generalize dependent \(n\) ．
induction \(m\) as［｜ \(\mathrm{m}^{\prime} \mathrm{IHm} \mathrm{H}^{\prime}\) ］．
－（＊\(m=0\)＊）simpl．intros \(n\) eq．destruct \(n\) as［｜n＇］eqn：E．
\(+(* n=0\)＊）reflexivity．
\(+\left(* n=S n^{\prime} *\right)\) discriminate eq．
－（＊\(\left.m=S m^{\prime} *\right)\) intros \(n\) eq．destruct \(n\) as［｜\(\left.n '\right]\) eqn：\(E\) ．
\(+(* n=0 *)\) discriminate eq．
\(+\left(* n=S n^{\prime} *\right)\) apply f＿equal．
apply IHm ＇．injection eq as goal．apply goal．Qed．
```

```
1 subgoal
n, m : nat
```

\qquad （1／1）
double $n=$ double m－＞
$\mathrm{n}=\mathrm{m}$

m : nat

Unfolding Definitions

Manual Unfolding

```
Definition square n:= n * n.
Lemma square_mult : forall n m, square (n * m) = square n * square m.
Proof.
    intros n m.
    simpl.
    unfold square.
    rewrite mult_assoc.
    assert (H:n * m * n = n * n * m).
    {rewrite mult_comm. apply mult_assoc.}
    rewrite H. rewrite mult_assoc. reflexivity.
```

Qed.

Conservative Automatic Unfolding

```
Definition foo (x: nat) := 5.
Fact silly_fact_1 : forall m, foo m +1 = foo (m + 1) +1.
Proof.
    intros m.
    simpl.
    reflexivity.
Oed.
```


Conservative Automatic Unfolding

```
Definition bar x:=
    match \(\times\) with
    | \(\mathrm{O}=>5\)
    \(\mid S_{-}=>5\)
    end.
Fact silly_fact_2_FAILED : forall \(m, \operatorname{bar} m+1=\operatorname{bar}(m+1)+1\).
Proof.
    intros m.
    simpl. (* Does nothing! *)
Abort.
Fact silly_fact_2 : forall m, bar \(m+1=\) bar \((m+1)+1\).
Proof.
    intros m.
    unfold bar. (* can be omitted *)
    destruct m eqn:E.
    - simpl. reflexivity.
    - simpl. reflexivity.
Qed.
```


Using destruct on Compound Expressions

Case Analysis on＂Results＂

```
Definition sillyfun (n : nat) : bool :=
if }\textrm{n}=\mathrm{ ? 3 then false
else if }\textrm{n}=\mathrm{ ? 5 then false
else false.
Theorem sillyfun_false : forall (n : nat),
sillyfun n= false.
Proof.
intros n. unfold sillyfun.
destruct ( }n=\mathrm{ ? 3) eqn:E1.
    -(* n =? 3 = true *) reflexivity.
    -(* n=? 3 = false *) destruct ( }n=? 5) eqn:E2
    +(* n =? 5 = true *) reflexivity.
    +(* n =? 5 = false *) reflexivity. Qed.
```


Using＂Results＂

```
Definition sillyfun1 (n : nat) : bool :=
if n =? 3 then true
else if n=? 5 then true
else false.
```

Theorem sillyfun1_odd : forall (n : nat),
sillyfun1 $n=$ true ->
oddb $n=$ true.
Proof.
intros n eq. unfold sillyfun1 in eq.
destruct ($\mathrm{n}=$ = 3) eqn:Heqe3.
- (* e3 = true *) apply eqb_true in Heqe3.
rewrite -> Heqe3. reflexivity.
- (* e3 = false *)
destruct ($\mathrm{n}=$? 5) eqn:Heqe5.
+ (* e5 = true *)
apply eqb_true in Heqe5.
rewrite -> Heqe5. reflexivity.

Tactics Review

List of Tactics

- intros: move hypotheses/variables from goal to context
- reflexivity: finish the proof (when the goal looks like e =e)
- apply: prove goal using a hypothesis, lemma, or constructor
- apply... in H: apply a hypothesis, lemma, or constructor to a hypothesis in the context (forward reasoning)
- apply... with...: explicitly specify values for variables that cannot be determined by pattern matching
- simpl: simplify computations in the goal
- simpl in H: ... or a hypothesis
- rewrite: use an equality hypothesis (or lemma) to rewrite the goal
- rewrite ... in H: ... or a hypothesis
- symmetry: changes a goal of the form $\mathrm{t}=\mathrm{u}$ into $\mathrm{u}=\mathrm{t}$
- symmetry in H: changes a hypothesis of the form $\mathrm{t}=\mathrm{u}$ into $u=t$
- transitivity y : prove a goal $x=z$ by proving two new subgoals, $x=y$ and $y=z$
- unfold: replace a de!ned constant by its right-hand side in the goal
- unfold... in H : ... or a hypothesis
- destruct... as...: case analysis on values of inductively defined types
- destruct... eqn:...: specify the name of an equation to be added to the context, recording the result of the case analysis induction... as...: induction on values of inductively defined types
- injection: reason by injectivity on equalities between values of inductively defined types
- discriminate: reason by disjointness of constructors on equalities between values of inductively de!ned types
- assert (H: e) (or assert (e) as H): introduce a "local lemma" e and call it H
- generalize dependent x : move the variable x (and anything else that depends on it) from the context back to an explicit hypothesis in the goal formula
- f_equal: change a goal of the form $f x=f y$ into $x=y$

作业

－完成Tactics．v中的至少 10 个练习题。

