

Conversions and correspondence

软件科学基础习题课1

黄柘铳 TA

What happens in simpl.

Tactic simpl does normalization(reduction) to terms by a series of conversion rules.

Reduces a term to something still readable instead of fully normalizing it. It performs a sort of strong normalization with two key differences:

- It unfolds constants only if they lead to an ι-reduction, i.e. reducing a match or unfolding a fixpoint.
- When reducing a constant unfolding to (co)fixpoints, the tactic uses the name of the constant the (co)fixpoint comes from instead of the (co)fixpoint definition in recursive calls.

Conversion rules

Beta-reduction rule is a conversion rule:

$$(\lambda x.\,f)\;y o f[x\mapsto y]$$

Conversion rules can be categorized into:

- Reduction rules: converting a term to a simpler one
- Expansion rules: reverse of reduction rules
- Contraction rules: if a rule is both a reduction and an expansion rule, it is a contraction rule.

Example: Alpha-renaming is a contraction rule.

Conversion rules

Rule	Description	Example
lpha–renaming	change bound variable names	$\lambda x.x o \lambda y.y$
eta–reduction	apply a function to an argument	$(\lambda x.x)\;y o y$
η –expansion	introduce a function	$f ightarrow \lambda x. f \; x$
δ –reduction	unfold a defined term	def a = b ; $a ightarrow b$
ζ –reduction	unfold a local definition	let a = b in $c ightarrow c[a \mapsto b]$
ι -reduction	unfold a constant(fix, match)	fix $f \: x$ = $b; f \: y ightarrow b[x \mapsto y]$

Conversion rules: Example

Try it your self!

Goal 1 + 1 = 2. cbv delta. cbv fix. cbv beta. cbv match. cbv fix. cbv beta. cbv beta. cbv match. reflexivity.

Conversion rules and Simpl.

- simpl is a smarter tactic than cbv xxx because it knows how to apply conversion rules in a flexible way.
- Consider the following example, direct application of conversion rules makes the output complex.

Lemma test : forall n, $S n + 0 = S (n+0)$.	▼Goal (1) n:nat
intros. cbv delta.	<pre>S ((fix add (n0 m : nat) {struct n0} : nat :=</pre>
cbv iota. cbv beta.	<pre>match n0 with 0 => m S p => S (add p m)</pre>
cbv iota. reflexivity.	end) n 0) = S
	<pre>((fix add (n0 m : nat) {struct n0} : nat :=</pre>

Conversion rules and Simpl.

• simple basically works similar to a call-by-name way, so its output are simpler.

Conversion rules : Extensions

Operational Equality

Equality(reflexivity) is determined by converting both terms to a normal form, then verifying they are syntactically equal with respect to alpha–renaming.

Different from other conversion rules, eta-expansion doesn't hold by default in Coq. It is a special case of functional extensionality axiom.

$$orall f,g, (orall x,f\ x=g\ x
ightarrow f=g) \Longrightarrow orall f,f
ightarrow \lambda x.\ f\ x = g$$

Thinking Question

What about eta-reduction?

Curry-Howard-Lambek correspondence

We already know the Curry–Howard correspondence, which is a correspondence between proofs and programs. But we can view it from a categorized perspective...

Logic side	Programming side
universal quantification	dependent product type
existential quantification	dependent sum type
implication	function type
$\operatorname{conjunction}$	product type
disjunction	$\operatorname{sum} \operatorname{type}$
true formula	unit type
false formula	bottom type

Category

A category is a collection of objects and arrows between them. There are three basic properties:

- Identity: for each object A, there is an identity arrow $id_A: A \to A$.
- Composition: for any two arrows $f:A \to B$ and $g:B \to C$, there is a composition arrow $g \circ f:A \to C$.
- Associativity: $(h \circ g) \circ f = h \circ (g \circ f)$

Programs and logics in category

Programs is a category

- Objects: types T
- Arrows: functions f:T
 ightarrow T'
- Identity: identity function $\lambda x. x$
- Composition: function composition $g\circ f$
- Associativity: function composition is associative

Logics is a category

- Objects: propositions *P*
- Arrows: proofs $P \vdash P'$
- Identity: identity proof $P \vdash P$
- Composition: proof composition $(P_1 dash P_2) \wedge (P_2 dash P_3) \Rightarrow (P_1 dash P_3)$
- Associativity: proof composition is associative

Terminal object

A terminal object is an object that has exactly one arrow from any other object to it.

- In programs, the terminal object is unit type. The only function from any type to unit is the constant function that returns unit.
- In logics, the terminal object is True proposition. The only proof from any proposition to True is to apply I.

Conclusion: $unit \cong True$

Product object

A product of two objects A and B is an object $A \times B$ that has two arrows π_1, π_2 to A and B. (For any object C with two arrows p, q to A and B, there is a unique arrow m from C to $A \times B$ such that $p = \pi_1 \circ m$ and $q = \pi_2 \circ m$)

- In programs, the product type is a pair (A, B) with two projections $\lambda(a, b)$. a and $\lambda(a, b)$. b.
- In logics, the product proposition is $P_1 \wedge P_2$ with two projections $P_1 \wedge P_2 \vdash P_1$ and $P_1 \wedge P_2 \vdash P_2$.

Conclusion: $A imes B \cong P_1 \wedge P_2$

Exponential object

An exponential of two objects Y and Z is an object Z^Y that has an arrow $e: Z^Y \times Y \to Z$. (For any object X with an arrow $f: X \times Y \to Z$, there is a unique arrow $g: X \to Z^Y$ such that $f = e \circ (g \times id_Y)$)

- In programs, the exponential type is a function type Y o Z, the arrow is function application $h: Y o Z, y: Y \vdash h \ y: Z$.
- Currying: $f: X imes Y o Z, \implies g: X o (Y o Z)$
- In logics, the exponential proposition is Y o Z, the arrow is logical implication $(Y o Z)\wedge Ydash Z.$
- Deduction theorem: $X \land Y \vdash Z \implies X \vdash Y \to Z$ Conclusion: $Y \to Z \cong Y \to Z$

Curry-Howard-Lambek correspondence

- Programs and logics are categories
- Terminal object: $unit \cong True$
- Product object: $A imes B \cong P_1 \wedge P_2$
- Exponential object: $Z^Y \cong Y o Z$
- Curry–Howard–Lambek correspondence: a correspondence between programs, logics and cartesian closed category

Cartesian closed category

A category with terminal, product and exponential objects is called a cartesian closed category.

References

- https://zhuanlan.zhihu.com/p/35322455
- https://rocq-prover.org/doc/V8.18.0/refman/language/core/conversion.html ;
- https://cspages.ucalgary.ca/~robin/class/617/projects-10/Subashis.pdf
- Book: category-theory-for-programmers