Conversions and correspondence
BRI 2 Bl S R IR 1

=R TA

What happens in simpl.

Tactic simpl does normalization(reduction) to terms by a series of conversion rules.

? ?
Tactic simpl delta_reductionsql reference_occs pattern_occs“’_j‘l simple_occurrences

r]
2
reference_occs ::= reference | at occs_nums

?

pattern_occs ::= one_term | at occs_nums

Reduces a term to something still readable instead of fully normalizing it. It performs a sort of
|strong normalizationjwith two key differences:

e |t unfolds constants only if they lead to an -reduction, i.e. reducing a match or unfolding a

fixpoint.
* When reducing a constant unfolding to (co)fixpoints, the tactic uses the name of the

constant the (co)fixpoint comes from instead of the (co)fixpoint definition in recursive calls.

Conversion rules

Beta-reduction rule is a conversion rule:

(Az. f) y — flz — y]

Conversion rules can be categorized into:

e Reduction rules: converting a term to a simpler one
* Expansion rules: reverse of reduction rules
* Contraction rules: if a rule is both a reduction and an expansion rule, it is a contraction rule.

Example: Alpha-renaming is a contraction rule.

Conversion rules

Rule Description Example
O-renaming change bound variable names AZ. T — AY. Y
B-reduction apply a function to an argument (Az.z)y =y
7-expansion introduce a function f—=Ax. fx

d—-reduction
(-reduction

L—-reduction

unfold a defined term
unfold a local definition

unfold a constant(fix, match...)

defa=b;a — b
leta =binc— cla > b

fix fz=b fy— blx — y]

Conversion rules: Example

Try it your self!

-

Goal 1+ 1=2.
cbv delta.

cbv fix.

cbv beta.

cbv match.
cbv fix.

cbv beta.

cbv match.
reflexivity.

Conversion rules and Simpl.

® simpl iS a smarter tactic than cbv xxx because it knows how to apply conversion rules in a
flexible way.

e Consider the following example, direct application of conversion rules makes the output
complex.

= vGoal (1)
Lemma test : forall n, Sn+ 0 =S (n+0). s
35 n : nat
Proof.
intros. S
cbv delta. ((fix add (n@ m : nat) {struct n@} : nat :=
. match n@® with
cbv iota. 0 =>mn
cbv beta. | Sp=>5 (add p m)
cbv iota. end) n
reflexivity. . 0) =

((fix add (n@ m : nat) {struct n@} : nat :=
match n@ with
| @ =>m
. | Sp=>S (add p m)
end) n
Q)

Conversion rules and Simpl.

* simpl basically works similar to a call-by—name way, so its output are simpler.

—ia

= vGoal (1)
Lemma test : forall n, Sn+ 0 =S (n+0). = n : nat
Proof.
intros. S(n+0)=5(n+ 0)
simpl.
reflexivity. » Messages (0)

Conversion rules : Extensions

Q Definitional Equality

Equality(reflexivity) is determined by converting both terms to a normal form, then verifying they are
syntactically equal with respect to alpha-renaming.

2

v/ Eta—expansion

Different from other conversion rules, eta—expansion doesn't hold by default in Coq. It is a special
case of functional extensionality axiom.

Vig, Ve, fe=gx— f=9) = Vff= . fz

Q@ Thinking Question

What about eta—-reduction?

Curry-Howard-Lambek correspondence

We already know the Curry—-Howard correspondence, which is a correspondence between
proofs and programs. But we can view it from a categorized perspective...

Logic side Programming side
universal quantification | dependent product type
existential quantification dependent sum type

implication function type

conjunction product type
disjunction sum type

true formula unit type

false formula bottom type

Category

A category is a collection of objects and arrows between them. There are three basic properties:

e |dentity: for each object A, there is an identity arrow id,4 : A — A.

e Composition: for any two arrows f: A — B and g: B — C, there is a composition arrow
gof:A—C.
e Associativity: (hog)o f=ho(go f)

Programs and logics in category

Programs is a category Logics is a category

e Objects: types T' e Objects: propositions P

e Arrows: functions f: T — T e Arrows: proofs P+ P’

e |dentity: identity function \z. x e |dentity: identity proof P - P

e Composition: function composition g o f * Composition: proof composition

* Associativity: function composition is (P P) A (P2 b Ps) = (P Ps)
associative e Associativity: proof composition is

associative

Terminal object

A terminal object is an object that has exactly one arrow from any other object to it.

* |n programs, the terminal object is unit type. The only function from any type to unit is the
constant function that returns unit.

* |n logics, the terminal object is True proposition. The only proof from any proposition to True
is to apply 1.

Conclusion: unit = T'rue

Product object

A product of two objects A and B is an object A x B that has two arrows 7,7 to A and B.
(For any object C' with two arrows p, g to A and B, there is a unique arrow m from C' to A x B
such that p = m; om and ¢ = w3 o m)

* In programs, the product type is a pair (A, B) with two projections A(a,b).a and A(a,b).d.
e In logics, the product proposition is P; A Py with two projections P; A P, = P; and
P; N Py = Ps.

Conclusion: A x B>~ P; A\ P,
Int

-
‘-r‘r-o
=

—

(i1t Bool)

4 }‘o
hﬁ' Bool

O~

Exponential object

An exponential of two objects Y and Z is an object ZY that has anarrowe: Z¥ xY — Z.
(For any object X with an arrow f: X x Y — Z, there is a unique arrow g : X — Z?¥ such that

fZBO(gXidy))

e In programs, the exponential type is a function type Y — Z, the arrow is function application
h:Y—>Zy:YFhy:Z

e Currying: f: X XY 2, — g: X — (Y = 2)

* In logics, the exponential proposition is Y — Z, the arrow is logical implication
Y —->2Z2)ANYFZ

e Deduction theorem: XAY +HZ — X+FY — Z
Conclusion: Y - Z2Y — Z

Z’xY ———— Z
e 14»16

Curry-Howard-Lambek correspondence

* Programs and logics are categories
e Terminal object: unit = True

e Product object: A x B~ P; \ Py

e Exponential object: Z¥ =Y — Z

e Curry—-Howard-Lambek correspondence: a correspondence between programs, logics and
cartesian closed category

@ Cartesian closed category

A category with terminal, product and exponential objects is called a cartesian closed category.

References

® https://zhuanlan.zhihu.com/p/35322455 #
® https://rocq-prover.org/doc/V8.18.0/refman/language/core/conversion.html s
® https://cspages.ucalgary.ca/~robin/class/617/projects—10/Subashis.pdf #

* Book: category-theory—for—-programmers

https://zhuanlan.zhihu.com/p/35322455
https://rocq-prover.org/doc/V8.18.0/refman/language/core/conversion.html
https://cspages.ucalgary.ca/~robin/class/617/projects-10/Subashis.pdf

