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Well-founded recursion
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Coq's termination of fixpoints
Coq's keyword Fixpoint is used to define recursive functions, and we know that the recursive

functions are defined to ensure that the recursion terminates. In fact, we will learn that this is

guaranteed by the well-founded recursion principle.

Well-founded relation in math means that there is no infinite descending chain of elements.

Eg. < is a well-founded relation, but = is not. An inductive data and its components are also

well-founded.

In Coq, the parameters of the recursive function are required to be well-founded so that the

recursive function invocation terminates.

well_founded = fun (A : Type) (R : A -> A -> Prop) => forall a : A, Acc R a
     : forall [A : Type], (A -> A -> Prop) -> Prop

Inductive Acc (A0 : Type) (R : A0 -> A0 -> Prop) (x : A0) : Prop :=
    Acc_intro : (forall y : A0, R y x -> Acc R y) -> Acc R x.
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When fixpoint definition fails
Normally when we define a Fixpoint function, coq will check if its parameters are well-founded,

but most of the time, this relation can be infered from the parameters automatically.

The default well-founded relation is a structural decrease over one of the parameters. For the

mergesort function below, however, the default well-founded relation inference failed.

Variable A : Type.
Variable le : A -> A -> bool.
Fixpoint insert (x : A) (ls : list A) : list A := ...
Fixpoint merge (ls1 ls2 : list A) : list A := ...
Fixpoint split (ls : list A) : list A * list A := ...
Fail Fixpoint mergeSort (ls : list A) : list A :=
    match ls with
    | nil => nil
    | h :: nil => h :: nil
    | _ => let lss := split ls in
            merge (mergeSort (fst lss)) (mergeSort (snd lss))
    end.

4 1 7



How to "truly" define a fixpoint function?

When we use Fixpoint, we actually called the combinator Fix, which is defined as:

If we want to define the mergesort above, we have to manually provide all the parameters to the

Fix combinator, which is a bit tedious.
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Definition and proof for the well-founded relation

Definition lengthOrder (ls1 ls2 : list A) :=
length ls1 < length ls2.

Lemma lengthOrder_wf' : forall len, forall ls, length ls <= len -> Acc lengthOrder ls.
Proof.
unfold lengthOrder; induction len.
- intros. destruct ls.
    + constructor. intros. inversion H0.
    + inversion H.
- intros. constructor. intros. apply IHlen. lia.
Qed.

Theorem lengthOrder_wf : well_founded lengthOrder.
Proof.
red. intro. eapply lengthOrder_wf'. eauto.
Qed.
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Define the mergesort function

Lemma split_wf1 : forall ls, 2 <= length ls -> lengthOrder (fst (split ls)) ls.
Admitted.
Lemma split_wf2 : forall ls, 2 <= length ls -> lengthOrder (snd (split ls)) ls.
Admitted.

Definition mergeSort : list A -> list A.
refine (Fix lengthOrder_wf (fun _ => list A)
(fun (ls : list A)(mergeSort : forall (ls':list A), lengthOrder ls' ls -> list A) => 
    if le_lt_dec 2 (length ls) 
        then let lss := split ls in
            merge (mergeSort (fst lss) _) (mergeSort (snd lss) _) 
        else ls)); subst lss.
- apply split_wf1. assumption.
- apply split_wf2. assumption.
Defined.
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Conclusion
To manually define a fixpoint function, we need to:

Define a relation less-than

Prove that the relation less-than is well-founded

Define the function using the Fix combinator

Prove that all the parameters in the recursive function calls are less-than the original

parameters.

In fact, in reality, people don't prefer the manual definition method. They think up a few tricks

to make one of the parameters structurally decrease, so that coq can infer the well-founded

relation automatically.

https://github.com/WouterSchols/Coq_Quiksort 

https://softwarefoundations.cis.upenn.edu/vfa-current/Merge.html 

8 1 7

https://github.com/WouterSchols/Coq_Quiksort
https://softwarefoundations.cis.upenn.edu/vfa-current/Merge.html


Why a prop can be eliminated only to build
another prop
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Starting from a question...
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Go back to the derivation of type theory!
The Russell Paradox tells us that mathematical objects should be constructed carefully.

Scientists constructed the set theory and the type theory to avoid all kinds of mathematical

paradoxes.

Set theory:

ZF, ZFC

NBG

...

Type theory:

Hindley Milner type theory,

Martin-Löf type theory,

Calculus of constructions, Calculus of Inductive Constructions

...
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Calculus of Inductive Constructions(CIC)

Type theory is a formal system in which we reason about if term has a type: 

In coq, we struggle to present a proof has a type p/proves some prop p

In STLC which we will learn in the following leasons, we will design typing rules for various

terms and types.(In fact, stlc is very close to the well-known Hindley-Milner type system,

plus a let-polymorphism)

CIC is a well-known type theory, which has several key differences from naive type theory:

It has dependent types, which are types that depend on values

It has inductive types, which are types that are defined by their constructors

It has a universe hierarchy, which is a collection of types

It has an impredicative universe Prop
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Coq universe hierarchy
In modern type theories, we view everything as a term(has a type), including types themselves.

Type hierarchy is proposed to avoid paradoxes in self-references like .

Set: the type of small types

Prop: the type of propositions

Type: the type of types

Type@i: the type of types at level i, 
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Predicative vs Impredicative
Predicative: a type can only be defined with quantilization over smaller types.

Impredicative: a type can be defined with quantilization over all types including itself.
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Inconsistency triangle

There is an inconsistency triangle in type theory:

 impredicative + large elimination + excluded middle → inconsistency

We need to reserve the space for excluded middle for mathematical reasoning.

Set chooses to preserve large elimination and live in the predicative world.

Prop chooses impredicativity and give up large elimination.
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Prop: small elimination
Large elimination means we can use datas to construct results in a larger universe, like

Small elimination means we can only use datas to construct results in the same universe, like

Prop is a small universe, which means we can only use a prop to construct results in Prop, like

 is forbidden.

Small elimination prevents us from leaking abstract/logical information to the

concrete/computational world, thus avoiding paradoxes.

Conclusion: a prop can only be eliminated to build another prop → start from a proof, we

can only build another proof.
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