
Range Fixes and Their Application on
Software Configuration

Yingfei Xiong, Peking University, 2012

Based on an ICSE’12 paper with
Arnaud Hubaux (U. Namur),

Steven She and Krzysztof Czarnekci (U. Waterloo)

1

We produce errors everyday

2

We use fixes everyday

3

How much do we know about fixes?

• How much are fixes needed?

• What fixes are desirable?

• Can we generate fixes automatically?

4

Study domain: operating system
configuration

Variability ModelsVariability ModelsVariability Models

Configuration

Linux Kconfig,

eCos CDL,

…

5

eCos Configurator - Errors

6

Contributions

• How much are fixes needed?

– A survey revealing manual fixes take minutes

• What fixes are desirable?

– A new type of fix, range fix, and evaluated
desirable properties of fixes

• Can we generate fixes automatically?

– An algorithm generating range fixes in tens of
milliseconds

7

How much are fixes needed?

A survey showing manual fixes take
minutes

8

Survey

• 97 Linux users and 9 eCos users

• Resolving a violation is hard

– 20% Linux users need "a few dozen minutes" to
resolve a violation in average

– 56% eCos users consider violation resolution to be
a problem

9

What fixes are desirable?

A new type of fixes, range fixes, and
evaluated desirable properties

10

eCos Configurator

eCos configurator has built-in fixes

11

Fix Incompleteness

78% eCos users have ecountered situations where the proposed fix is not useful

Increase
to any value >= 10

Further decrease
to any value <= 8

Disable

12

How to complete fixes

PreloadSize = 8

PreloadSize = 7

PreloadSize = 6

PreloadSize = 5

…

PoolSize = 10

PoolSize = 11

PoolSize = 12

PoolSize = 13

…

Preload = false

13

Our Proposal – Range Fixes

[PreloadSize <= 8]

[PoolSize >= 10]

[Preload = false]

14

Fix Generation Problem
– a General Definition

Fix GeneratorAssigned Values

Typed Variables

A logic constraint

A complete set of

desirable fixes

Preload:Bool
PreloadSize:Int
PoolSize:Int

Preload = true
PreloadSize = 10
PoolSize = 8

Preload → PreloadSize <= PoolSize

[PreloadSize <= 8]
[PoolSize >= 10]
[Preload = false]

15

Desired Properties of Fixes
Correctness Minimality of

variables
Maximality of
ranges

Any change
represented by a
range fix will
satisfy the
constraint

There is no way
to change a
subset of
variables to
satisfy the
constraint

A range fix
represents the
maximal ranges
over the
variables

A desirable one: [PreloadSize <=8]

Undesirable ones

[PreloadSize <= 9] [PreloadSize <=8,
Preload = false]

[PreloadSize <=7]

16

Constraint Interaction

[PreloadSize <= 8]

[PoolSize >= 10]

[Preload = false]

17

Constraint Interaction

Increase
PoolSize

Causing another error

Interacting constraint

18

Three Strategies

• Ignorance

• Elimination

• Propagation

• Summarized from existing approaches

19

Propagation Strategy

[PreloadSize <= 8]

[PoolSize >= 10 & BufferSize = PoolSize / 2]

[PoolSize >= 10 & ObjectSize = 4096 / PoolSize]

[Preload = false]

Make a conjunction of all satisfied
constraints plus the violated one

20

Preload → PreloadSize <= PoolSize /\
PoolSize == BufferSize * 1024 / ObjectSize

Evaluation

• Source
– Version histories from 5 open source projects

• Steps
– Compare each pair of consecutive versions

– Replay the user changes in different orders

– Generate fixes for the violations and compare with
user changes

21

Results

• Coverage of User changes: 100%

• Complexity of fix lists

– measured by adding up the number of variables in
each fix

– Median: 2

– Maximum: 58

– 83% of the fix lists contain less than 10 variables

22

Can we generate fixes automatically?

An algorithm generating range fixes
in tens of milliseconds

23

Interface of our algorithm

Fix Generation

Algorithm
Assigned Values

Typed Variables

A logic constraint

A complete set of

desirable fixes

Preload:Bool
PreloadSize:Int
PoolSize:Int

Preload = true
PreloadSize = 10
PoolSize = 8

Preload → PreloadSize <= PoolSize

[PreloadSize <= 8]
[PoolSize >= 10]
[Preload = false]

24

Algorithm Outline

• Step 1: find the variables to change
– Basic idea: translating to an SMT proble

1. treat configurations also as constraints

2. ask an SMT solver for unsatisfiable cores

3. combine the unsatisfiable cores

• Step 2: find the range of the variables
– Basic idea: simplify the constraint

1. replace unchangeable variables with their current
values

2. simplify the constraint and convert to CNF

25

Performance of the algorithm

• Published results

– Average: 50ms

– Maximum: 250ms

• We have recently improved the performance

26

Thank you for your attention!

EccFixer: http://gsd.uwaterloo.ca/eccfixer

27

