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We produce errors everyday
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We use fixes everyday 
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How much do we know about fixes?

• How much are fixes needed?

• What fixes are desirable?

• Can we generate fixes automatically?
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Study domain: operating system 
configuration

Variability ModelsVariability ModelsVariability Models

Configuration

Linux Kconfig, 

eCos CDL, 

…
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eCos Configurator - Errors
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Contributions

• How much are fixes needed?

– A survey revealing manual fixes take minutes

• What fixes are desirable?

– A new type of fix, range fix, and evaluated 
desirable properties of fixes

• Can we generate fixes automatically?

– An algorithm generating range fixes in tens of 
milliseconds
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How much are fixes needed?

A survey showing manual fixes take 
minutes
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Survey

• 97 Linux users and 9 eCos users

• Resolving a violation is hard

– 20% Linux users need "a few dozen minutes" to 
resolve a violation in average

– 56% eCos users consider violation resolution to be 
a problem
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What fixes are desirable?

A new type of fixes, range fixes, and 
evaluated desirable properties
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eCos Configurator

eCos configurator has built-in fixes
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Fix Incompleteness

78% eCos users have ecountered situations where the proposed fix is not useful

Increase 
to any value >= 10

Further decrease
to any value <= 8

Disable
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How to complete fixes

PreloadSize = 8

PreloadSize = 7

PreloadSize = 6

PreloadSize = 5

…

PoolSize = 10

PoolSize = 11

PoolSize = 12

PoolSize = 13

…

Preload = false
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Our Proposal – Range Fixes

[PreloadSize <= 8]

[PoolSize >= 10]

[Preload = false]
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Fix Generation Problem 
– a General Definition

Fix GeneratorAssigned Values

Typed Variables

A logic constraint

A complete set of 

desirable fixes

Preload:Bool
PreloadSize:Int
PoolSize:Int

Preload = true
PreloadSize = 10
PoolSize = 8

Preload → PreloadSize <= PoolSize

[PreloadSize <= 8]
[PoolSize >= 10]
[Preload = false]
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Desired Properties of Fixes
Correctness Minimality of 

variables
Maximality of 
ranges

Any change 
represented by a 
range fix will 
satisfy the 
constraint

There is no way 
to change a 
subset of 
variables to 
satisfy the 
constraint

A range fix 
represents the 
maximal ranges 
over the 
variables

A desirable one:  [PreloadSize <=8]

Undesirable ones

[PreloadSize <= 9] [PreloadSize <=8,
Preload = false]

[PreloadSize <=7]
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Constraint Interaction

[PreloadSize <= 8]

[PoolSize >= 10]

[Preload = false]
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Constraint Interaction

Increase 
PoolSize

Causing another error

Interacting constraint
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Three Strategies

• Ignorance

• Elimination

• Propagation

• Summarized from existing approaches
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Propagation Strategy

[PreloadSize <= 8]

[PoolSize >= 10 & BufferSize = PoolSize / 2]

[PoolSize >= 10 & ObjectSize = 4096 / PoolSize]

[Preload = false]

Make a conjunction of all satisfied 
constraints plus the violated one
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Preload → PreloadSize <= PoolSize /\
PoolSize == BufferSize * 1024 / ObjectSize



Evaluation

• Source
– Version histories from 5 open source projects

• Steps
– Compare each pair of consecutive versions

– Replay the user changes in different orders

– Generate fixes for the violations and compare with 
user changes

21



Results

• Coverage of User changes: 100%

• Complexity of fix lists

– measured by adding up the number of variables in 
each fix

– Median: 2

– Maximum: 58

– 83% of the fix lists contain less than 10 variables
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Can we generate fixes automatically?

An algorithm generating range fixes 
in tens of milliseconds
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Interface of our algorithm

Fix Generation 

Algorithm
Assigned Values

Typed Variables

A logic constraint

A complete set of 

desirable fixes

Preload:Bool
PreloadSize:Int
PoolSize:Int

Preload = true
PreloadSize = 10
PoolSize = 8

Preload → PreloadSize <= PoolSize

[PreloadSize <= 8]
[PoolSize >= 10]
[Preload = false]
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Algorithm Outline

• Step 1: find the variables to change
– Basic idea: translating to an SMT proble

1. treat configurations also as constraints

2. ask an SMT solver for unsatisfiable cores

3. combine the unsatisfiable cores

• Step 2: find the range of the variables
– Basic idea: simplify the constraint

1. replace unchangeable variables with their current 
values

2. simplify the constraint and convert to CNF
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Performance of the algorithm

• Published results

– Average: 50ms

– Maximum: 250ms

• We have recently improved the performance
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Thank you for your attention!

EccFixer: http://gsd.uwaterloo.ca/eccfixer
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