
Automatic Memory-Leak 
Fixing for C Programs
Qing Gao, Yingfei Xiong, Lu Zhang, Bing Xie, Hong Mei

Peking University

2013-12-21

1



Outline

2

Memory Leak1

Existing work2

Approach33

Experiments34

Discussion35



Memory Leak

 A program consumes memory but is unable 
to release it

3



Memory leak [Clause and Orso, 2010]

 Difficult to detect by testing

 Potential to impact multiple applications

 Common even in mature applications

4



Outline

5

Memory Leak1

Existing work2

Approach33

Experiments34

Discussion35



 Static detection:

 False positives 

 Dynamic detection

 Runtime overhead

 Programmers need to check programs to fix 
leaks

 Need some time 

 Correctness is not ensured

Existing work-
Memory leak detection

6



Existing work-
Dynamic pinpointing

 Need to run program

 Instrument nearly every instruction and 
overhead is high

 Programmers still need to check programs

7



Existing work-
Compile-time object deallocation
 Focus on Java bytecode

 May lead to double free

 May lead to unreadable code

 Cannot make sure whether a leak has been 
completely fixed

8



Outline

9

Memory Leak1

Existing work2

Approach33

Experiments34

Discussion35



Correct fix definition

 A location in the code to insert “free(p)” 
where for any path covers this location

 Pointer p points to an allocated chunk at the 
location (allocation and its reference)

 There is no other deallocation statements that 
release the memory (no double frees)

 There is no reference to the memory after the 
execution (no use after free)

10



Approach overview

 Building A-CFG

 Memory leak detection

 Memory Leak fixing

 Map A-CFG to code

11



Building A-CFG 

 A-CFG: Allocation-centric Control Flow 
Graph

 Transformed from CFG (control flow graph)

 Have no cycles (no loops)

 Abstract information only related to memory 
management

12



Building A-CFG 

 Input: CFG

13



Building A-CFG

 Output: A-CFG

 Node type:

 Normal

 Allocation

 Node label:

 Dealloc: definite/possible

 Ref: possible

 Edge label: pointer set
14



Building A-CFG 

 Inter-procedure analysis

 Build procedure summaries

 Method m with parameters p0, ..., pn

Sj : what *pj will point to 

Fj : whether pj is freed

 May and Must summaries

 Map summaries to A-CFG nodes

15



Memory Leak 
Detection

 Classify the edges 

by deallocation:

 Blue: definitely reachable

 Yellow: possibly reachable

 Red: unreachable

16



Memory Leak 
Detection

 Classify the edges 

by deallocation:

 Blue: definitely reachable

 Yellow: possibly reachable

 Red: unreachable

17



Memory leak fixing

 Fix on edges whose 

pointer set is not empty:
 allocation and its references

 Fix on red edges: 
 no double free

 Traverse backwardly:
 no use after free

1818



Outline

19

Memory Leak1

Existing work2

Approach33

Experiments34

Discussion35



Experiment

 RQ1: How effective is our tool in fixing real-
world memory leaks?

 RQ2: What are the execution time and 
memory consumption of our tool for 
memory leak fixing?

20



Experiment

 Benchmark: SPEC2000

 Used by papers related to detection

21



Experimental Results

 Effectiveness

22



Leaks reported by detection 
tools

23



Experimental Results

 Efficiency

24



Experimental Results

 Efficiency (cont.)

25



Example bugs

26



Example bugs

27



Outline

28

Memory Leak1

Existing work2

Approach33

Experiments34

Discussion35



Discussion

 Handling loops

 Loops are handled independently

 Unnecessary fixes

 Related Allocations

 free(p->q) v.s. free(p)

 Minimal number of fixes

29



Thanks！

30


