
Automatic Memory-Leak 
Fixing for C Programs
Qing Gao, Yingfei Xiong, Lu Zhang, Bing Xie, Hong Mei

Peking University

2013-12-21

1



Outline

2

Memory Leak1

Existing work2

Approach33

Experiments34

Discussion35



Memory Leak

 A program consumes memory but is unable 
to release it

3



Memory leak [Clause and Orso, 2010]

 Difficult to detect by testing

 Potential to impact multiple applications

 Common even in mature applications

4



Outline

5

Memory Leak1

Existing work2

Approach33

Experiments34

Discussion35



 Static detection:

 False positives 

 Dynamic detection

 Runtime overhead

 Programmers need to check programs to fix 
leaks

 Need some time 

 Correctness is not ensured

Existing work-
Memory leak detection

6



Existing work-
Dynamic pinpointing

 Need to run program

 Instrument nearly every instruction and 
overhead is high

 Programmers still need to check programs

7



Existing work-
Compile-time object deallocation
 Focus on Java bytecode

 May lead to double free

 May lead to unreadable code

 Cannot make sure whether a leak has been 
completely fixed

8



Outline

9

Memory Leak1

Existing work2

Approach33

Experiments34

Discussion35



Correct fix definition

 A location in the code to insert “free(p)” 
where for any path covers this location

 Pointer p points to an allocated chunk at the 
location (allocation and its reference)

 There is no other deallocation statements that 
release the memory (no double frees)

 There is no reference to the memory after the 
execution (no use after free)

10



Approach overview

 Building A-CFG

 Memory leak detection

 Memory Leak fixing

 Map A-CFG to code

11



Building A-CFG 

 A-CFG: Allocation-centric Control Flow 
Graph

 Transformed from CFG (control flow graph)

 Have no cycles (no loops)

 Abstract information only related to memory 
management

12



Building A-CFG 

 Input: CFG

13



Building A-CFG

 Output: A-CFG

 Node type:

 Normal

 Allocation

 Node label:

 Dealloc: definite/possible

 Ref: possible

 Edge label: pointer set
14



Building A-CFG 

 Inter-procedure analysis

 Build procedure summaries

 Method m with parameters p0, ..., pn

Sj : what *pj will point to 

Fj : whether pj is freed

 May and Must summaries

 Map summaries to A-CFG nodes

15



Memory Leak 
Detection

 Classify the edges 

by deallocation:

 Blue: definitely reachable

 Yellow: possibly reachable

 Red: unreachable

16



Memory Leak 
Detection

 Classify the edges 

by deallocation:

 Blue: definitely reachable

 Yellow: possibly reachable

 Red: unreachable

17



Memory leak fixing

 Fix on edges whose 

pointer set is not empty:
 allocation and its references

 Fix on red edges: 
 no double free

 Traverse backwardly:
 no use after free

1818



Outline

19

Memory Leak1

Existing work2

Approach33

Experiments34

Discussion35



Experiment

 RQ1: How effective is our tool in fixing real-
world memory leaks?

 RQ2: What are the execution time and 
memory consumption of our tool for 
memory leak fixing?

20



Experiment

 Benchmark: SPEC2000

 Used by papers related to detection

21



Experimental Results

 Effectiveness

22



Leaks reported by detection 
tools

23



Experimental Results

 Efficiency

24



Experimental Results

 Efficiency (cont.)

25



Example bugs

26



Example bugs

27



Outline

28

Memory Leak1

Existing work2

Approach33

Experiments34

Discussion35



Discussion

 Handling loops

 Loops are handled independently

 Unnecessary fixes

 Related Allocations

 free(p->q) v.s. free(p)

 Minimal number of fixes

29



Thanks！

30


