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Memory Leak

 A program consumes memory but is unable 
to release it
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Memory leak [Clause and Orso, 2010]

 Difficult to detect by testing

 Potential to impact multiple applications

 Common even in mature applications
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 Static detection:

 False positives 

 Dynamic detection

 Runtime overhead

 Programmers need to check programs to fix 
leaks

 Need some time 

 Correctness is not ensured

Existing work-
Memory leak detection
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Existing work-
Dynamic pinpointing

 Need to run program

 Instrument nearly every instruction and 
overhead is high

 Programmers still need to check programs
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Existing work-
Compile-time object deallocation
 Focus on Java bytecode

 May lead to double free

 May lead to unreadable code

 Cannot make sure whether a leak has been 
completely fixed
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Correct fix definition

 A location in the code to insert “free(p)” 
where for any path covers this location

 Pointer p points to an allocated chunk at the 
location (allocation and its reference)

 There is no other deallocation statements that 
release the memory (no double frees)

 There is no reference to the memory after the 
execution (no use after free)
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Approach overview

 Building A-CFG

 Memory leak detection

 Memory Leak fixing

 Map A-CFG to code
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Building A-CFG 

 A-CFG: Allocation-centric Control Flow 
Graph

 Transformed from CFG (control flow graph)

 Have no cycles (no loops)

 Abstract information only related to memory 
management
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Building A-CFG 

 Input: CFG
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Building A-CFG

 Output: A-CFG

 Node type:

 Normal

 Allocation

 Node label:

 Dealloc: definite/possible

 Ref: possible

 Edge label: pointer set
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Building A-CFG 

 Inter-procedure analysis

 Build procedure summaries

 Method m with parameters p0, ..., pn

Sj : what *pj will point to 

Fj : whether pj is freed

 May and Must summaries

 Map summaries to A-CFG nodes
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Memory Leak 
Detection

 Classify the edges 

by deallocation:

 Blue: definitely reachable

 Yellow: possibly reachable

 Red: unreachable
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Memory Leak 
Detection

 Classify the edges 

by deallocation:

 Blue: definitely reachable

 Yellow: possibly reachable

 Red: unreachable
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Memory leak fixing

 Fix on edges whose 

pointer set is not empty:
 allocation and its references

 Fix on red edges: 
 no double free

 Traverse backwardly:
 no use after free
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Experiment

 RQ1: How effective is our tool in fixing real-
world memory leaks?

 RQ2: What are the execution time and 
memory consumption of our tool for 
memory leak fixing?
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Experiment

 Benchmark: SPEC2000

 Used by papers related to detection
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Experimental Results

 Effectiveness

22



Leaks reported by detection 
tools
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Experimental Results

 Efficiency
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Experimental Results

 Efficiency (cont.)
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Example bugs
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Example bugs
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Discussion

 Handling loops

 Loops are handled independently

 Unnecessary fixes

 Related Allocations

 free(p->q) v.s. free(p)

 Minimal number of fixes
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Thanks！
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