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Memory Leak

 A program consumes memory but is unable 
to release it
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Memory leak [Clause and Orso, 2010]

 Difficult to detect by testing

 Potential to impact multiple applications

 Common even in mature applications
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 Static detection:

 False positives 

 Dynamic detection

 Runtime overhead

 Programmers need to check programs to fix 
leaks

 Need some time 

 Correctness is not ensured

Existing work-
Memory leak detection
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Existing work-
Dynamic pinpointing

 Need to run program

 Instrument nearly every instruction and 
overhead is high

 Programmers still need to check programs
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Existing work-
Compile-time object deallocation
 Focus on Java bytecode

 May lead to double free

 May lead to unreadable code

 Cannot make sure whether a leak has been 
completely fixed
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Correct fix definition

 A location in the code to insert “free(p)” 
where for any path covers this location

 Pointer p points to an allocated chunk at the 
location (allocation and its reference)

 There is no other deallocation statements that 
release the memory (no double frees)

 There is no reference to the memory after the 
execution (no use after free)
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Approach overview

 Building A-CFG

 Memory leak detection

 Memory Leak fixing

 Map A-CFG to code
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Building A-CFG 

 A-CFG: Allocation-centric Control Flow 
Graph

 Transformed from CFG (control flow graph)

 Have no cycles (no loops)

 Abstract information only related to memory 
management
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Building A-CFG 

 Input: CFG
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Building A-CFG

 Output: A-CFG

 Node type:

 Normal

 Allocation

 Node label:

 Dealloc: definite/possible

 Ref: possible

 Edge label: pointer set
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Building A-CFG 

 Inter-procedure analysis

 Build procedure summaries

 Method m with parameters p0, ..., pn

Sj : what *pj will point to 

Fj : whether pj is freed

 May and Must summaries

 Map summaries to A-CFG nodes
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Memory Leak 
Detection

 Classify the edges 

by deallocation:

 Blue: definitely reachable

 Yellow: possibly reachable

 Red: unreachable
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Memory Leak 
Detection

 Classify the edges 

by deallocation:

 Blue: definitely reachable

 Yellow: possibly reachable

 Red: unreachable
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Memory leak fixing

 Fix on edges whose 

pointer set is not empty:
 allocation and its references

 Fix on red edges: 
 no double free

 Traverse backwardly:
 no use after free
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Experiment

 RQ1: How effective is our tool in fixing real-
world memory leaks?

 RQ2: What are the execution time and 
memory consumption of our tool for 
memory leak fixing?
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Experiment

 Benchmark: SPEC2000

 Used by papers related to detection
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Experimental Results

 Effectiveness
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Leaks reported by detection 
tools
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Experimental Results

 Efficiency
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Experimental Results

 Efficiency (cont.)
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Example bugs
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Example bugs
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Discussion

 Handling loops

 Loops are handled independently

 Unnecessary fixes

 Related Allocations

 free(p->q) v.s. free(p)

 Minimal number of fixes
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Thanks！
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