
Interactive fixes for software
configuration

Yingfei Xiong, Peking University

Cooperation with:

2013

Peking University Bo Wang, Hansheng Zhang, Jie Wang,
Haiyan Zhao, Wei Zhang

University of Waterloo Leonardo Passos, Steven She, Krzysztof Czarnecki

University of Namur Arnaud Hubaux

北京大学软件工程研究所

• 国内最早开展软件工程研究、规模最大、
最有影响力的软件工程研究团队

• 院士三名（含双聘一名），博士生导师10
名，硕士生导师13名

• 在软件工程顶级会议发表论文数占大陆总
数约三分之二

• 获得ACM SIGSOFT杰出论文奖三次，大陆共
获奖四次，香港共获奖一次

北京大学软件工程研究所

• 多名来自大连理工的优秀同学

–吴倩， 2008级博士

• 从事软件数据挖掘领域研究

• 已经在WWW等多个顶级
会议上发表论文

–黎萱，2012级博士

• 读研一年已经在缺陷解释上做出出色工作

• 投稿到软件工程顶级会议ICSE上

• 带她们向母校老师同学问好！

Variability Models & Configurators

Variability ModelsVariability ModelsVariability Models

Configuration

Linux Kconfig,
eCos CDL,
pure::variants,
…

4

eCos Configurator - Errors

5

eCos Configurator - Inactive Options

6

disabled

Error resolution and option activation both need to resolve violation of constraint.

Survey

• 97 Linux users and 9 eCos users

• Resolving a violation is hard

– 20% Linux users need "a few dozen minutes" to
activate an option in average

– 56% eCos users consider activation to be a
problem

7

eCos Configurator

Essentially, fixes work for both resolving errors and activating options

8

Fix Incompleteness

78% eCos users have ecountered situations where the proposed fix is not useful

Increase
to any value >= 10

Further decrease
to any value <= 8

Disable

9

How to complete fixes

PreloadSize = 8
PreloadSize = 7
PreloadSize = 6
PreloadSize = 5
…
PoolSize = 10
PoolSize = 11
PoolSize = 12
PoolSize = 13
…
Preload = false

10

Our Solution – Range Fixes

[PreloadSize <= 8]
[PoolSize >= 10]
[Preload = false]

11

Our Contributions

• Defining the range fix generation problem

– Three desirable properties of range fixes

• Proposing a range fix generation algorithm

• Exploring the constraint interaction problem

– Summarizing and adapting three strategies used in
existing work

– Comparing the strategies empirically

12

Fix Generation Problem
– a General Definition

Fix GeneratorAssigned Values

Typed Variables

A logic constraint

A complete set of
desirable fixes

Preload:Bool
PreloadSize:Int
PoolSize:Int

Preload = true
PreloadSize = 10
PoolSize = 8

Preload → PreloadSize <= PoolSize

[PreloadSize <= 8]
[PoolSize >= 10]
[Preload = false]

13

Desired Properties of Fixes
Correctness Minimality of

variables
Maximality of
ranges

Any change
represented by a
range fix will
satisfy the
constraint

There is no way
to change a
subset of
variables to
satisfy the
constraint

A range fix
represents the
maximal ranges
over the
variables

A desirable one: [PreloadSize <=8]

Undesirable ones

[PreloadSize <= 9] [PreloadSize <=8,
Preload = false]

[PreloadSize <=7]

14

Algorithm Outline

• Step 1: find the variables to change
– Basic idea: translating to an SMT problem

① treat configurations also as soft constraints
1. [soft] Preload = true

2. [soft] PreloadSize = 10

3. [soft] PoolSize = 8

4. [hard] Preload → PreloadSize <= PoolSize

② ask an SMT solver for unsatisfiable cores
– (1, 2, 3)

③ pick one variable from each core
– {Preload}, {PreloadSize}, {PoolSize}

15

Algorithm Outline

• Step 2: find the range of the variables

– Basic idea: simplify the constraint

• Example: {PreloadSize}

① replace unchangeable variables with their current
values
– true → PreloadSize <= 8

② simplify the constraint and convert to CNF
– [PreloadSize <= 8]

Constraint Interaction

[PreloadSize <= 8]
[PoolSize >= 10]
[Preload = false]

17

Constraint Interaction

Increase
PoolSize

Causing another error

Interacting constraint

18

Ignorance

[PreloadSize <= 8]
[PoolSize >= 10]
[Preload = false]

Ignore the interaction

19

Elimination

[PreloadSize <= 8]
[PoolSize >= 10]
[Preload = false]

Eliminate all changes that will violate
other constraints

20

Propagation

[PreloadSize <= 8]
[PoolSize >= 10 & BufferSize = PoolSize / 2]
[PoolSize >= 10 & ObjectSize = 4096 / PoolSize]
[Preload = false]

Propagate the change along other
constraints

21

Translating to the basic case

• Assignments: Preload = true, PreloadSize = 10, PoolSize = 8,
BufferSize = 4, ObjectSize = 512

• Constraints:
– Preload → PreloadSize <= PoolSize
– PoolSize == BufferSize * 1024 / ObjectSize

• Ignorance:
– Preload → PreloadSize <= PoolSize

• Elimination:
– Preload -> PreloadSize <= PoolSize /\ PoolSize == 4 * 1024 / 512

• Propagation:
– Preload → PreloadSize <= PoolSize /\ PoolSize == BufferSize *

1024 / ObjectSize

Comparison of Strategies

Ignorance Elimination Propagtion

Execution time Shortest Short Possbily long

Complexity of fix
lists Simple Simplest Possibly complex

Introduction of new
errors Possible Never Never

Fix completeness
Complete

(for one constraint)
Incomplete

Complete
(for all constraints)

23

Experiments

• Source
– Version histories from 5 open source projects

• Steps
– Compare each pair of consecutive versions

– Replay the user changes in different orders

– Generate fixes for the violations and compare with
user changes

24

Execution Time

Ignorance Elimination Propagtion

Execution time
Average: 17ms

Maximum: 20ms
Average: 20ms

Maximum: 30ms
Average: 50ms

Maximum: 250ms

Complexity of fix
lists Simple Simplest Possibly complex

Introduction of new
errors Possible Never Never

Fix completeness
Complete

(for one constraint)
Incomplete

Complete
(for all constraints)

Our algorithm is sufficiently fast for each strategy
25

Complexity of fix lists

Ignorance Elimination Propagtion

Execution time
Average: 17ms

Maximum: 20ms
Average: 20ms

Maximum: 30ms
Average: 50ms

Maximum: 250ms

Complexity of fix
lists (Number of
variables in a list)

Max: 4
Median: 2

Average: 2.2

Max: 4
Median: 2

Average: 1.64

Max: 58
Median: 2

Average: 8.0

Introduction of new
errors Possible Never Never

Fix completeness
Complete

(for one constraint)
Incomplete

Complete
(for all constraints)

In propagation, 83% of the fix lists contain less than 10 variables
26

Introduction of new errors

Ignorance Elimination Propagtion

Execution time
Average: 17ms

Maximum: 20ms
Average: 20ms

Maximum: 30ms
Average: 50ms

Maximum: 250ms

Complexity of fix
lists (Number of
variables in a list)

Max: 4
Median: 2

Average: 2.2

Max: 4
Median: 2

Average: 1.64

Max: 58
Median: 2

Average: 8.0

Introduction of new
errors 44% of all violations Never Never

Fix completeness
Complete

(for one constraint)
Incomplete

Complete
(for all constraints)

27

Fix completeness

Ignorance Elimination Propagtion

Execution time
Average: 17ms

Maximum: 20ms
Average: 20ms

Maximum: 30ms
Average: 50ms

Maximum: 250ms

Complexity of fix
lists (Number of
variables in a list)

Max: 4
Median: 2

Average: 2.2

Max: 4
Median: 2

Average: 1.64

Max: 58
Median: 2

Average: 8.0

Introduction of new
errors 44% of all violations Never Never

Fix completeness
(coverage of user
changes)

100% 57% 100%

eCos configurator: 73%
28

Problem: Large Fixes

Ignorance Elimination Propagtion

Execution time
Average: 17ms

Maximum: 20ms
Average: 20ms

Maximum: 30ms
Average: 50ms

Maximum: 250ms

Complexity of fix
lists (Number of
variables in a list)

Max: 4
Median: 2

Average: 2.2

Max: 4
Median: 2

Average: 1.64

Max: 58
Median: 2

Average: 8.0

Introduction of new
errors Possible Never Never

Fix completeness
Complete

(for one constraint)
Incomplete

Complete
(for all constraints)

In propagation, 83% of the fix lists contain less than 10 variables
29

How to guide the users to
identify their desirable fixes?

Our Solution

• Use the idea of priority
– The priority of a variable represents the likelihood

of its current value being desirable to the user.

• Two Basic ideas:
– Generate fixes that only change variables with

lower priorities

– Dynamically adjust the priority of variables
through implicit translation of user feedback

Our Contribution

• A priority-based approach to locating a
desirable fix through user feedbacks

• An algorithm to implement the approach
using any fix generation algorithm

• An empirical evaluation that shows the overall
reduction of choices exposed to the user

Our Contribution

• A priority-based approach to locating a
desirable fix through user feedbacks

• An algorithm to implement the approach
using any fix generation algorithm

• An empirical evaluation that shows the overall
reduction of choices exposed to the user

Our Approach

[PreloadSize <= 8]

Showing only one
fix to the user

Provide feedback for each variable

• Accept the change (and pick a value)

• Reject the change

– Fix duration

• Current range is incorrect, future fixes can propose changes
for this variable

– Error duration

• Current value is correct when fixing this error

– Permanent duration

• Current value is correct in the whole configuration process

Our Approach

[PreloadSize <= 8]

Reject with Fix
Duration

Our Approach

[PoolSize >= 10 & BufferSize = PoolSize / 2]

Accept with
PoolSize = 16

Reject with Error
Duration

Our Approach

ObjectSize = 256

Accept

The user feedbacks are stored so that later fixes will be smarter.

Our Contribution

• A priority-based approach to locating a
desirable fix through user feedbacks

• An algorithm to implement the approach
using any fix generation algorithm

• An empirical evaluation that shows the overall
reduction of choices exposed to the user

Algorithm Overview

Each variable is assigned a priority, initially zero.

Recommend a fix

• Use a threshold to confine the fix generation
scope

– Variables are changeable only when priority <=
threshold.

– Constraint [variable = current_value] is added for
variables whose priority > threshold

0 ∞Priority

Threshold 5

v1 v2 v3

Recommend a fix

• Initial threshold for an error = 1

• Invoke the fix generator

– Randomly pick one fix from the generated fix list

– Threshold += 1 if no fix is generated

0 ∞Priority

Threshold 2 3

v1 v2 v3

0 1

Adjust Priorities

• New value is assigned
– priority = 0

• Reject with Fix duration
– priority +=1

• Reject with Error duration
– priority binds to <threshold> +1

– will be updated when threshold increases

• Reject with Permanent duration
– priority = <max>

Handling No fixes

• Provide users with the variables with error and
permanent durations

• Users should change the durations

Our Contribution

• A priority-based approach to locating a
desirable fix through user feedbacks

• An algorithm to implement the approach
using any fix generation algorithm

• An empirical evaluation that shows the overall
reduction of choices exposed to the user

Supporting Tool: Smart Fixer

Smart Fixer: providing feedbacks

Evaluation

• Sources
– Version history from 2 open source projects that

cause large fix lists

– Simulate the user change from the default
configurations to the final configurations

Evaluations
• Steps:

– Generate a fix for each error, simulate the user
feedback

– Count the number of fixes and variables

Situation # Current Value Fix Changes Final Value Operation

1 a = 1 a < 1 a = 2
Reject

Fix duration

2 a = 1 a >1 a = 2
Accept

Assign new value

2s a = 2 a > 2 a = 2
Reject

Error duration

Evaluation Results – virtex4 (1/2)

The number of fixes is decreased in 31% of the errors.
In average, there is a reduction of 22%, with a maximum reduction
of 89% in the number of fixes

Evaluation Results – virtex4 (2/2)

The number of variables is decreased by 23% in average, with
a maximum reduction of 98%

Evaluation Results – xilinx (1/2)

The number of fixes is decreased in 28% of the errors.
In average, there is a reduction of 16%, with a maximum
reduction of 2/3 in the number of fixes

Evaluation Results - xilinx (2/2)

The number of variables is decreased by 18% in average,
with a maximum reduction of 86%

Summary

• Error Resolution is difficult in configuring large
systems

• Range fixes can be generated efficiently

• Large fix list could be controlled by priorities

Thank you for your attention!

• References:
• Yingfei Xiong, Arnaud Hubaux, Steven She, Krzysztof Czarnecki. Generating

Range Fixes for Software Configuration. In ICSE'12: Proceedings of 34th
International Conference on Software Engineering, pages 89-99, June 2012.

• Bo Wang, Leonardo Passos, Yingfei Xiong, Krzysztof Czarnecki, Haiyan Zhao,
Wei Zhang. SmartFixer: Fixing Software Configurations based on Self-
adaptive Priorities. In SPLC'13: Proceedings of 17th International Software
Product Line Conference, August 2013.

• Arnaud Hubaux, Yingfei Xiong, Krzysztof Czarnecki. A User Survey of
Configuration Challenges in Linux and eCos. VaMoS'12: Sixth International
Workshop on Variability Modelling of Software-intensive Systems, January
2012.

• Leonardo Passos, Marko Novakovic, Yingfei Xiong, Thorsten Berger,
Krzysztof Czarnecki, Andrzej Wasowski. A Study of Non-Boolean
Constraints in Variability Models of an Embedded Operating System.
FOSD'11: 3rd International Workshop on Feature-Oriented Software
Development, June 2011.

