
An Empirical Comparison of 
Compiler Testing Techniques



报告人介绍 –熊英飞

• 2000~2004，电子科技大学本科

• 2004~2006，北京大学研究生
– 导师：梅宏、杨芙清

• 2006~2009，日本东京大学博士
– 导师：胡振江、武市正人

• 2009~2011，加拿大滑铁卢大学博士后
– 导师：Krzysztof Czarnecki

• 2012~，北京大学“百人计划”研究员

• 研究方向：软件分析、编程语言设计



北京大学软件工程研究所

• 国内最早开展软件工程研究、规模最大、
最有影响力的软件工程研究团队

• 院士三名（含双聘一名），博士生导师10
名，硕士生导师13名

• 在软件工程顶级会议发表论文数为大陆第
一名

• 发表了中国大陆第一篇ICSE，第一篇FSE，
第一个CCF A类会议上的杰出/最佳论文奖



Compilers are important!

Operating System

Compiler

App Safe-critical System

……



Buggy Compilers

• Unintended behaviors of developed programs
• Increased debugging difficulty
• ……

Harmful!!!



Compiler Testing
--- guaranteeing compiler quality 

Compiler

Test Input

Expected Output

Execute

Actual Output

Compare

revealed faults no revealed 
faults

Test Case

Software Testing Process

Test Oracle



Test Oracle
---One Challenge in Compiler Testing

Execute

Compiler

Test Input

Expected Output Actual Output

Compare

revealed faults no revealed 
faults

Test Case

Software Testing Process

Test Oracle



Compiler Testing Techniques

RDT[1] DOL EMI[2]

[1] W. M. McKeeman. Differential testing for software. Digital Technical Journal, 1998.
[2] V. Le, M. Afshari, Z. Su. Compiler validation via equivalence modulo inputs, PLDI, 2014.



Randomized Differential Testing

RDT[1]

[1] W. M. McKeeman. Differential testing for software. Digital Technical Journal, 1998.

• Assume different compilers are implemented 
based on the same specification

• Detect bugs by comparing the outputs of these 
compilers for the same test program

Test Oracle:
≥2 comparable compilers



Different Optimization Levels
--- variant of RDT

RDT[1] DOL

[1] W. M. McKeeman. Differential testing for software. Digital Technical Journal, 1998.

Compare the output of one 
compiler at different 
optimization levels for 
the same test program

Test Oracle:
A compiler with 
various 
optimization levels



Equivalence Modulo Inputs

EMI[2]

[2] V. Le, M. Afshari, Z. Su. Compiler validation via equivalence modulo inputs, PLDI, 2014.

• Comparison between a test program and its 
variants whose behaviors are regarded as 
equivalent under a set of test inputs for this 
test program

main(){
int x=1;
if(x==1) 

printf(“x=1”);
if(x==2)
printf(“x=2”);
…

}

main(){
int x=1;
if(x==1) 

printf(“x=1”);
if(x==2)
printf(“x=2”);
…

} QiP

Test Oracle:
Program and its variants with equivalent 
behaviors under some test inputs



Systematic and Comprehensive 
Empirical Comparison

RDT[1] DOL EMI[2]

[1] W. M. McKeeman. Differential testing for software. Digital Technical Journal, 1998.
[2] V. Le, M. Afshari, Z. Su. Compiler validation via equivalence modulo inputs, PLDI, 2014.

Widely used 
in practice

Which 
is 

better?



Measurement

Ideal: 
number of detected bugs 

• Number of bugs manually identified

Scalability Problem

• Number of test programs triggering bugs

Highly Inaccurate

Two Alternative Measurements



Correcting Commits
For any test program triggering a bug of a compiler C 
whose commit version is x (e.g., V0)

• check subsequent commits of the compiler and 
determine which commit corrects the bug.

Same Bug:
• the version triggering the bug---

depth-first algorithm 
• the version correcting the bug---

binary search algorithm



Study Design

GCC 4.4.3 LLVM 2.6 (Clang)

RDT[1] DOL EMI[2]



Four Studies

1.Measurement 
Comparison

2.Technique 
Comparison

3.Factor Impact
4.Optimization 

Influence

Empirical Studies on Compiler Testing



Study 1:
Measurement Comparison

manually check five commits of GCC, each of 
which fixes only one GCC bug

Finding 1: (on measurement)
• Number of test programs triggering bugs is inaccurate 
• Number of correcting commits is necessary



Study 2: 
Effectiveness Comparison

number of 
detected bugs

number of bugs detected
per 10 hours

time to detect
the first bug



Study 2: 
Effectiveness Comparison

number of 
detected bugs

number of bugs detected
per 10 hours

time to detect
the first bug

Finding 2: 
• DOL seems to be the most effective at detecting GCC bugs
• RDT seems to be the most effective at detecting LLVM bugs



Study 2: 
Substitutability Comparison

• Unique Bugs: bugs detected by only one compiler testing technique
• More unique bugs less substitutable

Finding 3: 
• DOL: more effective at detecting GCC unique bugs
• RDT: more effective at detecting LLVM unique bugs
• RDT can be substituted by DOL completely in detecting GCC bugs



Study 2: 
Optimization-Related/Irrelevant Bugs 

• optimization-related bugs: bugs detected through DOL
• optimization-irrelevant bugs: otherwise

Finding 4: 
• Optimization-related bugs: DOL seems to be more effective
• Optimization-irrelevant bugs: RDT seems to be more effective
• GCC may have more optimization-related bugs



Study 3: 
Impact of Efficiency

• Efficiency: #test programs being tested given a fixed period of time

Finding 5: 
DOL is the most efficient, whereas EMI is the least efficient one



Study 3: 
Strength of test oracles

• Strength of test oracles: given the same test programs, which 
technique detects more bugs?

Finding 6: 
• RDT and DOL oracles are stronger than EMI oracle.
• RDT oracle is not weaker than DOL oracle.



Study 3: 
Effectiveness of generated test programs

• Effectiveness of generated test programs:
• randomly generated programs 
• variants generated by EMI

Finding 7: 
Variants generated by EMI are less effective than randomly 
generated programs by CSmith, but they are a complement to 
randomly generated programs.



Study 3: 
Statistical Analysis

• Efficiency
• Strength of test oracles
• Effectiveness of generated test programs

Finding 8: 
• All the three factors have statistically significant impact
• Efficiency has the most significant impact
• The effectiveness of generated test programs has the least 

significant impact.



Study 4: 
Influence of Optimization Levels

Finding 9:
As some compiler bugs are only triggered by lower optimization 
levels alone, it is necessary to test a compiler with various 
optimization levels.



Conclusions



Thank You


