An Empirical Comparison of
Compiler Testing Techniques

R AT - REge |

2000~2004,
2004~2006,

J6 3 K2 5 A

- S M. B

2006~2009,

b TR A AR

| —a

H AR IR 5K S 18

— 5. SR, KT IEA
2009~2011, IHEREFE: - RFEHE LG
— JMi: Krzysztof Czarnecki
2012~, JEHRUKZF “H AR BEAR R
WEFC TR AR M dRAEiE S Wit

_a

JE B R 22 T AR 0T 75

=

H N HFEIT R TR T . I K.
1 A s M)) A AR 5T [DA

i =2 (ZXE—4) , HEERIN10
%, Wit+A4 5 If1344

EZ#:EW%%W&%%Y%%%%%
E%Ttﬂﬂ H—SCSE,
ZE—NCCF AZR = FHIANH /B

— B3 FSE,
ERP 4

Compilers are important!

Operating System App Safe-critical System

Buggy Compilers

Harmful!!!

* Unintended behaviors of developed programs (
* Increased debugging difficulty

Compiler Testing
--- guaranteeing compiler quality

 Compiler |
— T e

i

| Expected Output]é\ [Actual Output }
Test Case /

Test Oracle revealed faults}revealed
faults

Software Testing Process

Test Oracle
---One Challenge in Compiler Testing

00000000 : AD) DC 00-4D

00000010 00 00-B8
00000020 00 4 00-00
00000030 : = 0 00 s 00 00 00-00

. 00000040: € 00 00-00 00 00 00-E8 00 00 00-OF 1F
Compller \ 00000050: 00 B4 09 CD-21 B8 01 4C 54 68-69 73 20
00000060: 72 ¢ 2-61 6D 20 6: 6E 6F -7k .
00000070 ; V. . 6E 2 3 20-6D

00000080 :) y) 00-2f

00000090: 60 3 : 3 3 EB-D7 F9 ¢
000000AD: 6 B - EB-73 B6 EB-74 E
000000B0 : ; 3)F EB-2R B6 EB-A9 BY
FEEEEEEEEEEEEEEEEEEEY. 000000C0 ; 8 5L EB-6A B
00000000 : EB-74
4 000000ED : 3 K] : EB-00 0

000000F0 : 00-50 41 C 3 00-B8 2

TeSt Input 00000100) -0 00 23 01-0B

Actual Output

Expected Output

Test Case

gn #n #m #n @ #m #= #n 8 #m is = m @ ® m 2

Compare

Test Oracle revealed faultskrevealed
faults

Software Testing Process

Compiler Testing Techniques

RDTI]

DOL

EMI[2]

Compare 0y, **+, 0,

0; is different from most of
{0y, ==+, 0.}, 1<i=n

(C; has bug(s))

C—o0 Col [... | | C-on
_I_J
|
—
E, F2 :_| E,
I.I
|
—d—y
0 0 l 1| o,
1 2 L .

Compare 0y, **+, 0,

0; is different from most of
{0g, =+, 04}, 1<Si<n

(C; has bug(s))

Q Q2 | Qn
_
— —
- —
—
C
— — —__r-‘_-_ —
EP E; Eg I_'" | Ej
| | | B
r — /
Op 0; 0, | 0,
I_/_
—
—

Compare each pair of Op and 0. 1=;i<n)

0; is different from O;

[1] W. M. McKeeman. Differential testing for software. Digital Technical Journal, 1998.

[2] V. Le, M. Afshari, Z. Su. Compiler validation via equivalence modulo inputs, PLDI, 2014.

Randomized Differential Testing

RDTI]

G

[}
o
[}

[g2]
[\
e

Compare 0y, **+, 0,

0; is different from most of]
{0y, ==+, 0.}, 1<i=n

(C; has bug(s))

Assume different compilers are implemented
based on the same specification

Detect bugs by comparing the outputs of these
compilers for the same test program

Test Oracle:
=2 comparable compilers

[1] W. M. McKeeman. Differential testing for software. Digital Technical Journal, 1998.

Different Optimization Levels
--- variant of RDT

RDTI! DOL

\fCompare the output of one\
compiler at different

optimization levels for
the same test program

J
Compare 0y, **=, 0, Compare 0, -+, 0, f \
0; is different from most of] 0; is different from most of TeSt OraC]-e:
{0, ==+, 0.}, 1<<i<n {0q, ==, 0.}, 1<i<<n A Compi]_er With
(C; has bug(s)) (C: has bug(s)) .
various
optimization levels
\P Y,

[1] W. M. McKeeman. Differential testing for software. Digital Technical Journal, 1998.

Equivalence Modulo Inputs

 Comparison between a test program and its
variants whose behaviors are regarded as
equivalent under a set of test inputs for this
test program

main(){ main(){

int x=1; int x=1;
if(x==1) if(x==1)
printf(“x=1"); printf(“x=1");
if(x==2) if(x==2)
printf(“x=2"); HEH e

} P } Q

[
Test Oracle:
Program and its variants with equivalent

behaviors under some test inputs
1\

~

EMIL2]
F, I
_“-.“‘-.
=
S—
r_-__|
O Q2 - | Qn
_
-
——
~ —
—

C
— ‘T‘—“— —

EP E; Eg '"| Ej

-
N I e
Op 0, 0; e | Oy
Lf;,__
—
_—
Compare each pair of Op and 0; (1=;=<y)

0; is different from O;

J

[2] V. Le, M. Afshari, Z. Su. Compiler validation via equivalence modulo inputs, PLDI, 2014.

Systematic and Comprehensive
Empirical Comparison

RDT]

DOL

-

P, T
\
\
_A__|
L N e
71— |

Cy C-

“) Widely used
_ in practice

01 I_

/
Z

Compare 0y, **+, 0,

0; is different fro
{01, ==+, 04}, 1=:

~

@

\
\

—_-
T

Which

is

better?

| Compar. up, "

-

0; is different from most of
{0g, =+, 04}, 1<Si<n

(Ci has bug(s))

EMI2] \‘
\

F, I
Q Q2 rl__-_ | Qn

—

C

E r—- E |

"I LPLDI 2014 | L7

| . = |

Op 0; 0, I_ | 0, |

- -

—

Compare each pair of Op and 0. 1=;i<n)

& (C; has bug(s))

0r is different from

[1] W. M. McKeeman. Differential testing for software. Digital Technical Journal, 1998.

[2] V. Le, M. Afshari, Z. Su. Compiler validation via equivalence modulo inputs, PLDI, 2014.

Measurement

e —— —
> Ideal: <
number of detected bugs |

U

-

~

Two Alternative Measurements

* Number of bugs manually identified

g Scalability Problem

* Number of test programs triggering bugs

g Highly Inaccurate

.

~/

A New Measurement

34
L L

Correcting Commits

For any test program triggering a bug of a compiler C
whose commit version is x (e.g., VO)

* check subsequent commits of the compiler and
determine which commit corrects the bug.

- .
/ Same Bug: \
* the version triggering the bug--- v
depth-first algorithm v2
* the version correcting the bug--- v3
\ binary search algorithm / va

Study Design

Rincilude “stdio.n"
AR BRI .

BdeFin p; 1o wstaio.n”

Winc1uad CYPEU| SRR ararypEy int

smamni (OATATI Gactine MAXSIZE 100

#define typedef struct
Rinclud ¢ o odes)s;::u: {DATATYPE1 datas[MAXSIZE];
vierind <oaTaTvH 2’“ s: int last;
Eypede YSEQUENLIST;
cohrany ySEQUEN void main()

void mail { SEQUENLIST la;

(sEq int k;int t;
ISEQUEN scanf("%d",kla.last);
void ny For(k=0;k<1a.last;ke++)
{ seEq scanf(“%d",tla.datas[k]);

For(k=0;k<la.last/2;k++)

{ t=la.datas[K];

T la.datas[k]=la.datas[la.last-k-1];
la.datas[la.last-k-1]=t;

T T T

Ta.datas[k]-1a.datas[la.last-k-1]; |

la.datas[1a.last-k-1]=t;

RDTI! DOL EMI(2]

‘ 90 hours

GCC4.4.3 LLVM 2.6 (Clang)

Four Studies

1.Measurement
Comparison

2.Technique
Comparison

4.0ptimization

3.Factor Impact Influence

Empirical Studies on Compiler Testing

Study 1:

Measurement Comparison

accuracy of the number of test programs

Table 1: Number of Test Programs Triggering Bugs

Bug

Ist | 2nd | 3rd | 4th | 5th

Test Programs Tr

iggering Bugs | 17 1 1 1 BT7

manually check five commits of GCC, each of
which fixes only one GCC bug

Finding 1: (on measurement)
Number of test programs triggering bugs is inaccurate

Number of corre

cting commits is necessary

Study 2:
Effectiveness Comparison

number of Table 2: Effectiveness Comparison

detected bUgS Compilers Detected Bugs Test Programs that
Trigger Bugs

RDT | EMI | DOL RDT | EMI | DOL
GCC 12 12 18 422 492 954
LLVM 14 4 13 =201 6 54
TOTAL 26 16 31 1,223 498 | 1,008
F=-RDT 15---RDT
number of bugs detected 20w -
per 10 hours § s g,
£ =
z 2 s
o
GI_T_IIIIIIIIIIIIIII L I I I A Y O O B
10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
Time (h) Time (h)
(a) GCC (b) LLVM
time to detect Table 3: Time to Detect the First Bug (seconds)
the first bug Compilers | RDT EMI DOL
GCC 116 978 84

LLVM 34 | 17,571 | 11,363

Study 2:
Effectiveness Comparison

number of Table 2: Effectiveness Comparison
detected bUgS Compilers Detected Bugs Test Programs that
Trigger Bugs
RDT | EMI | DOL || RDT | EMI | DOL
GCC 12 12 18 422 492 954
LIVM 14 4 13 801 6 54
TOTAL 26 16 31 1,223 498 | 1,008

EespnT ar—{---DNT

Finding 2:
* DOL seems to be the most effective at detecting GCC bugs
* RDT seems to be the most effective at detecting LLVM bugs

/ ST
GI_T_IJIIIIIIIIIIIIIII L I B I O O AL UL
10 20 30 40 50 G0 70 80 90 10 20 30 40 50 60 70 80 90
Time (h) Time (h)
(a) GCC (b) LLVM
time to detect Table 3: Time to Detect the First Bug (seconds)
the first bug Compilers | RDT EMI DOL
GCC 116 978 84

LLVM 34 | 17,57 11,363

Study 2:
Substitutability Comparison

* Unique Bugs: bugs detected by only one compiler testing technique
* More unique bugs = less substitutable

RDT RDT

DOL

EMI . DOL EMI

(a) GCC (b) LLVM

Finding 3:

 DOL: more effective at detecting GCC unique bugs

* RDT: more effective at detecting LLVM unique bugs

* RDT can be substituted by DOL completely in detecting GCC bugs

Study 2:
Optimization-Related/Irrelevant Bugs

e optimization-related bugs: bugs detected through DOL
e optimization-irrelevant bugs: otherwise

Table 4: Comparison on Optimization-Related Bugs
and Optimization-Irrelevant Bugs

Bugs Optimization-Related Optimization-Irrelevant
RDT | EMI DOL RDT | EMI DOL
GCC 12 12 18 0 0 0
LILVM 9 4 13 5 0 0
TOTAL 21 16 31 5 0 0
Finding 4:

 Optimization-related bugs: DOL seems to be more effective
e Optimization-irrelevant bugs: RDT seems to be more effective
 GCC may have more optimization-related bugs

Study 3:
Impact of Efficiency

Efficiency: #test programs being tested given a fixed period of time

Table 5: Number of Test Programs Used During the

Experimental Period

Compilers | RDT EMI DOL
GCC 27,990 | 4,794 | 62,552
LILVM 27,990 | 5,040 | 64,385

Finding 5:
DOL is the most efficient, whereas EMI is the least efficient one

Study 3:
Strength of test oracles

* Strength of test oracles: given the same test programs, which
technique detects more bugs?

Table 6: Strength of Test Oracles
Compilers Detected Bugs Unique Bugs
RDT | EMI | DOL || RDT | EMI | DOL

GCC

18

12

18

0

0

0

LLVM

16

4

10

6

0

0

Total

34

16

28

6

0

0

Finding 6:

 RDT and DOL oracles are stronger than EMI oracle.
* RDT oracle is not weaker than DOL oracle.

Study 3:
Effectiveness of generated test programs

Effectiveness of generated test programs:
* randomly generated programs
* variants generated by EMI
Table 7: Effectiveness of Generated Test Programs
Compilers RDT DOL
Random | Variant Random | Variant
GCC Bugs 11 8 11 8
LIVM Bugs 9 G 4 2
GCC Unique Bugs G 3 6 3
LIVM Unique Bugs 5 2 3 1
Finding 7:

Variants generated by EMI are less effective than randomly
generated programs by CSmith, but they are a complement to
randomly generated programs.

Study 3:
Statistical Analysis

* Efficiency
* Strength of test oracles
* Effectiveness of generated test programs

Factors Sig
Test Oracle (RDT v.s. DOL) 0.041
Program (Random wv.s. Variant) 0
Efficiency 0
Test Oracle (EMI v.s. RDT) 0
Test Oracle (EMI v.s. DOL) 0.002
Efficiency 0

Finding 8:

* All the three factors have statistically significant impact

* Efficiency has the most significant impact

* The effectiveness of generated test programs has the least
significant impact.

Study 4:

-
en
|
[y

3
VLI B B

Number of Bugs
Number of Bugs

l'.r

-0s -0s&01 -01 -0n&02 -02 -028-03 -03
Optimization Levels

l:r

-0z -0s&01 -O1 -01&02 -02 -028-03 -03
Optimization Levels

(a) GCC (b) LLVM

Finding 9:
As some compiler bugs are only triggered by lower optimization
levels alone, it is necessary to test a compiler with various

optimization levels.

Conclusions

Compilers are important!

Compiler

Operating System App Safe-critical System

Compiler Testing Techniques

[1]'W. M. McKeeman. Differential testing for software. Digital Technical Journal, 1938.
[2] V. Le, M. Afshari, Z. Su. Compiler validation via equivalence modulo inputs, PLDI, 2014,

Correcting Commits

For any test program triggering a bug of a compiler C

whose commit version is x (e.g., VO)

* check subsequent commits of the compiler and
determine which commit corrects the bug.

____________ S—
Same Bug:
+ the version triggering the bug--- vl
depth-first algorithm vz
* the version correcting the bug--- va
binary search algorithm va
VS

Four Studies

4.0ptimization
Influence

2.Technique

1.Measurement
Comparison

Comparison

Thank You

