
Patl: Safe Program Transformation between APIs
with Many-to-Many Mappings

Yingfei Xiong

Peking University

API change is common!

• New APIs are released to replace older ones.

• Migrate a program to another platform.

• Discontinued API support.

Switch the use of old APIs to new ones!

Compatible API change

Client

Program
API 1

Client

Program

compatible API 2

API 2

Incompatible API change

Client

Program
API 1

Client

Program

API 2incompatible

API 2

Solution: Adapting Client Program

Client

Program
API 1 API 2incompatible

API 2

Client

Program’

Adaptation

Client

Program’

Adapting Client Program: Not easy

Client

Program

Client

Program’

Adaptation

No bug
Still
readable

Adapting Client Program

Client

Program

Client

Program’

Adaptation

Transformation languages support:

• Specify transformation with rules.

• API users view:

• A tool to automatically adapt the client program.

• Adapted programs should be correct and readable.

• API developers view:

• How to develop such transformation tools easily?



Existing language support

• General purpose transformation languages:
• Stratego [1], TXL [2]

• Pro: expressive

• Con: not specialized for API adaptation task, low-level

• API adaptation domain specific languages:
• SWIN [3], Twinning [4]

• Pro: specialized, ease-to-use

• Con: captures only one-to-many mappings, less expressive

How can we help support many-to-many transformations?

Many-to-Many (M-to-M) transformation

• Definition: Match a sequence of statements in the
source program, substitute them with another
sequence of statements.

• E.g. (Swing to SWT)

• Basic transformation: match and substitute.

M-to-M transformation

Challenge:

The source sequence can appear in many different forms in the
client program.

• Match them with the rules.  (SmPL [5])

• Transform them safely.  (Our approach)

Insight: guided-normalization

Transformation rule writer only need to consider basic transformation!!

Guided-normalization

• Normalize the source program

• Semantics-preserving.

• Touch less unrelated statements.

• Matched statements appear consecutively after
normalization.

• Preliminary: Program analysis

• Analyze dependency and alias relations in the program to
ensure normalization will not go wrong.

Our transformation pipeline: Patl

Π: transformation rules.
𝑝: client program to be transformed.
𝑀: match instances
𝑝′: normalized program.
𝑝′′: transformed program with new API use.

−−−⟶

−−−⟶

𝑝 −−−⟶ 𝑝′ −−−⟶ 𝑝′′
𝑀

Guided

normalization

Basic

transformation

Π, 𝑝 −−−⟶ 𝑀
Match

Guided-Normalization

𝑝 −−−⟶ 𝑝′ −−−⟶ 𝑝′′
𝑀

Guided

normalization

Basic

transformation

Π, 𝑝 −−−⟶ 𝑀
Match

• Guided-shift

• Make statements matched by a rule appear in the same block.

• Guided-rename

• Make aliases in these statements have the same name.

• Guided-reorder

• Make matched statements appear consecutively

𝑝 −→ 𝑝1 −→ 𝑝2 −⟶ 𝑝′
shift rename reorder

Guided-normalization: example

Guided-shift

• If matched statements appear in different blocks,
shift them into basic blocks.

Guided-Rename

• Aliases in matched statements are renamed to have
the same names.

Guided-reorder

• Reorder matched statements so that they appear
consecutively.

Rename

Guided-normalization: Safety

• How to ensure normalization is semantics-preserving?

• Semantics-preserving transformation primitives:

• Primitive shift

• Primitive swap

• Primitive left-value renaming

• Primitive right-value renaming

• Fresh-variable introducing

• Safety: guided-normalization can be decomposed into
transformation primitives. (Proof in the paper!)

Commonly used

in compiler

optimization

Warnings in transformation

• Guided-normalization is not always applicable:

• Dependency may be violated.

x = y.a();

if (x) {

y.b(x);

}

if (x) {

x = y.a();

y.b(x);

}

• Our system will generate warnings in such cases
rather than silently making mistakes.

x = y.a();

Send(x, y);

y.b(x);

x = y.a();

y.b(x);

Send(x, y);

Evaluation

• Q1: How important is guided-normalization in
transforming programs between APIs?

• Q2: How many cases cannot be handled by our
approach?

• Q3: How many warnings will be generated in real
world cases?

Evaluation: set-up

• Three real-world cases:

• Jdom Dom4J

• Google calendar v2  v3

• Swing  SWT

• Six open source projects using these APIs.

Evaluation: result

Evaluation: result

Empirically, Patl is ease-to-use! 

An example not handled by Patl

Involves

transforming

across a ‘for’

statement

Limitations

• Solves only statement level transformation, not
class level transformation.

• E.g. Inheritance from an old API class.

• Does not model synchronization in transformation.

• E.g. A method may change from synchronized to
unsynchronized.

Conclusion

• Guided-normalization helps enhance transformation
language support to solve M-to-M transformation
programs in API adaptation.

• Guided-normalization:

• Safe: semantics-preserving.

• Help ease transformation tool developing.

References

[1] Composing source-to-source data-flow transformations with rewriting strategies
and dependent dynamic rewrite rules. K. Olmos and E. Visser. In CC, pages 204–
220, 2005.

[2] The TXL Source Transformation Language. J. R. Cordy. Sci. Comput. Program.,
pages 190–210, 2006.

[3] Using Twinning to Adapt Programs to Alternative APIs. M. Nita and D. Notkin.
In ICSE, pages 205–214, 2010.

[4] SWIN: Towards Type-Safe Java Program Adaptation Between APIs. J. Li, C.
Wang, Y. Xiong, and Z. Hu. In PEPM, pages 91–102, 2015.

[5] Documenting and Automating Collateral Evolutions in Linux Device Drivers. Y.
Padioleau, J. Lawall, R. R. Hansen, and G. Muller. In EuroSys, pages 247–260,
2008.

