
Precise Program Repair

Yingfei Xiong

Peking University

Background of Yingfei Xiong

• 2000~2004，UESTC, Undergraduate

• 2004~2006，Peking University, Graduate
• Adivsor: Hong Mei, Fuqing Yang

• 2006~2009，The University of Tokyo, Ph.D.
• Advisor: Zhenjiang Hu, Masato Takeichi

• 2009~2011，University of Waterloo, PostDoc
• Supervisor：Krzysztof Czarnecki

• 2012~，Peking University, Assistant Professor under
Young Talents Plan

• Research Interests
• Software Analysis, Program Language Design

Origin

• “War. War never changes” – Fallout series
• The war between developers and bugs never changes

• Fault Detection: Is there a bug?
• Since 60s
• Example Techniques：Testing, Verification

• Fault Localization: Where is the bug?
• Since 90s
• Example Techniques：Spectrum-based fault localization

• Fault Repair: How to fix the program?
• Since 00s
• Example Techniques：Test-based Program Repair

3

“Generate-Validate”
Program Repair

4

Fault Localization

Patch Generation

Patch Validation

Input: a program and a set of tests, where the program fails
at least one test
Output: a patch that makes the program pass all the tests

Existing Work

• GenProg
• [Weimer et al.: ICSE’09, GECCO’09, CACM’10, ICSE’12]

• Approach
• Replace the potentially faulty code with code pieces elsewhere

• Use search algorithm to find an optimal combination

• Results: 55/105，8$/bug

• Inspired a wave of program repair research
• AutoFix, Nopol, RSRepair, MintHint, AutoRepair, SemFix,

DirectFix, SPR…

5

A Turning Point

• [Qi-ISSTA’15]
• Only 2 among the 55 defects were correctly fixed by GenProg

• Reason: passing the test does not guarantee correctness

• [Le Goues-FSE’15]
• Extensive experiments on more methods, datasets, test suites

• The finding still holds

• Other work
• Prophet, Angelix

• The precision (proportion of correct patches) is lower than
40%

6

Our Work

Learn from QA sites
[ASE15]

Precise Condition Repair
[ICSE17]

High Precision Defect Repair

[ASE15] Qing Gao, Hansheng Zhang, Jie Wang, Yingfei Xiong, Lu Zhang, Hong Mei. Fixing Recurring Crash Bugs via
Analyzing Q&A Sites. ASE'15
[ICSE17] Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang Huang, Lu Zhang. Precise Condition
Synthesis for Program Repair. ICSE'17

Fixing from QA Sites

• How do developers get their experience?

java.lang.RuntimeException: Unable to start receiver
com.vaguehope.onosendai.update.AlarmReceiver:

Fixing from QA Sites

Challenge of Analyzing QA Sites

• It is hard to understand natural languages

• Observation: programmers communicates in
programming languages

• Solution: Directly compare the code pieces

Approach Overview

Experiments

• 24 Android crash bugs that have answers on
StackOverflow
• Selected out of 161 Android crash bugs

• Correctly Fixed：8

• Wrongly Fixed：2

• Precision：80%

• Recall：33% (5% among Android crash bugs)

Precise Condition Synthesis

• Targeted defect class: condition bugs

lcm = Math.abs(a+b);
+ if (lcm == Integer.MIN_Value)
+ throw new ArithmeticException();

Missing boundary checks

- if (hours <= 24)
+ if (hours < 24)

withinOneDay=true;
Conditions too weak or too strong

Condition bugs are common

ACS System

• ACS = Accurate Condition Synthesis

• Two sets of templates for repair

• Inserting one of the following statement before the last
executed statement

• if ($C) throw ${Expected Exception};

• if ($C) return ${Expected Output};

Oracle Returning

• Changing the condition located by predicate switching

• if ($D) => if ($D || $C)

• if ($D) => if ($D && $C)

Condition Modifying

Need to
synthesize
condition $C

Challenge – Many incorrect
conditions pass the tests

Test 1 (Passed):
Input: a = 1, b = 50
Oracle: lcm = 50

Test 2 (Failed):
Input: a = Integer.MIN_VALUE, b = 1
Oracle: Expected(ArithmeticException)

Correct condition:
lcm == Integer.MIN_VALUE

Incorrect conditions:
• a != 1
• b == 1
• lcm != 50
• …

Idea: Rank the Conditions

• Rank potential conditions by their probabilities of being
correct

• Validate the conditions one by one
• Stop validating when the probability is too low

Condition1
95%

Condition2
85%

Condition3
75%

Validate: fail Validate: pass

Idea: Rank the Conditions

Condition1
95%

Condition2
85%

Condition3
75%

Validate: fail Validate: fail Stop

• Rank potential conditions by their probabilities of being
correct

• Validate the conditions one by one
• Stop validating when the probability is too low

Ranking Conditions is Difficult

• The number of potential conditions is large

• Cannot enumerate the conditions

• Difficult to perform statistics: not enough
samples for each condition

Solution: Divide-and-Conquer

lcm == Integer.MIN_VALUE

a != 1

b == 1

lcm != 50

Variables Predicates

Step 1: Rank variables
Step 2: Rank predicates for each variable

Enumerable
Allows

statistics
Enables more refined

ranking techniques

Ranking Method 1:
Rank Variables by Data-Dependency

• Locality of variable uses: recently assigned
variables are more likely to be used

• Rank variables by data-dependency
• lcm = Math.abs(mulAndCheck(a/gdc(a, b), b))

• Consider only variables in the first two levels

lcm

a b Level 2

Level 1

Ranking Method 2:
Filter Variables by JavaDoc

Only variable “initial” is considered when
throwing IllegalArgumentException

Ranking Method 3:
Rank Predicates by Context
• The predicates tested on the variables are related to its context

• Approximate the conditional probabilities by querying GitHub

• Consider only the predicates whose probabilities are larger than
a threshold

Vector v = …;
if (v == null) return 0;

int hours = …;
if (hours < 24)

withinOneDay=true;

int factorial() {
…
if (n < 21) {

…

Variable Type

Variable Name

Method Name

Evaluation: Performance of ACS

Dataset: Four projects from Defects4J benchmark:
• Time, Lang, Math, Chart
• In total 224 defects

Vision

• Long-term Goal: automate programming

• Roadmap: deal with more and more difficult issues
• Issue = bug report + feature requests

Conclusion

• Will program repair be useful in practice?
• Increasing precision is the key

• Can we improve precision?
• Yes, at least for incorrect conditions and crashes

• How can we improve precision?
• By learning from existing resources

