
Towards Trustworthy
Program Repair

Yingfei Xiong, Peking University,

Dagstuhl Seminar, 2017

State of the Art

• Precision =
#𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑅𝑒𝑝𝑎𝑖𝑟𝑒𝑑 𝐷𝑒𝑓𝑒𝑐𝑡𝑠

#𝐴𝑙𝑙 𝐷𝑒𝑓𝑒𝑐𝑡𝑠 𝑤𝑖𝑡ℎ 𝑃𝑎𝑡𝑐ℎ𝑒𝑠

• Recall =
#𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑅𝑒𝑝𝑎𝑖𝑟𝑒𝑑 𝐷𝑒𝑓𝑒𝑐𝑡𝑠

#𝐴𝑙𝑙 𝐷𝑒𝑓𝑒𝑐𝑡𝑠

Name Precision Recall

Prophet 38.5%* 14.3%

Angelix 35.7% 12.2%

HistoricalFix -- 6.4%

* Only the first patch is considered if multiple are generated

State of the Art

The presented approach achieves a precision of
over 70% which is significantly higher than
precisions of previous approaches. The recall figures,
however, are low as for all the other approaches…
This shows that the research on automatic program
repair is still in its infancy. The presented approach
does not change this situation significantly.

From the review of a top SE conference

Decision: Rejection

Crisis of Program Repair

• The precision and recall are too low to promise a
bright future of program repair

• If we cannot change the situation significantly, we
shall be neglected by the academia and industry

Overview

A Study of manual repair [Submitted]

Learn from QA sites
[ASE15]

Precise Condition Synthesis
[ICSE17]

How to improve precision?

Is it possible to improve precision and recall?

[Submitted] Jiajun Jiang, Yingfei Xiong. A Case Study on Manual Repair of Program Defects. Submitted.
[ASE15] Qing Gao, Hansheng Zhang, Jie Wang, Yingfei Xiong, Lu Zhang, Hong Mei. Fixing Recurring Crash Bugs via
Analyzing Q&A Sites. ASE'15
[ICSE17] Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang Huang, Lu Zhang. Precise Condition
Synthesis for Program Repair. ICSE'17

RQ1: Is it possible to improve
precision and recall?
• A developer manually repaired 50

defects from Defects4J

• The settings are the same as repair tools

• If high precision and recall is achieved
• There is hope

• There is a way

Defects4J

Settings
• The developer has access to the source code and

the tests
• The developer is not familiar with the projects
• The developer cannot read the documents
• The developer cannot search project-specific

information on the Internet

Precision: 89.4% Recall: 84.0%

• A lot of rooms to improve under current settings

Reason of Imperfection: the lack of domain knowledge

• We need to break the settings at some point

Average fixing time: 47 minutes

• Automatic program repair is valuable

Manual repair can be summarized into strategies

• Possibility for improving automatic techniques

No single strategy dominates the defects

• We need combine different strategies

Findings and Implications

RQ2: Can we improve precision?

• Why Precision?
• Precision decides the relative cost of using the

technique

• Conjecture: Developers adopt a technique only when
the relative cost is small, i.e., cost << benefit

• How to improve?
• Learn the experience of the developers

Fixing from QA Sites

• How do developers get their experience?

java.lang.RuntimeException: Unable to start receiver
com.vaguehope.onosendai.update.AlarmReceiver:

Fixing from QA Sites

Challenge of Analyzing QA Sites

• It is hard to understand natural languages

• Observation: programmers communicates in
programming languages

• Solution: Directly compare the code pieces

Approach Overview

Experiments

• 24 Android crash bugs that have answers on
StackOverflow
• Selected out of 161 Android crash bugs

• Correctly Fixed：8

• Wrongly Fixed：2

• Precision：80%

• Recall：33% (5% among Android crash bugs)

Precise Condition Synthesis

Condition bugs are very common

lcm = Math.abs(a+b);
+ if (lcm == Integer.MIN_Value)
+ throw new ArithmeticException();

Missing boundary checks

- if (hours <= 24)
+ if (hours < 24)

withinOneDay=true;
Conditions too weak

- if (a > 0)
+ if (a >= 0)

nat++;
Conditions too strong

Challenge – Incorrect Plausible
Patches are Many

Test 1:
Input: a = 1, b = 50
Oracle: lcm = 50

Test 2:
Input: a = Integer.MIN_VALUE, b = 1
Oracle: Expected(ArithmeticException)

Correct condition:
lcm == Integer.MIN_VALUE

Plausible conditions:
• a > 1
• b == 1
• lcm != 50
• …

Exception-throwing Template:
If ($C) throw $E;

$C: a synthesized condition
$E: an expected exception

How to improve precision?

• The generate-validate framework

• Rank potential patches by their probabilities of
being correct

• Existing ranking approaches are too coarse-grained
for conditions
• See paper for a discussion

Generate Validate
Pass

Fail

Ranking Method 1:
Rank Variables by Data-Dependency

• Locality of variable uses: recently assigned variables
are more likely to be used

• Rank variable by data-dependency
• lcm = Math.abs(mulAndCheck(a/gdc(a, b), b))

• lcm > a, lcm > b

Ranking Method 2:
Filter Variables by JavaDoc

Only variable “initial” is considered when
throwing IllegalArgumentException

Ranking Method 3:
Rank Predicates by Context

• The predicate tested on the variables are related to
its context

• Calculate the conditional probabilities from existing
code base

Vector v = …;
if (v == null) return 0;

int hours = …;
if (hours < 24)

withinOneDay=true;

int factorial() {
…
if (n < 21) {

…

Variable Type

Variable Name

Method Name

ACS System

• ACS = Accurate Condition Synthesis

• Two sets of templates for repair

• Inserting one of the following statement before the
statement causing failure

• if ($C) throw $E;

• if ($C) return $O;

Oracle Returning

• Changing the condition located by predicate switching

• if ($D) => if ($D || $C)

• if ($D) => if ($D && $C)

Condition modifying

Evaluation on Defects4J

Conclusion

• Shall we change the current setting?
• We still have a lot of rooms for improvement

• Can we improve precision?
• Yes, at least for condition repair

• How can we improve precision?
• By learning from existing resources

