

A Grammar-Based Structural CNN Decoder for Code Generation

Zeyu Sun, Qihao Zhu, Lili Mou, Yingfei Xiong, Ge Li, Lu Zhang

Peking University AdeptMind

INTRODUCTION

- Generating code from natural language description.
 - Open the file, F1 \longrightarrow f = open('F1', 'r')

- Automatically code generation is beneficial in various scenarios.
 - Similar code snippets can be generated from another.
 - It takes a long time for a programmer to learn a new implement.

INTRODUCTION

- Previous works with neural network are all based on RNN or LSTM.
 - Researchers [1, 2, 3] have proposed several approach based on AST using LSTM.
- A program is much larger than a natural language sentence and that RNNs suffer from the long dependency problem [4].
 - A program is made up of a large number of AST nodes.
- 1. Dong, L., and Lapata, M. 2016. Language to logical form with neural attention. In ACL, 33–43.
- 2. Yin, P., and Neubig, G. 2017. A syntactic neural model for general-purpose code generation. In ACL, 440–450.
- 3. Rabinovich, M.; Stern, M.; and Klein, D. 2017. Abstract syntax networks for code generation and semantic parsing. In ACL, 1139–1149.
- 4. Bengio, Y.; Simard, P.; and Frasconi, P. 1994. Learning longterm dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks 5(2):157–166.

INTRODUCTION

- Researchers are showing growing interest in using the CNN as the decoder.
 - QANet [1], a CNN encoder-decoder, achieves a significant improvement in SQuAD dataset for question answering.

• Can we use CNN for code generation?

1. Yu, A. W.; Dohan, D.; Luong, M.-T.; Zhao, R.; Chen, K.; Norouzi, M.; and Le, Q. V. 2018. QANet: Combining local convolution with global selfattention for reading comprehension. In ICLR.

Background: Learning to Synthesize

- CNN produces a classifier of a fixed number of categories
 - Cannot be applied to program generation: the category is infinite or extremely large

- Yingfei Xiong, Bo Wang, Guirong Fu, Linfei Zang. Learning to Synthesize. GI'18.
 - Decompose a program generation problem into a series of classification problems
 - Guided by the grammar of the program
 - Presented at APLAS-NIER 2017

Decompose into classification problems

• The key step of generation is to predict the grammar rule, which will be applied to expand the AST.

• The probability of an entire code is decomposed as

$$p(\text{program}) = \prod_{n=1}^{N} p(\mathbf{r}_n | \mathbf{r}_1 \cdots, \mathbf{r}_{n-1})$$

TO PREDICT GRAMMAR RULES

• The prediction is mainly based on three types of information:

- the context information (e.g. the natural language description)
- the partial AST that has been generated.
- the position of the node to be expanded

OVERVIEW

TO ENCODE THE CONTEXT

- The context of our model is a piece of description.
- We first tokenize the context, and obtain a sequence of tokens.
- Then, a set of convolutional layers are applied.
 - We adopt shortcut connections every other layer parallel to linear transformation, as in ResNet [1].

OVERVIEW

TO ENCODE THE PARTIAL AST

- The partial AST is decided by the rules predicted
 - A sequence of rules can be directly encoded by a CNN
- However, it is difficult for the CNN to learn the structure of the AST
 - A tree-based CNN is further applied to capture the structure information

TO CAPTURE THE STRUCTURAL INFORMATION

• We split each node into two nodes.

- A local feature detector of a fixed depth, sliding over a tree to extract structural feature.
- We put a placeholder to indicate where the next grammar rule is applied.

^[1] Mou, L.; Li, G.; Zhang, L.; Wang, T.; and Jin, Z. 2016. Convolutional neural networks over tree structures for programming language processing. In AAAI, 1287–1293

OVERVIEW

TO ENCODE THE POSITION(1/2)

- In order to tell the position where the next grammar rule is applied, we design a tree-path CNN to catch this information.
- We extract the path from the root to the node to expand.

TO ENCODE THE POSITION (2/2)

• The scope name is often important for code prediction

• Class name

• Method name

• The current local scope name is also encoded

TO DECODE

Moreover, we also design several components for code generation.

- The CNN for predicted.
- The attentive pooling.

EXPERIMENT: HEARTHSTONE

- Our main experiment is based on an established benchmark dataset, HearthStone (HS) [1]
- The dataset comprises 665 different cards of the HearthStone game.
- We use StrAcc (exact match), Acc+ and BLEU-4 score as metrics.
 - Acc+ is a human-adjusted accuracy.


```
class AcidicSwampOoze(MinionCard):
    def __init__(self):
        super().__init__("Acidic Swamp Ooze", 2,
        CHARACTER_CLASS.ALL, CARD_RARITY.COMMON,
        battlecry=Battlecry(Destroy(), WeaponSelector(EnemyPlayer())))
```

def create_minion(self, player):
 return Minion(3, 2)

[1] Ling, W.; Blunsom, P.; Grefenstette, E.; Hermann, K. M.; Kocisk `y, T.; Wang, F.; and Senior, A. 2016. Latent predictor `networks for code generation. In ACL, 599–609.

EXPERIMENT: HEARTHSTONE

 Our model is compared with previous state-of-theart results.

Model	StrAcc	Acc+	BLEU
LPN (Ling et al. 2016)	6.1	_	67.1
SEQ2TREE (Dong and Lapata 2016)	1.5	_	53.4
SNM (Yin and Neubig 2017)	16.2	~ 18.2	75.8
ASN (Rabinovich, Stern, and Klein 2017)) 18.2	_	77.6
ASN+SUPATT (Rabinovich, Stern, and Klein 2017)	22.7	-	79.2
Our system	27.3	30.3	79.6

 Ablation tests to analyze the contribution of each component.

Line #	Model Variant	Acc+	BLEU
1	Full model	30.3	79.6
2	Pre-order CNN \rightarrow LSTM	21.2	78.8
3	 Predicted rule CNN 	24.2	79.2
4	 Pre-order CNN 	25.8	80.4
5	 Tree-based CNN 	25.8	79.4
6	 Tree-path CNN 	28.8	80.4
7	 Attentive pooling 	24.2	79.3
8	 Scope name 	25.8	78.6

- > Our model outperforms all previous results.
- > We have designed reasonable components of the neural architecture, suited to the code generation task.

EXPERIMENT: HEARTHSTONE

• The code we successfully generated.

```
Generated Code:
class Gnoll(MinionCard):
    def __init__(self):
        super().__init__("Gnoll", 2, CHARACTER_CLASS.ALL,
                 CARD RARITY COMMON, False)
    def create minion(self, p):
        return Minion(2, 2, taunt = True)
Reference Code:
class Gnoll(MinionCard):
    def __init__(self):
        super().__init__("Gnoll", 2, CHARACTER_CLASS.ALL,
                 CARD RARITY COMMON, False)
    def create_minion(self, player):
        return Minion(2, 2, taunt = True)
Reference Code For Anthor Card:
class DefenderMinion(MinionCard):
    def __init__(self):
        super().__init__("Defender", 1, CHARACTER_CLASS.PALADIN,
                 CARD RARITY COMMON)
    def create_minion(self, p):
        return Minion(2, 1)
```

• Our model used a different argument name, but implements a correct functionality.

EXPERIMENT: SEMANTIC PARSING

Semantic parsing aims to generate logical forms given a natural language description.

 We evaluated our model on two semantic parsing datasets (ATIS and JOBS) used in Dong and Lapata (2016) [1] with Accuracy.

EXPERIMENT: SEMANTIC PARSING

 The logic form for semantic parsing is usually short, containing only 1/4–1/3 tokens as in HS.

	ATIS		JOBS	
nal	System	Accuracy	System	Accuracy
ior	ZH15	84.2	ZH15	85.0
dit	ZC07	84.6	PEK03	88.0
Traditional	WKZ14	91.3	LJK13	90.7
al	SEQ2TREE	84.6	SEQ2TREE	90.0
Neural	ASN	85.3	ASN	91.4
Ž	ASN-SUPATT	85.9	ASN-SUPATT	92.9
	Our System	85.0	Our System	89.3

- > Neural models are generally worse than the WKZ14 system (based on CCG parser).
- > Our model achieves results similar to the state-of-the-art neural models.

CONCLUSION

- We propose a grammar-based structural CNN for code generation.
- Our model makes use of the abstract syntax tree (AST) of a program, and generates code by predicting the grammar rules.
- We address the problem that traditional RNN-based approaches may not be suitable to program generation.

Thank you!

A Grammar-Based Structural CNN Decoder for Code Generation