
A Grammar-Based Structural CNN Decoder

for Code Generation

Zeyu Sun, Qihao Zhu, Lili Mou, Yingfei Xiong, Ge Li, Lu Zhang

Peking University

AdeptMind

INTRODUCTION

◆ Generating code from natural language description.

f = open(‘F1’, ‘r’) ⚫ Open the file, F1

◆ Automatically code generation is beneficial in various scenarios.

⚫ Similar code snippets can be generated from another.

⚫ It takes a long time for a programmer to learn a new implement.

INTRODUCTION

◆ Previous works with neural network are all based on RNN or LSTM.

⚫ Researchers [1, 2, 3] have proposed several approach based on AST using LSTM.

◆ A program is much larger than a natural language sentence and that RNNs

suffer from the long dependency problem [4].

1. Dong, L., and Lapata, M. 2016. Language to logical form with

neural attention. In ACL, 33–43.

2. Yin, P., and Neubig, G. 2017. A syntactic neural model for
general-purpose code generation. In ACL, 440–450.

3. Rabinovich, M.; Stern, M.; and Klein, D. 2017. Abstract syntax
networks for code generation and semantic parsing. In ACL,
1139–1149.

4. Bengio, Y.; Simard, P.; and Frasconi, P. 1994. Learning long-
term dependencies with gradient descent is difficult. IEEE
Transactions on Neural Networks 5(2):157–166.

⚫ A program is made up of a large number of AST nodes.

INTRODUCTION

◆ Researchers are showing growing interest in using the CNN as the decoder.

⚫ QANet [1], a CNN encoder-decoder, achieves a significant improvement in

SQuAD dataset for question answering.

1. Yu, A. W.; Dohan, D.; Luong, M.-T.; Zhao, R.; Chen, K.; Norouzi, M.; and

Le, Q. V. 2018. QANet: Combining local convolution with global self-

attention for reading comprehension. In ICLR.

◆ Can we use CNN for code generation?

Background: Learning to Synthesize

◆ Yingfei Xiong, Bo Wang, Guirong Fu, Linfei Zang. Learning to Synthesize. GI'18.

◆ CNN produces a classifier of a fixed number of categories

⚫ Cannot be applied to program generation: the category is infinite or extremely large

⚫ Decompose a program generation problem into a series of classification problems

⚫ Guided by the grammar of the program

⚫ Presented at APLAS-NIER 2017

Decompose into classification problems

◆ The key step of generation is to predict the grammar rule, which

will be applied to expand the AST.

Grammar CNN

Stmt

While

Stmt
Stmt -> While

◆ The probability of an entire code is decomposed as

TO PREDICT GRAMMAR RULES

◆ The prediction is mainly based on three types of information:

⚫ the context information (e.g. the natural language description)

⚫ the partial AST that has been generated.

⚫ the position of the node to be expanded

OVERVIEW

Context

Partial AST

Position

TO ENCODE THE CONTEXT

◆ The context of our model is a piece of description.

◆ We first tokenize the context, and obtain a sequence of tokens.

◆ Then, a set of convolutional layers are applied.

⚫ We adopt shortcut connections every other layer parallel to

linear transformation, as in ResNet [1].

[1] He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual

learning for image recognition. In CVPR, 770–778.

Open the file

…

OVERVIEW

Context

Partial AST

Position

TO ENCODE THE PARTIAL AST

◆ The partial AST is decided by the rules predicted

◆ However, it is difficult for the CNN to learn the structure of the AST

⚫ A sequence of rules can be directly encoded by a CNN

⚫ A tree-based CNN is further applied to capture the structure information

TO CAPTURE THE STRUCTURAL INFORMATION

…

n6

n2
n3 n4 n5

n1

n2
n3 n4 n5

n6

n1

(a) Tree-based convolution[1] (b) Pre-order convolution

Pre-order
traverse with
backtracking

…

nPHD

…
nPHD

[1] Mou, L.; Li, G.; Zhang, L.; Wang, T.; and Jin, Z. 2016. Convolutional neural networks over

tree structures for programming language processing. In AAAI, 1287–1293

◆ We put a placeholder to indicate where the next grammar rule is applied.

◆ A local feature detector of a fixed depth, sliding over a tree to extract structural

feature.

◆ We split each node into two nodes.

OVERVIEW

Context

Partial AST

Position

TO ENCODE THE POSITION(1/2)

n6

n2
n3 n4 n5

n1

…

nPHD ◆ In order to tell the position where the next grammar rule is

applied, we design a tree-path CNN to catch this information.

◆ We extract the path from the root to the node to expand.

TO ENCODE THE POSITION (2/2)

◆ The scope name is often important for code prediction

⚫ Class name

⚫ Method name

◆ The current local scope name is also encoded

TO DECODE

◆ Moreover, we also design several components for code

generation.

⚫ The CNN for predicted.

⚫ The attentive pooling.

EXPERIMENT: HEARTHSTONE

◆ Our main experiment is based on an established

benchmark dataset, HearthStone (HS) [1]

[1] Ling, W.; Blunsom, P.; Grefenstette, E.; Hermann, K. M.; Kocisk ˇ y, T.; Wang, F.; and

Senior, A. 2016. Latent predictor ` networks for code generation. In ACL, 599–609.

◆ The dataset comprises 665 different cards of the

HearthStone game.

◆ We use StrAcc (exact match), Acc+ and BLEU-4 score

as metrics.

⚫ Acc+ is a human-adjusted accuracy.

EXPERIMENT: HEARTHSTONE

◆ Our model is compared with previous state-of-the-

art results.

➢ Our model outperforms all previous results.

➢ We have designed reasonable components of the neural architecture,

suited to the code generation task.

◆ Ablation tests to analyze the contribution of

each component.

EXPERIMENT: HEARTHSTONE

◆ Our model used a different argument name, but

implements a correct functionality.

◆ The code we successfully generated.

EXPERIMENT: SEMANTIC PARSING

◆ Semantic parsing aims to generate logical forms given a natural language

description.

◆ We evaluated our model on two semantic parsing datasets (ATIS and JOBS)
used in Dong and Lapata (2016) [1] with Accuracy.

[1] Dong, L., and Lapata, M. 2016. Language to logical form

with neural attention. In ACL, 33–43.

EXPERIMENT: SEMANTIC PARSING

➢ Neural models are generally worse than the WKZ14 system (based on CCG parser).

➢ Our model achieves results similar to the state-of-the-art neural models.

◆ The logic form for semantic parsing is usually short, containing only

1/4–1/3 tokens as in HS.

CONCLUSION

◆ We propose a grammar-based structural CNN for code generation.

◆ Our model makes use of the abstract syntax tree (AST) of a program, and

generates code by predicting the grammar rules.

◆ We address the problem that traditional RNN-based approaches may not be

suitable to program generation.

Thank you!

A Grammar-Based Structural CNN Decoder

for Code Generation

