B L E ALK AR I adeptmind,

ing Institute, Peking Uni

A Grammar-Based Structural CNN Decoder
for Code Generation

Zeyu Sun, Qihao Zhu, Lili Mou, Yingfei Xiong, Ge Li, Lu Zhang

Peking University
AdeptMind

INTRODUCTION

Generating code from natural language description.

Open the file, F1 f=open(‘F1’, ‘r’)

Automatically code generation is beneficial in various scenarios.

Similar code snippets can be generated from another.

It takes a long time for a programmer to learn a new implement.

INTRODUCTION

Previous works with neural network are all based on RNN or LSTM.

Researchers [1, 2, 3] have proposed several approach based on AST using LSTM.

A program is much larger than a natural language sentence and that RNNSs
suffer from the long dependency problem [4].

A program is made up of a large number of AST nodes.

INTRODUCTION

Researchers are showing growing interest in using the CNN as the decoder.

QANet [1], a CNN encoder-decoder, achieves a significant improvement in
SQUAD dataset for question answering.

Can we use CNN for code generation?

Background: Learning to Synthesize

CNN produces a classifier of a fixed number of categories

Cannot be applied to program generation: the category is infinite or extremely large

Yingfei Xiong, Bo Wang, Guirong Fu, Linfei Zang. Learning to Synthesize. GI'18.

Decompose a program generation problem into a series of classification problems
Guided by the grammar of the program

Presented at APLAS-NIER 2017

Decompose into classification problems

The key step of generation is to predict the grammar rule, which
will be applied to expand the AST.

Stmt -> While [Stmt

[Stmt] Grammar CNN v

[While

The probability of an entire code is decomposed as

N
p(program) = [[p(ralri--- ,rp1)

n=1

TO PREDICT GRAMMAR RULES

The prediction is mainly based on three types of information:
the context information (e.g. the natural language description)
the partial AST that has been generated.

the position of the node to be expanded

OVERVIEW

Information Type CNN Modules Pooling & Attention Prediction
a —)
Context ——| CNN - pg’c‘,ﬁﬁg BN Agf)%?;[r'\‘ée
NN S
Partial AST . :
[e P e | e | 15113
1 4 >
Tree-path ' Attentive
N /v CNN * pooling
Position v
\4 » Embedding
J

TO ENCODE THE CONTEXT

Open the file
The context of our model is a piece of description.

We first tokenize the context, and obtain a sequence of tokens.

Then, a set of convolutional layers are applied.

We adopt shortcut connections every other layer parallel to
linear transformation, as in ResNet [1].

OVERVIEW

Information Type CNN Modules Pooling & Attention Prediction
- —
Context —| CNN > pg’éﬂ’r‘]g BN A&%’,‘;‘;\‘ée
CNN) A
Partial AST . :
[e P e o] e 11513
4 >
H
Tree-path ' Attentive
N /v CNN * pooling
Position v
\4 »| Embedding
y

TO ENCODE THE PARTIAL AST

The partial AST is decided by the rules predicted

A sequence of rules can be directly encoded by a CNN

However, it is difficult for the CNN to learn the structure of the AST

A tree-based CNN is further applied to capture the structure information

‘ TO CAPTURE THE STRUCTURAL INFORMATION

We split each node into two nodes.

Pre-order
traverse with
backtracking

n,(@e n, ﬂ
:)
Y / n
®
= =
O3-7 A Mg~ 05 T3, = 1y °~ Ds
o) Te0) (8] @ea){maa)f)
n : | ;A ;A ‘e
Oy ¥ Doy + v |
°9) Eow (507) @Eed) i

A
(a) Tree-based convolution[1] ~

(b) Pre-order convolution

A local feature detector of a fixed depth, sliding over a tree to extract structural

feature.

We put a placeholder to indicate where the next grammar rule is applied.

OVERVIEW

Information Type CNN Modules Pooling & Attention Prediction
- —
Context ——| CNN - pg’éﬁ’rﬂg BN A&%’,‘ﬁ,‘ée
CNN) A
Partial AST . :
[e P e | e | 15113
4 >
T
Tree-path ' Attentive
N /v CNN * pooling
Position v
\4 »| Embedding /

TO ENCODE THE POSITION(1/2)

P—
nl 0
. L X
|
|
~ - | ©©®
nl|ee
» - ~ N ‘ .
Il3_ P \'y 1‘14 <, n
X (X L X
| \ | /
n6l |
‘v. ‘v. Noip In order to tell the position where the next grammar rule is

applied, we design a tree-path CNN to catch this information.

We extract the path from the root to the node to expand.

TO ENCODE THE POSITION (2/2)

The scope name is often important for code prediction
Class name

Method name

The current local scope name is also encoded

TO DECODE

Moreover, we also design several components for code
generation,

The CNN for predicted.

The attentive pooling.

EXPERIMENT: HEARTHSTONE

Our main experiment is based on an established
benchmark dataset, HearthStone (HS) [1]

P p— oy ey DS
—

The dataset comprises 665 different cards of the
HearthStone game.

We use StrAcc (exact match), Acc+ and BLEU-4 score <= s ;

- (). ('y 2,
aS met” CS. CHARACTER_CLASS.ALL, CARD_RARITY.COMMON,
battlecry-Battlecry(Destroy(), WeaponSelector(EnemyPlayer())))

create_minion(self, player):

Acc+ Is a human-adjusted accuracy. | Minion(3, 2)

EXPERIMENT: HEARTHSTONE

Our model is compared with previous state-of-the- Ablation tests to analyze the contribution of
art results. each component.
Model StrAce Acc+ BLEU Line # Model Variant Acc+ BLEU
LPN (Ling et al. 2016) 6.1 — 671 1 Full model 303 796
SEQ2TREE (Dong and Lapata 2016) 1.5 - 534 2 Pre-order CNN — LSTM 21.2 78.8
SNM (Yin and Neubig 2017) 16.2 ~18.2 75.8 3 — Predicted rule CNN 24.2 79.2
ASN (Rabinovich, Stern, and Klein 2017) 18.2 - 77.6 4 — Pre-order CNN 25.8 80.4
ASN+SUPATT 277 79.2 5 — Tree-based CNN 25.8 79.4
(Rabinovich, Stern, and Klein 2017) . N : 6 — Tree-path CNN 28.8 80.4
7 — Attentive pooling 24.2 79.3
Our system 273 303 79.6 8 — Scope name 758 78.6

Our model outperforms all previous results.

We have designed reasonable components of the neural architecture,
suited to the code generation task.

EXPERIMENT: HEARTHSTONE

Generated code:
class (MinionCard):
def (self):
0. ("Maexxna"™, 6, CHARACTER_CLASS.ALL,
CARD_RARITY.LEGENDARY, minion_type MINION_TYPE.BEAST)

def create_minion(self, player):
return Minion(2, 8, effects [Effect(DidDamage(),
ActionTag(Kill(), TargetSelector(IsMinion())))])

Reference code:
class (MinionCard):
def (self):
). ("Maexxna"™, 6, CHARACTER_CLASS.ALL,
CARD_RARITY.LEGENDARY, minion_type MINION_TYPE.BEAST)

def create_minion(self, player):

return Minion(2, 8, effects [Effect(DidDamage(),
ActionTag(Kill(), TargetSelector(IsMinion())))])

+ The code we successfully generated.

Generated Code:
class (MinionCard):
def __init_ (self):
super().__init__ ("Gnoll", 2, CHARACTER_CLASS.ALL,
CARD_ RARITY. COMMON, False)

def create_minion(self, p):
return Minion(2, 2, taunt = True)

Reference Code:
class (MinionCard):
def __init_ (self):
super().__init_ ("Gnoll", 2, CHARACTER_CLASS.ALL,
CARD RARITY. COMMON, False)

def create_minion(self, player):
return Minion(2, 2, taunt = True)

Reference Code For Anthor Card:
class (MinionCard):
def init (Self)
super().__init__ ("Defender", 1, CHARACTER_CLASS.PALADIN,
CARD RARITY. COMMON)

def create_minion(self, p):
return Minion(2, 1)

4 Our model used a different argument name, but
implements a correct functionality.

EXPERIMENT: SEMANTIC PARSING

Semantic parsing aims to generate logical forms given a natural language
description.

Input description: list airport in ci0
Output \-calculus:

lambda $0 e (and (airport $0)
(loc:t $0 ci@))

We evaluated our model on two semantic parsing datasets (ATIS and JOBS)
used in Dong and Lapata (2016) [1] with Accuracy.

EXPERIMENT: SEMANTIC PARSING

The logic form for semantic parsing is usually short, containing only
1/4-1/3 tokens as in HS.

| ATIS | JOBS
Té System Accuracy | System Accuracy
2 | ZHI5 84.2 | ZHIS5 85.0
= ZC07 84.6 | PEKO3 88.0
= | WKZ14 91.3 | LIK13 90.7
= | SEQ2TREE 84.6 | SEQ2TREE 90.0
= | ASN 85.3 | ASN 91.4
Z. | ASN-SUPATT 85.9 | ASN-SUPATT 92.9

| Our System 85.0 | Our System 89.3

Neural models are generally worse than the WKZ14 system (based on CCG parser).

Our model achieves results similar to the state-of-the-art neural models.

CONCLUSION

We propose a grammar-based structural CNN for code generation.

Our model makes use of the abstract syntax tree (AST) of a program, and
generates code by predicting the grammar rules.

We address the problem that traditional RNN-based approaches may not be
suitable to program generation.

AR KF R LAERA AT adepming,

Software Engineering Institute, Peking University

Thank you!

A Grammar-Based Structural CNN Decoder
for Code Generation

