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Can grandmas program?

* The development of programming languages
is to raise the level of abstraction

What is the next?
Haskell (1990), Prolog (1972)

Level of
Abstraction Java

C
Assembly



Why cannot?

* Programming languages come with many guarantees
* Well-typed programs are guaranteed to compile
* Compiled programs have clear, well-defined semantics

e |t is difficult to further raise the level of abstraction

Program Compile Executable



Program Synthesis saves
grandmas

* Generate a program from a specification
 Specification can be fuzzy
* Generation is not guaranteed

Specification Synthesize Program
“One of the most central problems in the “The fundamental way to improve
theory of programming.” software productivity.”
----Amir Pneuli ----Jiafu Xu

Turing Award Recipient Founder of Software Research in China



History of Program Synthesis

1957 Before After
e Start of program 2000 2000

synthesis e Deductive e Inductive

e Circuit synthesis Synthesis Synthesis
problem by

Alonzo Church
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Application — Data Wrangling

A B
Email B2 Column 2 v
Nancy.FreeHafer@fourthcoffee.com _nancy freehafer
IAndrew.Cencici@northwindtraders.com andrew cencici
Jan.Kotas@litwareinc.com
Mariya.Sergienko @gradicdesigninstitute.com
Steven.Thorpe@northwindtraders.com
Michael.Neipper@northwindtraders.com
Robert.Zare@northwindtraders.com
Laura.Giussani@adventure-works.com
Anne.HL@northwindtraders.com
Alexander.David@contoso.com
Kim.Shane@northwindtraders.com
Manish.Chopra@northwindtraders.com
Gerwald.Oberleitner@northwindtraders.com
Amr.Zaki@northwindtraders.com
'Yvonne.McKay@northwindtraders.com
Amanda.Pinto@northwindtraders.com
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Application — Superoptimization
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Application — Reducing
Duplicated Programming

class {MinionCard) :
ﬂer init_ {self):
super{).__init_ {"Acidic Swamp Ooze", 2,
f:H.ﬁ.FU.CTEFE CLASS.ALL, CARD_RARITY.COMMON,
hattlecry=-Battlecry(Destroyl},
WeaponSe lectar({EnemyP Layer{))}}

def create minion(self, player):
return Minian{3, 2}




Application — Program Repair

/** Compute the maximum of two values
* @param a first value
* @param b second value
* @return b if a is lesser or equal to b, a otherwise
*/
public static int max(final int a, final int b) {
return =Co— i —te—t—|t

} \
Synthesize an expression to
replace the buggy one




Application — Testing

pe &
Synthesize a
unit test to
cover a path
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tl:=a-b
ifz t1 goto B4
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2 :=i*4
S:=S+t2
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t3 :=n-i

ifnz t3 goto B2
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Application — Analysis

11

SMT Solver

Apply Tactic 1
If formula is long
Apply Tactic 2
Else
Apply Tactic 3

Strategies




Defining Program Synthesis

Classic PR Program Estimation
Synthesis Optimization 8

e Input: e |nput: e Input:
¢ A specification e A specification e A specification
e QOutput: A e A cost function e A dataset for target
program that e Output: A distribution
e meets the program that e QOutput: A program that
specification e meets the e meets the
specification, specification and
and e maximizes the
®* maximizes the probability
cost function represented by the
dataset

Test Generation Superoptimization Program Repair

12



This Lecture

Classic Synthesis

Program Estimation

e Problem Definition e Problem Definition
e Enumerative e Estimating

e Presentation-based Probabilities

e Constraint-based * Locating the most-
ikely one

13



SyGuS: Syntax-Guided
Synthesis

* A standardization of classic program synthesis
problem.

* Input:
* grammar G
* specification S

* Output:
* program P
e suchthatPe GAP » S

14



Example: max

* Grammar: Expr r | oy

Expr + Expr

(ite BoolExpr Expr Expr)
BoolExpr A BoolExpr
—BoolExpr

Expr < Expr

BoolExpr

ra LR ]
Ea aE

° SpeCification: Yo,y : 4L, mars(r,y)>=xMhmary(z,y) >y

Mmaxs (r,y) = x V maze (2, y) = y)

* Expected answer: ite (x<=y)y X

15



SyGuS format: Synth-Lib

* Synth-Lib uses a format similar to SMT-Lib
* http://sygus.seas.upenn.edu/files/SyGuS-IF.pdf

16

(set-logic LIA)
(synth-fun max2 ((x Int) (y Int)) Int
((Start Int (x y
(+ Start Start)
(ite StartBool Start Start)))

(declare-var x Int)
(declare-var y Int)
(constraint (>= (max2 x y) x))

(check-synth)

))




Program Synthesis as a
Search Problem

-~ (Generate

Q1: How to generate the next
incorrect d program program to be verified?

Verify

1 correct Q2: How to verify the correctness?

17



Q1: How to verify correctness?

* If the specification includes only tests, Fast
* test the program.

* If the specification is a logic constraint S, Slow
* verify Program — S by an SMT solver.
* Synth-lib directly supports this

Can we combine
the two?

18



CEG
GuIC

Counter-
Example

19

Generate

Program

Verify

No Counter-
Example

S: Counter-Example
ed Inductive Synthesis

* Constraint solvers give
counter-examples

* Save counter-examples d$S
tests

* First use tests to validate
programs



Q2: How to generate the next
program to be verified?

Enumerative — exhaustive search

* Representation-based — manipulate sets of
programs instead of single programs

e Constraint-based — convert to an SMT problem

20



Top-Down Enumeration

* Expand according to the grammar

21

Expr

X, Y, Expr+Expr, if(BoolExpr, Expr, Expr)
y, Expr+Expr, if(BoolExpr, Expr, Expr)
Expr+Expr, if(BoolExpr, Expr, Expr)

x+Expr, y+Expr, Expr+Expr+Expr, if(BoolExpr, Expr,
Expr)+Expr, if(BoolExpr, Expr, Expr)




Bottom-Up Enumeration

* Combine expressions from small to big
* size=1
. Xy
Size=2
Size=3
* Xty
Size=4
size=5
© X+(x+y), (x+y)+y
Size=6
e if(x<=y, x, y), ...

22



Optimization
* Discard a partial program early

* Pruning
* None of the expansions could satisfy the specification

* Hte-BootExprx¢

* Equivalence reduction
e Equivalent to a previous program

* EXpr+x,x+Expr

23



Pruning

e Generate constraints from the partial program

(declare-fun boolExpr () Int)
Ite BoolExpr x ‘ (declare-fun max2 ((x Int) (y Int)) Int

(ite boolExpr x x))
e Generate constraints from each test

max2(1,2)=2 ‘ (assert (= (max2 1 2) 2))

(check-sat)

24 Needs to balance between the benefit and the cost.



Equivalence reduction: How
to determine equivalence?

 With an SMT solver
* Check satisfiability of f(x,v) # f'(x,y)
* The cost may not pay off

e With tests
* Checkif f = f' on all tests
* Not safe for logic specifications
* Does not work on partial programs

* With predefined-rules
* e.g Expr+x and x+Expr
 Needs customization for each domain

25




How to generate the next
program to be verified?

* Enumerative — exhaustive search

* Representation-based — manipulate sets of
programs instead of single programs

e Constraint-based — convert to an SMT problem

26




Representation-based

* Enumerative approaches manipulates single
programs

* |nefficient: too many in number

* Can we manipulate sets of programs? e.g.
* Find a set that satisfies a specification
* Intersects sets for a conjunction of specifications
 Combine sets with program constructs to satisfy more
complex specifications
* Representation-based
e Use data structures to represent such a set
* E.g. Grammars, Automata, Logic Formulas



FlashMeta: Basic |ldea

 Grammar is a representation of sets
* Size of a grammar = O(log(#Represented Program))

* The original grammar is too coarse-grained

* |dea: Annotate a non-terminal with a synthesis goal
e [2]Expr — expressions that evaluates to 2

28



FlashMeta: Single Test

e Pick a test
 max2(1,2) =2

e Refine the grammar
* [2]Expr - y | [1]Expr + [1]Expr
| ite [true|BoolExpr [2]Expr [*]Expr
| ite [false]BoolExpr [*]Expr [2]Expr

e [1]Expr - x| -

* [true]BoolExpr — —[false]BoolExpr
| [true]BoolExpr A [true|BoolExpr
| [2]Expr < [2]Expr | -

* Assume a user-provided operation to perform the refinement

* Any program represented by the grammar passes the test

29



Intersection of grammars

* Suppose
e N o Pl | cee | Pk
° N’_)P’1|...|P’k,

* NAN' =P, NP/ |P NPyl |P NP,
PznP1|P2nP2|---|P2nP,;,

PrNP{ P NPyl | PN Py
« P,NP, =0 if P, and P, are of different types

e f(Ny,..,N) N f(N;,....,N.) = f(N; NN, ...,N, 0 N.)

30



FlashMeta: Multiple Tests

* Produce a grammar for each test
* Intersects the grammars

31



FlashMeta: Discussion

* Avoids duplicated computation
* [1]Expr + [1]Expr
 |[1]Expr is explored only once in FlashMeta

* Pruning is naturally included
* [1]Expr — Expr—+Expr—

* Needs user-provided operation for refinement
* [65536]Expr

* Trivia: original paper uses version space algebra,
which is essentially grammar

32



How to generate the next
program to be verified?

* Enumerative — exhaustive search

* Representation-based — manipulate sets of
programs instead of single programs

e Constraint-based — convert to an SMT problem

33



Component-Based Program
Synthesis

Connection 0 e
Points

Components
i11 |i12

Label variables:

00000 .-

Ly, loo,
* [,: program output

ol log = liz1 = 4

i21 | i22

02 o4

34



Generate constraints

* Test
e 06 =1AN07 =2
co0=>1N0o=2A(0=1Vo=2)
Component Semantics
e 01 =i11+4+1i12
Label Semantics

* lo1 = lizn 2 01 = i1
Label Range

e I, =>1Al, <9
Unigueness of Output

¢ lol ia loz
No Cycle

* Ui <lpq

35

Why use connection points?
What if we remove connection
points and output label [, and
use l;,, to represent the index
of the output?



This Lecture

Classic Synthesis Program Estimation

e Problem Definition e Problem Definition

e Enumerative e Estimating

e Presentation-based Probabilities

e Constraint-based Locating the most-
ikely one

36



Program Estimation

* Input:
* program space G
* specification S
* context C
* atraining set T of context-program pairs

* Output:
* program P
* suchthat P e GAP» SAPr(P|C)
* where Pr represents the probability learned from T

37



Program Estimation as an
Search Problem

— (Generate

l Program Q3: How to estimate the
probability Pr(P | C)?

Estimate
Q4: How to find program P such
l Probability that Pr(prog | context) is the
largest?
Enough?

l Program with the highest probability

38



Learning to synthesis (L2S)

* A general framework to address program
estimation

 Combining four tools
* Rewriting rules: defining a search problem

* Constraint solving: pruning off invalid choices in each
step

* Machine-learned models: estimating the probabilities
of choices in each step

* Search algorithms: solving the search problem



Example: Condition Completion

* Given a program without a conditional expression,

completing the condition
E % E II>12H

public static long fibonacci(int n) { | E “>0”
if C 22 ) return n; | E “+” E
else return fibonacci(n-1) + fibonacci(n-2); . ,

1 | “hours
| “value”

. . Space of Conditions
e Useful in program repair

* Many bugs are caused by incorrect conditions
 Existing work could localize the faulty condition

* Can we generate a correct condition to replace the incorrect
one”?

40



Q3: Estimating the Probability

* Idea: Using machine learning
* To train over a set of programs and their contexts

* Problem: machine learning usually works for
classification problems
* where the number of classes are usually small

* |dea: turn the generation problem into a set of
classification problem along the grammar



Decomposing Generation

* In each step, we estimate the probabilities of the
rules to expand the left-most non-terminal

* A classification problem

E E E
& &
» E >12 E >12
“
hours
Expand E with Expand E with

E->E“>12" E -> “hours”

42



Probability of the program

 P(prog | context) =
[I; P( rule; | context,prog;, position; )

context: The context of the program

prog;: The AST generated at the ith step

position;: The non-terminal to be expanded at the ith step
rule: the chosen rule at the ith step

prog: the complete program

context proA Ji corAltext
/—Aﬁ ( : I \
Sif( ¢ o, ) throw new ArgException();

position;

43



Training models

* Train a model for each non-terminal
* to classify rules expanding this non-terminal

* Training set preparation
* The original training set:

* Aset of programs
* Their contexts

 Decomposing the training set:
* Parse the programs
e Extract the rules chosen for each non-terminal

44



Feature Engineering

* Extract features from
* context : The context
* prog; : The generated partial AST
* position; : The position of the node to be expanded

context prog; context
Hﬁ ) )
e \
o if( © b ) throw new ArgException();
—

position;

45



Can we use a different

expansion order?

e Top-down

E

* Bottom-up

hours

46

=

=

&~
E >12
E
“
hours

=)

=

&~
E >12
“
hours
&~
E >12
“
hours

The order may greatly affect the performance of L2S.




Annotations

* Introduce annotations to symbols
« ED indicates E can be expanded downward
» EV indicates E can be expanded upward
« EYD indicates E can be expanded in both directions



Rules

-rom Grammar to Rewriting

Grammar Top-down Rules Bottom-up Rules
E-E“+E |E°P=>E->EP“+EP EVsSEY-E“EP

EY = EY - EP “+"E
E->E“12” E’=>E->EP“12” | EY=>EY-SE“12”
E - “hours” |EP = E = “hours” “hours”Y = EY - “hours”

Creation Rules

= ED
= EDU

// starting from the root
// starting from a middle node
= “hours”Y // starting from a leaf

Ending Rule

EVU = E




Example

* Top-down

EP =

= iD ED E - ED “>12”

* Bottom-up

“hours”V =
EY > “hours”

= “hours”Y l

EP =
E E - “hours” E
T &~
ED  >12 E >12
“
hours
EVU =
EU N E II+II ED 5
E EVU =E
EU — >
E >12 E >12
el - —
hours hours

hourSU hOU IS




Unambiguity

* A set of rewriting rules are unambiguous if

* there is at most one unique set of rule applications to
construct any program.

 When the rule set is unambiguous, we still have
* P(prog | context) = []; P( rule; | context,prog;, position;)

50



Q4: How to find the most

probable program?

* Local Optimal # Global Optimal

o ES>E“>12" 0.3
O'E—SE“>0" 0.6
E — “hours” 0.1 E — “hours” 0.8
E; E— “value” 0.2 E, E — “value” 0.1
E—S-E“+”E 0.05 E—-E“+”E 0.05
E, E,
=0.12 E; >0 _ E >12
- =0.24 /2
value hours

51




Use Metaheuristic Search

* Beam Search:
* Keep n most probable partial programs
* Expand the programs to get new programs

e Genetic Search:

* Keep n most probably complete programs
* Mutate the programs to get new programs

52



Applications

* Application 1:

* Repairing Conditional Expressions

* Application 2:

* Generating Code from Natural Language Expression

53



Repairing Conditional
Expressions

* Condition bugs are common

lcm = Math.abs(a+b);
+ if (lcm == Integer.MIN_Value)

Missing boundary checks
+ throw new ArithmeticException();

- if (hours >= 24)
+ if (hours > 24) Conditions too weak or too strong
withinOneDay=true;

* Steps:
1. Localize a buggy if condition with SBFL and predicate
switching

2. Synthesize an if condition to replace the buggy one
3. Validate the new program with tests



L2S Configuration

* Rewriting rules
* Bottom-up
e Estimate the leftmost variable first

* Machine learning
e Xgboost
 Manually designed features

* Constraints
* Type constraints & size constraints

* Search algorithm
e Beam search

55



Results

Benchmark: Defects4)

Number of Repaired Bugs Precision

30 90
80

25
70

20 60
50

15
40

10 I I 30 I I
20

5
10

0 0

ConCap SimFix Elixir ConCap SimFix Elixir
W |[F-Related General M |F-Related General

Also repaired 8 unique bugs that have never been repaired by any approach.

56



Generating Code from
Natural Language Expression

* Can we generate code
automatically to avoid
repetitive coding?

P — p— p— p— p— — — —
—

 Existing approaches
use RNN to translate
natural language
descriptions to

( ):
programs ey
(). ( y 2,
CHARACTER_CLASS.ALL, CARD_RARITY.COMMON,
L4 Long dependency battlecry=Battlecry(Destroy(), WeaponSelector(EnemyPlayer())))
R ] _minion(self, pl ):
problem: work poorly return winton(s, 23

on long programs

57



L2S Configuration

* Rewriting rules
e Top-down

* Machine learning
* A CNN-based network

* Constraints
* Size constraints

 Search algorithm
e Beam search

58



A CNN-based Network
Architecture

Information Type CNN Modules Pooling & Attention Prediction
Program Q Max Attentive I
Context e 2o =M CNN l > l
description PRilE S TL_BE
Predicted CNN . i [ Attentive
rules i pooling
Partial AST ' @
¥ = | [
: Tree-based | | Pre-order »  Max Attentive = >
Partial AST —— "“c\n " CNN pooling |-i—»| pooling © g
B
Tree-path ‘4 .| Attentive
Ancestors —— " ~\N pooling
Position :
Scope Name »| Embedding
e ».

59



Results

Benchmark: HearthStone

Model StrAcc Acc+ BLEU
LPN (Ling et al. 2016) 6.1 — 67.1
SEQ2TREE (Dong and Lapata 2016) 1.5 = 534
SNM (Yin and Neubig 2017) 16.2 ~18.2 75.8
ASN (Rabinovich, Stern, and Klein 2017) 18.2 - 77.6
ASN+SUPATT

(Rabinovich, Stern, and Klein 2017) 22.7 B 79.2

Our system 27.3 303 79.6

60



Newest Results

* Replacing CNN with Transformer
* Transformer: a new neural architecture at 2017
* The flexibility of L2S allows to easily utilize new models

Model StrAcc Acc+ BLEU

£ | LPN (Ling et al., 2016) 6.1 - 671

A& | SEQ2TREE (Dong and Lapata, 2016) 1.5 - 534

YNI17 (Yin and Neubig, 2017) 16.2 ~18.2 75.8

ASN (Rabinovich et al., 2017) 18.2 — 77.6

ReCode (Hayati et al., 2018) 19.6 - 78.4

‘ CodeTrans-A 258 258 79.3

E ASN+SUPATT (Rabinovich et al., 2017) 22.7 — 79.2

g SZM19 (Sun et al., 2019) 27.3 30.3 79.6
—

| £ | CodeTrans B 318 333 808 |
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Future Learning

* Surveys:

e Sumit Gulwani, Oleksandr Polozov, Rishabh Singh: Program
Synthesis. Foundations and Trends in Programming Languages
}/1 2):1-119 (2017)

e Rajeev Alur, Rastislav Bodik, et al.: Syntax-guided synthesis.
FMCAD 2013: 1-8

* Tools:

* sygus.org —the SyGuS competition, a good place to look at

* Some tools we recently used
* EUSolver
* CVC4
* Second-Order Solver

* Course:
* Program Synthesis by Nadia Polikarpova@UCSD

 https://github.com/nadia-polikarpova/cse291-program-
synthesis/
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