
Program Synthesis
A Tutorial

Yingfei Xiong

Peking University

ISSTA Summer School 2019

Can grandmas program?

• The development of programming languages
is to raise the level of abstraction

2

Level of
Abstraction

What is the next?

Haskell (1990), Prolog (1972)

Java

C

Assembly

Why cannot?

• Programming languages come with many guarantees
• Well-typed programs are guaranteed to compile

• Compiled programs have clear, well-defined semantics

• It is difficult to further raise the level of abstraction

3

Program Compile Executable

Program Synthesis saves
grandmas
• Generate a program from a specification

• Specification can be fuzzy

• Generation is not guaranteed

4

Specification Synthesize Program

“One of the most central problems in the
theory of programming.”
----Amir Pneuli

Turing Award Recipient

“The fundamental way to improve
software productivity.”

----Jiafu Xu
Founder of Software Research in China

History of Program Synthesis

1957

• Start of program
synthesis

• Circuit synthesis
problem by
Alonzo Church

Before
2000

• Deductive
Synthesis

After
2000

• Inductive
Synthesis

5

Application – Data Wrangling

6

Application – Superoptimization

7

i=round(i);
a = 6755399441055744.0;
i=(i+a)-a;

Application – Reducing
Duplicated Programming

8

Application – Program Repair

9

Synthesize an expression to
replace the buggy one

Application – Testing

10

Synthesize a
unit test to

cover a path

Application – Analysis

11

Synthesize a strategy for a class of problems

SMT Solver

Apply Tactic 1
If formula is long
Apply Tactic 2

Else
Apply Tactic 3

Strategies

Defining Program Synthesis
Classic

Synthesis

• Input:

• A specification

• Output: A
program that

• meets the
specification

Program
Optimization

• Input:

• A specification

• A cost function

• Output: A
program that

• meets the
specification,
and

• maximizes the
cost function

Program Estimation

• Input:

• A specification

• A dataset for target
distribution

• Output: A program that

• meets the
specification and

• maximizes the
probability
represented by the
dataset

12

Test Generation Superoptimization Program Repair

This Lecture

Classic Synthesis

• Problem Definition

• Enumerative

• Presentation-based

• Constraint-based

Program Estimation

• Problem Definition

• Estimating
Probabilities

• Locating the most-
likely one

13

SyGuS: Syntax-Guided
Synthesis
• A standardization of classic program synthesis

problem.

• Input:
• grammar G

• specification S

• Output:
• program P

• such that 𝑃 ∈ 𝐺 ∧ 𝑃 ↦ 𝑆

14

Example: max

• Grammar:

• Specification:

• Expected answer：ite (x <= y) y x

15

SyGuS format: Synth-Lib

• Synth-Lib uses a format similar to SMT-Lib
• http://sygus.seas.upenn.edu/files/SyGuS-IF.pdf

16

(set-logic LIA)
(synth-fun max2 ((x Int) (y Int)) Int

((Start Int (x y
(+ Start Start)
(ite StartBool Start Start)))……))

(declare-var x Int)
(declare-var y Int)
(constraint (>= (max2 x y) x))
……

(check-synth)

Program Synthesis as a
Search Problem

17

Generate

Verify

Q1: How to generate the next
program to be verified?

Q2: How to verify the correctness?

a program

correct

incorrect

Q1: How to verify correctness?

• If the specification includes only tests,
• test the program.

• If the specification is a logic constraint S,
• verify 𝑃𝑟𝑜𝑔𝑟𝑎𝑚 → 𝑆 by an SMT solver.

• Synth-lib directly supports this

18

Fast

Slow

Can we combine
the two?

CEGIS: Counter-Example
Guided Inductive Synthesis

• Constraint solvers give
counter-examples

• Save counter-examples as
tests

• First use tests to validate
programs

19

Generate

Verify

ProgramCounter-
Example

No Counter-
Example

Q2: How to generate the next
program to be verified?
• Enumerative – exhaustive search

• Representation-based – manipulate sets of
programs instead of single programs

• Constraint-based – convert to an SMT problem

20

Top-Down Enumeration

• Expand according to the grammar
• Expr

• x, y, Expr+Expr, if(BoolExpr, Expr, Expr)

• y, Expr+Expr, if(BoolExpr, Expr, Expr)

• Expr+Expr, if(BoolExpr, Expr, Expr)

• x+Expr, y+Expr, Expr+Expr+Expr, if(BoolExpr, Expr,
Expr)+Expr, if(BoolExpr, Expr, Expr)

• …

21

Bottom-Up Enumeration

• Combine expressions from small to big
• size=1

• x, y

• size=2

• size=3
• x+y

• size=4

• size=5
• x+(x+y), (x+y)+y

• size=6
• if(x<=y, x, y), …

22

Optimization

• Discard a partial program early

• Pruning
• None of the expansions could satisfy the specification

• Ite BoolExpr x x

• Equivalence reduction
• Equivalent to a previous program

• Expr+x, x+Expr

23

Pruning

• Generate constraints from the partial program

• Generate constraints from each test

24

Ite BoolExpr x x
(declare-fun boolExpr () Int)
(declare-fun max2 ((x Int) (y Int)) Int

(ite boolExpr x x))

max2(1,2)=2 (assert (= (max2 1 2) 2))

(check-sat)

Needs to balance between the benefit and the cost.

Equivalence reduction: How
to determine equivalence?
• With an SMT solver

• Check satisfiability of 𝑓 𝑥, 𝑦 ≠ 𝑓′(𝑥, 𝑦)
• The cost may not pay off

• With tests
• Check if 𝑓 = 𝑓′ on all tests
• Not safe for logic specifications
• Does not work on partial programs

• With predefined-rules
• e.g Expr+x and x+Expr
• Needs customization for each domain

25

How to generate the next
program to be verified?
• Enumerative – exhaustive search

• Representation-based – manipulate sets of
programs instead of single programs

• Constraint-based – convert to an SMT problem

26

Representation-based

• Enumerative approaches manipulates single
programs
• Inefficient: too many in number

• Can we manipulate sets of programs? e.g.
• Find a set that satisfies a specification
• Intersects sets for a conjunction of specifications
• Combine sets with program constructs to satisfy more

complex specifications

• Representation-based
• Use data structures to represent such a set
• E.g. Grammars, Automata, Logic Formulas

27

FlashMeta: Basic Idea

• Grammar is a representation of sets
• Size of a grammar = O(log(#Represented Program))

• The original grammar is too coarse-grained

• Idea: Annotate a non-terminal with a synthesis goal
• [2]Expr – expressions that evaluates to 2

28

FlashMeta: Single Test

• Pick a test
• max2 1,2 = 2

• Refine the grammar
• 2 Expr → y ∣ 1 Expr + 1 Expr

∣ ite true BoolExpr 2 Expr ∗ Expr
∣ ite false BoolExpr ∗ Expr 2 Expr

• 1 Expr → x ∣ ⋯

• true BoolExpr → ¬ false BoolExpr
∣ true BoolExpr ∧ true BoolExpr
| 2 Expr ≤ 2 Expr ∣ ⋯

• …
• Assume a user-provided operation to perform the refinement

• Any program represented by the grammar passes the test

29

Intersection of grammars

• Suppose
• 𝑁 → 𝑃1 ∣ ⋯ ∣ 𝑃𝑘
• 𝑁′ → 𝑃′1 ∣ ⋯ ∣ 𝑃′𝑘′

• 𝑁 ∩ 𝑁′ = 𝑃1 ∩ 𝑃1
′ ∣ 𝑃1 ∩ 𝑃2

′ ∣ ⋯ ∣ 𝑃1 ∩ 𝑃𝑘′
′

∣ 𝑃2 ∩ 𝑃1
′ ∣ 𝑃2 ∩ 𝑃2

′ ∣ ⋯ ∣ 𝑃2 ∩ 𝑃𝑘′
′

∣ ⋯
∣ 𝑃𝑘 ∩ 𝑃1

′ ∣ 𝑃𝑘 ∩ 𝑃2
′ ∣ ⋯ ∣ 𝑃𝑘 ∩ 𝑃𝑘′

′

• 𝑃1 ∩ 𝑃2 = ∅ if 𝑃1 and 𝑃2 are of different types

• 𝑓 𝑁1, … , 𝑁𝑘 ∩ 𝑓 𝑁1
′, … , 𝑁𝑘

′ = 𝑓(𝑁1 ∩ 𝑁1
′, … , 𝑁𝑘 ∩ 𝑁𝑘

′)

30

FlashMeta: Multiple Tests

• Produce a grammar for each test

• Intersects the grammars

31

FlashMeta: Discussion

• Avoids duplicated computation
• 1 Expr + 1 Expr
• 1 Expr is explored only once in FlashMeta

• Pruning is naturally included
• 1 Expr → Expr + Expr

• Needs user-provided operation for refinement
• [65536]Expr

• Trivia: original paper uses version space algebra,
which is essentially grammar

32

How to generate the next
program to be verified?
• Enumerative – exhaustive search

• Representation-based – manipulate sets of
programs instead of single programs

• Constraint-based – convert to an SMT problem

33

Component-Based Program
Synthesis

34

+ - if x y

+ -

o1

o2

o3

o4

o5 o6 o7

i11 i12

i21 i22

i31 i32

i41 i42

i51 i53i52

1 2 3 4 5 6 7 8 9
Label variables：
• 𝑙𝑖11, 𝑙𝑖22, …
• 𝑙𝑜1, 𝑙𝑜2, …
• 𝑙𝑜: program output

Components

Connection
Points

𝑙𝑜6 = 𝑙𝑖31 = 4

Generate constraints

• Test
• 𝑜6 = 1 ∧ 𝑜7 = 2

• 𝑜 ≥ 1 ∧ 𝑜 ≥ 2 ∧ 𝑜 = 1 ∨ 𝑜 = 2

• Component Semantics
• 𝑜1 = 𝑖11 + 𝑖12

• Label Semantics
• 𝑙𝑜1 = 𝑙𝑖11 → 𝑜1 = 𝑖11

• Label Range
• 𝑙𝑜1 ≥ 1 ∧ 𝑙𝑜1 ≤ 9

• Uniqueness of Output
• 𝑙𝑜1 ≠ 𝑙𝑜2

• No Cycle
• 𝑙𝑖11 < 𝑙𝑜1

35

Why use connection points?
What if we remove connection
points and output label 𝑙𝑜x, and
use 𝑙𝑖𝑥𝑥 to represent the index
of the output?

This Lecture

Classic Synthesis

• Problem Definition

• Enumerative

• Presentation-based

• Constraint-based

Program Estimation

• Problem Definition

• Estimating
Probabilities

• Locating the most-
likely one

36

Program Estimation

• Input:
• program space G

• specification S

• context C

• a training set T of context-program pairs

• Output:
• program P

• such that 𝑃 ∈ 𝐺 ∧ 𝑃 ↦ 𝑆 ∧ Pr(𝑃 ∣ 𝐶)

• where Pr represents the probability learned from 𝑇

37

Program Estimation as an
Search Problem

38

Generate

Estimate

Program

Probability

Enough?
Program with the highest probability

Q3: How to estimate the
probability Pr(𝑃 | 𝐶)?

Q4: How to find program 𝑃 such
that Pr 𝑝𝑟𝑜𝑔 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 is the
largest?

Learning to synthesis (L2S)

• A general framework to address program
estimation

• Combining four tools
• Rewriting rules: defining a search problem

• Constraint solving: pruning off invalid choices in each
step

• Machine-learned models: estimating the probabilities
of choices in each step

• Search algorithms: solving the search problem

Example: Condition Completion

• Given a program without a conditional expression,
completing the condition

• Useful in program repair
• Many bugs are caused by incorrect conditions
• Existing work could localize the faulty condition
• Can we generate a correct condition to replace the incorrect

one?

40

E → E “>12”
∣ E “>0”
∣ E “+” E
∣ “hours”
∣ “value”
∣ …

Space of Conditions

Q3: Estimating the Probability

• Idea: Using machine learning
• To train over a set of programs and their contexts

• Problem: machine learning usually works for
classification problems
• where the number of classes are usually small

• Idea: turn the generation problem into a set of
classification problem along the grammar

41

Decomposing Generation

• In each step, we estimate the probabilities of the
rules to expand the left-most non-terminal
• A classification problem

42

E

E >12

hours

E

E >12

E

Expand E with
E -> E “> 12”

Expand E with
E -> “hours”

Probability of the program

• 𝑃 𝑝𝑟𝑜𝑔 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 =
ς𝑖 𝑃 𝑟𝑢𝑙𝑒𝑖 𝑐𝑜𝑛𝑡𝑒𝑥𝑡, 𝑝𝑟𝑜𝑔𝑖 , 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖

• 𝑐𝑜𝑛𝑡𝑒𝑥𝑡: The context of the program
• 𝑝𝑟𝑜𝑔𝑖: The AST generated at the ith step
• 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖: The non-terminal to be expanded at the ith step
• rule: the chosen rule at the ith step
• 𝑝𝑟𝑜𝑔: the complete program

43

E

E >12…;if() throw new ArgException();

𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑝𝑟𝑜𝑔𝑖

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖

Training models

• Train a model for each non-terminal
• to classify rules expanding this non-terminal

• Training set preparation
• The original training set:

• A set of programs

• Their contexts

• Decomposing the training set:
• Parse the programs

• Extract the rules chosen for each non-terminal

44

Feature Engineering

• Extract features from
• 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 : The context

• 𝑝𝑟𝑜𝑔𝑖 : The generated partial AST

• 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖 : The position of the node to be expanded

45

E

E >12
…;if() throw new ArgException();

𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑝𝑟𝑜𝑔𝑖

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖

Can we use a different
expansion order?

46

• Top-down

• Bottom-up
E

E >12

hourshours

E

hours

The order may greatly affect the performance of L2S.

E

E >12

hours

E

E >12

E

Annotations

• Introduce annotations to symbols
• 𝐸𝐷 indicates 𝐸 can be expanded downward

• 𝐸𝑈 indicates 𝐸 can be expanded upward

• 𝐸𝑈𝐷 indicates 𝐸 can be expanded in both directions

From Grammar to Rewriting
Rules
Grammar Top-down Rules Bottom-up Rules

E → E “+” E ED ⇒ E → ED “+” ED EU ⇒ EU → E “+” ED

EU ⇒ EU → ED “+” E

E → E “>12” ED ⇒ E → ED “>12” EU ⇒ EU → E “>12”

E → “hours” ED ⇒ E → “hours” “hours”U ⇒ EU → “hours”

Creation Rules

⇒ ED

⇒ EDU

⇒ “hours”U

// starting from the root
// starting from a middle node
// starting from a leaf

Ending Rule EU ⇒ E

Example

• Top-down

• Bottom-up

E

E >12

hours

E

ED >12

ED

EU

E >12

hourshoursU

EU

hours

⇒ ED
ED ⇒

E → ED “>12”
ED ⇒

E → “hours”

⇒ “hours”U

“hours”U ⇒
EU → “hours” E

E >12

hours

EU ⇒
EU → E “+” ED

EU ⇒E

Unambiguity

• A set of rewriting rules are unambiguous if
• there is at most one unique set of rule applications to

construct any program.

• When the rule set is unambiguous, we still have
• 𝑃 𝑝𝑟𝑜𝑔 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 = ς𝑖 𝑃 𝑟𝑢𝑙𝑒𝑖 𝑐𝑜𝑛𝑡𝑒𝑥𝑡, 𝑝𝑟𝑜𝑔𝑖 , 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖

50

Q4: How to find the most
probable program?
• Local Optimal ≠ Global Optimal

51

E0

E2 >12

hours

E0

E1 >0

value

E0

E2E1

0.6 * 0.2
= 0.12

0.3 * 0.8
= 0.24

Use Metaheuristic Search

• Beam Search:
• Keep n most probable partial programs

• Expand the programs to get new programs

• Genetic Search:
• Keep n most probably complete programs

• Mutate the programs to get new programs

52

Applications

• Application 1:
• Repairing Conditional Expressions

• Application 2:
• Generating Code from Natural Language Expression

53

Repairing Conditional
Expressions
• Condition bugs are common

• Steps:
1. Localize a buggy if condition with SBFL and predicate

switching
2. Synthesize an if condition to replace the buggy one
3. Validate the new program with tests

Missing boundary checks

- if (hours >= 24)
+ if (hours > 24)

withinOneDay=true;
Conditions too weak or too strong

lcm = Math.abs(a+b);
+ if (lcm == Integer.MIN_Value)
+ throw new ArithmeticException();

L2S Configuration

• Rewriting rules
• Bottom-up
• Estimate the leftmost variable first

• Machine learning
• Xgboost
• Manually designed features

• Constraints
• Type constraints & size constraints

• Search algorithm
• Beam search

55

Results

56

0

5

10

15

20

25

30

ConCap SimFix ACS Elixir

Number of Repaired Bugs

IF-Related General

0

10

20

30

40

50

60

70

80

90

ConCap SimFix ACS Elixir

Precision

IF-Related General

Also repaired 8 unique bugs that have never been repaired by any approach.

Benchmark: Defects4J

Generating Code from
Natural Language Expression
• Can we generate code

automatically to avoid
repetitive coding?

• Existing approaches
use RNN to translate
natural language
descriptions to
programs
• Long dependency

problem: work poorly
on long programs

57

L2S Configuration

• Rewriting rules
• Top-down

• Machine learning
• A CNN-based network

• Constraints
• Size constraints

• Search algorithm
• Beam search

58

A CNN-based Network
Architecture

59

Results

60

Benchmark: HearthStone

Newest Results

• Replacing CNN with Transformer
• Transformer: a new neural architecture at 2017

• The flexibility of L2S allows to easily utilize new models

61

Future Learning
• Surveys:

• Sumit Gulwani, Oleksandr Polozov, Rishabh Singh: Program
Synthesis. Foundations and Trends in Programming Languages
4(1-2): 1-119 (2017)

• Rajeev Alur, Rastislav Bodík, et al.: Syntax-guided synthesis.
FMCAD 2013: 1-8

• Tools:
• sygus.org – the SyGuS competition, a good place to look at
• Some tools we recently used

• EUSolver
• CVC4
• Second-Order Solver

• Course:
• Program Synthesis by Nadia Polikarpova@UCSD
• https://github.com/nadia-polikarpova/cse291-program-

synthesis/

62

Reference

• Enumerative
• Sumit Gulwani, Oleksandr Polozov, Rishabh Singh: Program Synthesis.

Foundations and Trends in Programming Languages 4(1-2): 1-119 (2017)
• Rajeev Alur, Rastislav Bodík, et al.: Syntax-guided synthesis. FMCAD

2013: 1-8

• FlashMeta
• Oleksandr Polozov, Sumit Gulwani: FlashMeta: a framework for

inductive program synthesis. OOPSLA 2015: 107-126

• Componen-Based Program Synthesis
• Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, Ashish Tiwari: Oracle-

guided component-based program synthesis. ICSE (1) 2010: 215-224

• L2S
• Yingfei Xiong, Bo Wang, et al.: Learning to Synthesize. GI'18: Genetic

Improvment Workshop, May 2018

63

