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Can grandmas program?

• The development of programming languages 
is to raise the level of abstraction
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Level of 
Abstraction

What is the next?

Haskell (1990), Prolog (1972)

Java

C

Assembly



Why cannot?

• Programming languages come with many guarantees
• Well-typed programs are guaranteed to compile

• Compiled programs have clear, well-defined semantics

• It is difficult to further raise the level of abstraction
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Program Compile Executable



Program Synthesis saves 
grandmas
• Generate a program from a specification

• Specification can be fuzzy

• Generation is not guaranteed

4

Specification Synthesize Program

“One of the most central problems in the 
theory of programming.”
----Amir Pneuli

Turing Award Recipient

“The fundamental way to improve 
software productivity.”

----Jiafu Xu
Founder of Software Research in China



History of Program Synthesis

1957

• Start of program 
synthesis

• Circuit synthesis 
problem by 
Alonzo Church

Before 
2000

• Deductive 
Synthesis

After 
2000

• Inductive 
Synthesis
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Application – Data Wrangling
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Application – Superoptimization
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i=round(i);
a = 6755399441055744.0;
i=(i+a)-a;



Application – Reducing 
Duplicated Programming
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Application – Program Repair
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Synthesize an expression to 
replace the buggy one



Application – Testing
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Synthesize a 
unit test to 

cover a path



Application – Analysis
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Synthesize a strategy for a class of problems

SMT Solver

Apply Tactic 1
If formula is long
Apply Tactic 2

Else
Apply Tactic 3

Strategies



Defining Program Synthesis
Classic 

Synthesis

• Input:

• A specification

• Output: A 
program that

• meets the 
specification

Program 
Optimization

• Input:

• A specification

• A cost function

• Output: A 
program that

• meets the 
specification, 
and

• maximizes the 
cost function

Program Estimation

• Input:

• A specification

• A dataset for target 
distribution

• Output: A program that

• meets the 
specification and

• maximizes the 
probability 
represented by the 
dataset
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Test Generation Superoptimization Program Repair



This Lecture

Classic Synthesis

• Problem Definition

• Enumerative

• Presentation-based

• Constraint-based

Program Estimation

• Problem Definition

• Estimating 
Probabilities

• Locating the most-
likely one
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SyGuS: Syntax-Guided 
Synthesis
• A standardization of classic program synthesis 

problem.

• Input: 
• grammar G

• specification S

• Output: 
• program P

• such that 𝑃 ∈ 𝐺 ∧ 𝑃 ↦ 𝑆
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Example: max

• Grammar:

• Specification:

• Expected answer：ite (x <= y) y x
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SyGuS format: Synth-Lib

• Synth-Lib uses a format similar to SMT-Lib
• http://sygus.seas.upenn.edu/files/SyGuS-IF.pdf
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(set-logic LIA)
(synth-fun max2 ((x Int) (y Int)) Int

((Start Int (x y
(+ Start Start)
(ite StartBool Start Start)))……))

(declare-var x Int)
(declare-var y Int)
(constraint (>= (max2 x y) x))
……

(check-synth)



Program Synthesis as a 
Search Problem
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Generate

Verify

Q1: How to generate the next 
program to be verified?

Q2: How to verify the correctness?

a program

correct

incorrect



Q1: How to verify correctness?

• If the specification includes only tests, 
• test the program.

• If the specification is a logic constraint S,
• verify 𝑃𝑟𝑜𝑔𝑟𝑎𝑚 → 𝑆 by an SMT solver.

• Synth-lib directly supports this
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Fast

Slow

Can we combine 
the two?



CEGIS: Counter-Example 
Guided Inductive Synthesis

• Constraint solvers give 
counter-examples

• Save counter-examples as 
tests

• First use tests to validate 
programs
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Generate

Verify

ProgramCounter-
Example

No Counter-
Example



Q2: How to generate the next 
program to be verified?
• Enumerative – exhaustive search

• Representation-based – manipulate sets of 
programs instead of single programs

• Constraint-based – convert to an SMT problem
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Top-Down Enumeration

• Expand according to the grammar
• Expr

• x, y, Expr+Expr, if(BoolExpr, Expr, Expr)

• y, Expr+Expr, if(BoolExpr, Expr, Expr)

• Expr+Expr, if(BoolExpr, Expr, Expr)

• x+Expr, y+Expr, Expr+Expr+Expr, if(BoolExpr, Expr, 
Expr)+Expr, if(BoolExpr, Expr, Expr)

• …
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Bottom-Up Enumeration

• Combine expressions from small to big
• size=1 

• x, y

• size=2

• size=3
• x+y

• size=4

• size=5
• x+(x+y), (x+y)+y

• size=6
• if(x<=y, x, y), …

22



Optimization

• Discard a partial program early

• Pruning
• None of the expansions could satisfy the specification

• Ite BoolExpr x x

• Equivalence reduction
• Equivalent to a previous program

• Expr+x, x+Expr
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Pruning

• Generate constraints from the partial program

• Generate constraints from each test
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Ite BoolExpr x x
(declare-fun boolExpr () Int)
(declare-fun max2 ((x Int) (y Int)) Int

(ite boolExpr x x)) 

max2(1,2)=2 (assert (= (max2 1 2) 2)) 

(check-sat)

Needs to balance between the benefit and the cost.



Equivalence reduction: How 
to determine equivalence?
• With an SMT solver

• Check satisfiability of 𝑓 𝑥, 𝑦 ≠ 𝑓′(𝑥, 𝑦)
• The cost may not pay off

• With tests
• Check if 𝑓 = 𝑓′ on all tests
• Not safe for logic specifications
• Does not work on partial programs

• With predefined-rules
• e.g Expr+x and x+Expr
• Needs customization for each domain
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How to generate the next 
program to be verified?
• Enumerative – exhaustive search

• Representation-based – manipulate sets of 
programs instead of single programs

• Constraint-based – convert to an SMT problem
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Representation-based

• Enumerative approaches manipulates single 
programs
• Inefficient: too many in number

• Can we manipulate sets of programs? e.g.
• Find a set that satisfies a specification
• Intersects sets for a conjunction of specifications
• Combine sets with program constructs to satisfy more 

complex specifications

• Representation-based
• Use data structures to represent such a set
• E.g. Grammars, Automata, Logic Formulas
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FlashMeta: Basic Idea

• Grammar is a representation of sets
• Size of a grammar = O(log(#Represented Program))

• The original grammar is too coarse-grained

• Idea: Annotate a non-terminal with a synthesis goal
• [2]Expr – expressions that evaluates to 2
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FlashMeta: Single Test

• Pick a test
• max2 1,2 = 2

• Refine the grammar
• 2 Expr → y ∣ 1 Expr + 1 Expr

∣ ite true BoolExpr 2 Expr ∗ Expr
∣ ite false BoolExpr ∗ Expr 2 Expr

• 1 Expr → x ∣ ⋯

• true BoolExpr → ¬ false BoolExpr
∣ true BoolExpr ∧ true BoolExpr
| 2 Expr ≤ 2 Expr ∣ ⋯

• …
• Assume a user-provided operation to perform the refinement

• Any program represented by the grammar passes the test
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Intersection of grammars

• Suppose
• 𝑁 → 𝑃1 ∣ ⋯ ∣ 𝑃𝑘
• 𝑁′ → 𝑃′1 ∣ ⋯ ∣ 𝑃′𝑘′

• 𝑁 ∩ 𝑁′ = 𝑃1 ∩ 𝑃1
′ ∣ 𝑃1 ∩ 𝑃2

′ ∣ ⋯ ∣ 𝑃1 ∩ 𝑃𝑘′
′

∣ 𝑃2 ∩ 𝑃1
′ ∣ 𝑃2 ∩ 𝑃2

′ ∣ ⋯ ∣ 𝑃2 ∩ 𝑃𝑘′
′

∣ ⋯
∣ 𝑃𝑘 ∩ 𝑃1

′ ∣ 𝑃𝑘 ∩ 𝑃2
′ ∣ ⋯ ∣ 𝑃𝑘 ∩ 𝑃𝑘′

′

• 𝑃1 ∩ 𝑃2 = ∅ if 𝑃1 and 𝑃2 are of different types

• 𝑓 𝑁1, … , 𝑁𝑘 ∩ 𝑓 𝑁1
′, … , 𝑁𝑘

′ = 𝑓(𝑁1 ∩ 𝑁1
′, … , 𝑁𝑘 ∩ 𝑁𝑘

′)
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FlashMeta: Multiple Tests

• Produce a grammar for each test

• Intersects the grammars
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FlashMeta: Discussion

• Avoids duplicated computation
• 1 Expr + 1 Expr
• 1 Expr is explored only once in FlashMeta

• Pruning is naturally included
• 1 Expr → Expr + Expr

• Needs user-provided operation for refinement
• [65536]Expr

• Trivia: original paper uses version space algebra, 
which is essentially grammar
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How to generate the next 
program to be verified?
• Enumerative – exhaustive search

• Representation-based – manipulate sets of 
programs instead of single programs

• Constraint-based – convert to an SMT problem
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Component-Based Program 
Synthesis
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+ - if x y

+ -

o1

o2

o3

o4

o5 o6 o7

i11 i12

i21 i22

i31 i32

i41 i42

i51 i53i52

1 2 3 4 5 6 7 8 9
Label variables：
• 𝑙𝑖11, 𝑙𝑖22, …
• 𝑙𝑜1, 𝑙𝑜2, …
• 𝑙𝑜: program output

Components

Connection 
Points

𝑙𝑜6 = 𝑙𝑖31 = 4



Generate constraints

• Test
• 𝑜6 = 1 ∧ 𝑜7 = 2

• 𝑜 ≥ 1 ∧ 𝑜 ≥ 2 ∧ 𝑜 = 1 ∨ 𝑜 = 2

• Component Semantics
• 𝑜1 = 𝑖11 + 𝑖12

• Label Semantics
• 𝑙𝑜1 = 𝑙𝑖11 → 𝑜1 = 𝑖11

• Label Range
• 𝑙𝑜1 ≥ 1 ∧ 𝑙𝑜1 ≤ 9

• Uniqueness of Output
• 𝑙𝑜1 ≠ 𝑙𝑜2

• No Cycle
• 𝑙𝑖11 < 𝑙𝑜1
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Why use connection points?
What if we remove connection 
points and output label 𝑙𝑜x, and 
use 𝑙𝑖𝑥𝑥 to represent the index 
of the output?



This Lecture

Classic Synthesis

• Problem Definition

• Enumerative

• Presentation-based

• Constraint-based

Program Estimation

• Problem Definition

• Estimating 
Probabilities

• Locating the most-
likely one
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Program Estimation

• Input: 
• program space G

• specification S

• context C

• a training set T of context-program pairs

• Output: 
• program P

• such that 𝑃 ∈ 𝐺 ∧ 𝑃 ↦ 𝑆 ∧ Pr(𝑃 ∣ 𝐶)

• where Pr represents the probability learned from 𝑇
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Program Estimation as an 
Search Problem
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Generate

Estimate

Program

Probability

Enough?
Program with the highest probability

Q3: How to estimate the 
probability Pr(𝑃 | 𝐶)?

Q4: How to find program 𝑃 such 
that Pr 𝑝𝑟𝑜𝑔 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 is the 
largest?



Learning to synthesis (L2S)

• A general framework to address program 
estimation

• Combining four tools
• Rewriting rules: defining a search problem

• Constraint solving: pruning off invalid choices in each 
step

• Machine-learned models: estimating the probabilities 
of choices in each step

• Search algorithms: solving the search problem



Example: Condition Completion

• Given a program without a conditional expression, 
completing the condition

• Useful in program repair
• Many bugs are caused by incorrect conditions
• Existing work could localize the faulty condition
• Can we generate a correct condition to replace the incorrect 

one?
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E → E “>12”
∣ E “>0”
∣ E “+” E
∣ “hours”
∣ “value”
∣ …

Space  of Conditions



Q3: Estimating the Probability

• Idea: Using machine learning
• To train over a set of programs and their contexts

• Problem: machine learning usually works for 
classification problems
• where the number of classes are usually small

• Idea: turn the generation problem into a set of 
classification problem along the grammar 
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Decomposing Generation

• In each step, we estimate the probabilities of the 
rules to expand the left-most non-terminal
• A classification problem
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E

E >12

hours

E

E >12

E

Expand E with 
E -> E “> 12”

Expand E with
E -> “hours”



Probability of the program

• 𝑃 𝑝𝑟𝑜𝑔 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 =
ς𝑖 𝑃 𝑟𝑢𝑙𝑒𝑖 𝑐𝑜𝑛𝑡𝑒𝑥𝑡, 𝑝𝑟𝑜𝑔𝑖 , 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖

• 𝑐𝑜𝑛𝑡𝑒𝑥𝑡: The context of the program
• 𝑝𝑟𝑜𝑔𝑖: The AST generated at the ith step
• 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖: The non-terminal to be expanded at the ith step
• rule: the chosen rule at the ith step
• 𝑝𝑟𝑜𝑔: the complete program
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E

E >12…;if( ) throw new ArgException();

𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑝𝑟𝑜𝑔𝑖

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖



Training models

• Train a model for each non-terminal
• to classify rules expanding this non-terminal

• Training set preparation
• The original training set:

• A set of programs

• Their contexts

• Decomposing the training set:
• Parse the programs

• Extract the rules chosen for each non-terminal
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Feature Engineering

• Extract features from
• 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 : The context

• 𝑝𝑟𝑜𝑔𝑖 : The generated partial AST

• 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖 : The position of the node to be expanded
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E

E >12
…;if( ) throw new ArgException();

𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑝𝑟𝑜𝑔𝑖

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖



Can we use a different 
expansion order?
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• Top-down

• Bottom-up
E

E >12

hourshours

E

hours

The order may greatly affect the performance of L2S.

E

E >12

hours

E

E >12

E



Annotations

• Introduce annotations to symbols
• 𝐸𝐷 indicates 𝐸 can be expanded downward

• 𝐸𝑈 indicates 𝐸 can be expanded upward

• 𝐸𝑈𝐷 indicates 𝐸 can be expanded in both directions



From Grammar to Rewriting 
Rules
Grammar Top-down Rules Bottom-up Rules

E → E “+” E ED ⇒ E → ED “+” ED EU ⇒ EU → E “+” ED

EU ⇒ EU → ED “+” E

E → E “>12” ED ⇒ E → ED “>12” EU ⇒ EU → E “>12”

E → “hours” ED ⇒ E → “hours” “hours”U ⇒ EU → “hours”

Creation Rules

⇒ ED

⇒ EDU

⇒ “hours”U

// starting from the root
// starting from a middle node
// starting from a leaf

Ending Rule EU ⇒ E



Example

• Top-down

• Bottom-up

E

E >12

hours

E

ED >12

ED

EU

E >12

hourshoursU

EU

hours

⇒ ED
ED ⇒

E → ED “>12”
ED ⇒

E → “hours”

⇒ “hours”U

“hours”U ⇒
EU → “hours” E

E >12

hours

EU ⇒
EU → E “+” ED

EU ⇒E



Unambiguity

• A set of rewriting rules are unambiguous if 
• there is at most one unique set of rule applications to 

construct any program.

• When the rule set is unambiguous, we still have
• 𝑃 𝑝𝑟𝑜𝑔 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 = ς𝑖 𝑃 𝑟𝑢𝑙𝑒𝑖 𝑐𝑜𝑛𝑡𝑒𝑥𝑡, 𝑝𝑟𝑜𝑔𝑖 , 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖
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Q4: How to find the most 
probable program?
• Local Optimal ≠ Global Optimal
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E0

E2 >12

hours

E0

E1 >0

value

E0

E2E1

0.6 * 0.2 
= 0.12

0.3 * 0.8 
= 0.24



Use Metaheuristic Search

• Beam Search: 
• Keep n most probable partial programs

• Expand the programs to get new programs

• Genetic Search: 
• Keep n most probably complete programs

• Mutate the programs to get new programs
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Applications

• Application 1:
• Repairing Conditional Expressions

• Application 2:
• Generating Code from Natural Language Expression
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Repairing Conditional 
Expressions
• Condition bugs are common

• Steps:
1. Localize a buggy if condition with SBFL and predicate 

switching
2. Synthesize an if condition to replace the buggy one
3. Validate the new program with tests

Missing boundary checks

- if (hours >= 24)
+ if (hours > 24)

withinOneDay=true;
Conditions too weak or too strong

lcm = Math.abs(a+b);
+ if (lcm == Integer.MIN_Value)
+   throw new ArithmeticException();



L2S Configuration

• Rewriting rules
• Bottom-up
• Estimate the leftmost variable first

• Machine learning
• Xgboost
• Manually designed features

• Constraints
• Type constraints & size constraints

• Search algorithm
• Beam search
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Results
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Number of Repaired Bugs

IF-Related General
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Precision

IF-Related General

Also repaired 8 unique bugs that have never been repaired by any approach.

Benchmark: Defects4J



Generating Code from 
Natural Language Expression
• Can we generate code 

automatically to avoid 
repetitive coding?

• Existing approaches 
use RNN to translate 
natural language 
descriptions to 
programs
• Long dependency 

problem: work poorly 
on long programs
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L2S Configuration

• Rewriting rules
• Top-down

• Machine learning
• A CNN-based network

• Constraints
• Size constraints

• Search algorithm
• Beam search
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A CNN-based Network 
Architecture
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Results
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Benchmark: HearthStone



Newest Results

• Replacing CNN with Transformer
• Transformer: a new neural architecture at 2017

• The flexibility of L2S allows to easily utilize new models
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Future Learning
• Surveys:

• Sumit Gulwani, Oleksandr Polozov, Rishabh Singh: Program 
Synthesis. Foundations and Trends in Programming Languages 
4(1-2): 1-119 (2017)

• Rajeev Alur, Rastislav Bodík, et al.: Syntax-guided synthesis. 
FMCAD 2013: 1-8

• Tools:
• sygus.org – the SyGuS competition, a good place to look at
• Some tools we recently used

• EUSolver
• CVC4
• Second-Order Solver

• Course:
• Program Synthesis by Nadia Polikarpova@UCSD
• https://github.com/nadia-polikarpova/cse291-program-

synthesis/
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