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Bug Fixing Costs a Lot

• Developers spend 50% of their time debugging[1]

• The development team often does not have 
enough resource for bug-fixing [2]

• Software is often released with known bugs [3]
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[1] Britton et al. Quantify the time and cost saved using reversible debuggers. Cambridge report, 2013
[2] J. Anvik, L. Hiew, and G. C. Murphy, “Coping with an open bug repository,” eXchange, 2005, pp. 35–39
[3] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan, “Bug isolation via remote program sampling,” in PLDI, 2003, pp. 141–154



Automated Program Repair
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Patches

Automated Program 
Repair System

Developer:
Repair Quality↑↑
Repair Efficiency↑ [1]

Specification

[1] Yida Tao, Jindae Kim, Sunghun Kim, Chang Xu: Automatically generated patches as debugging aids: a human study. SIGSOFT FSE 2014: 64-74



Weak Specification Problem

• Programs usually have only weak specification such 
as tests.

• Early systems aim to meet the specification, often 
producing low-quality patches.
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Low-Quality
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How to deal with the weak 
specification?
• Find the most-likely patch under the current 

context

• Precisions of Recent tools:
• ACS [1] +Patch Filtering [2] : 85%

• ConCap [3] : 84%

• This talk:
• A generalization of this weak specification problem

• A general framework to address this problem
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[1] Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang Huang, Lu Zhang. Precise Condition Synthesis for Program Repair. ICSE'17.
[2] Yingfei Xiong, Xinyuan Liu#, Muhan Zeng#, Lu Zhang, Gang Huang. Identifying Patch Correctness in Test-Based Program Repair. ICSE'18.
[3] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, Shing-Chi Cheung: Context-aware patch generation for better automated program repair. ICSE’18.



Program Estimation

• We aim to find the program that are most-likely to be 
written under the current context.

• We define this problem as program estimation:
• Given a context 𝑐𝑜𝑛𝑡𝑒𝑥𝑡, a (weak) specification 𝑠𝑝𝑒𝑐, and a 

space of programs 𝑃𝑟𝑜𝑔,
find program 
𝑝𝑟𝑜𝑔 = argmax𝑝𝑟𝑜𝑔∈𝑃𝑟𝑜𝑔∧𝑝𝑟𝑜𝑔⊢𝑠𝑝𝑒𝑐 𝑃(𝑝𝑟𝑜𝑔 | 𝑐𝑜𝑛𝑡𝑒𝑥𝑡)

• A sub-problem of program synthesis



Application: Test-based 
Program Repair

• Context = buggy program & at least one failed test

Passing Test

Failed Test

Buggy code



Application: Code Completion

• Context = partial code



Application:
Program by Examples
• Context = input/output examples



Application: Code Generation 
from Natural Language
• Context = natural language description



Application: Test Generation

• Context = program under test

• Probability = bug-detection capability
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public int add(int a, int b) {
…

}

public void testAdd() {
…

}

Context

Program to be generated



Challenges

• How to estimate the probability 𝑃(𝑝𝑟𝑜𝑔 | 𝑐𝑜𝑛𝑡𝑒𝑥𝑡)?

• How to find program 𝑠 such that 𝑝𝑟𝑜𝑔 ∈ 𝑃𝑟𝑜𝑔 and 
𝑃 𝑝𝑟𝑜𝑔 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 is the largest?



Learning to synthesis (L2S)

• A general framework to address program 
estimation

• Combining four tools
• Rewriting rules: defining a search problem

• Constraint solving: pruning off invalid choices in each 
step

• Machine-learned models: estimating the probabilities 
of choices in each step

• Search algorithms: solving the search problem



Example: Condition Completion

• Given a program without a conditional expression, 
completing the condition

• Useful in program repair
• Many bugs are caused by incorrect conditions
• Existing work could localize the faulty condition
• Can we generate a correct condition to replace the incorrect 

one?
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E → E “>12”
∣ E “>0”
∣ E “+” E
∣ “hours”
∣ “value”
∣ …

Space  of Conditions



Challenge 1: 
Estimating the Probability
• Idea: Using machine learning

• To train over a set of programs and their contexts

• Problem: machine learning usually works for 
classification problems
• where the number of classes are usually small

• Idea: turn the generation problem into a set of 
classification problem along the grammar 
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Decomposing Generation

• In each step, we estimate the probabilities of the 
rules to expand the left-most non-terminal
• A classification problem
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E

E >12

hours

E

E >12

E

Expand E with 
E -> E “> 12”

Expand E with
E -> “hours”



Probability of the program

• 𝑃 𝑝𝑟𝑜𝑔 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 =
ς𝑖 𝑃 𝑟𝑢𝑙𝑒𝑖 𝑐𝑜𝑛𝑡𝑒𝑥𝑡, 𝑝𝑟𝑜𝑔𝑖 , 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖

• 𝑐𝑜𝑛𝑡𝑒𝑥𝑡: The context of the program
• 𝑝𝑟𝑜𝑔𝑖: The AST generated at the ith step
• 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖: The non-terminal to be expanded at the ith step
• rule: the chosen rule at the ith step
• 𝑝𝑟𝑜𝑔: the complete program
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E

E >12…;if( ) throw new ArgException();

𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑝𝑟𝑜𝑔𝑖

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖



Training models

• Train a model for each non-terminal
• to classify rules expanding this non-terminal

• Training set preparation
• The original training set:

• A set of programs

• Their contexts

• Decomposing the training set:
• Parse the programs

• Extract the rules chosen for each non-terminal
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Feature Engineering

• Extract features from
• 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 : The context

• 𝑝𝑟𝑜𝑔𝑖 : The generated partial AST

• 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖 : The position of the node to be expanded
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E

E >12
…;if( ) throw new ArgException();

𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑝𝑟𝑜𝑔𝑖

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖



Can we choose non-leftmost 
nonterminal?

• If expanding V gives us more confidence, can we 
expand V first?

• Yes. We still have

𝑃 𝑝𝑟𝑜𝑔 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 =ෑ

𝑖

𝑃 𝑟𝑢𝑙𝑒𝑖 𝑐𝑜𝑛𝑡𝑒𝑥𝑡, 𝑝𝑟𝑜𝑔𝑖 , 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖
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E

E V>



Can we use a different 
expansion order?
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• Top-down

• Bottom-up
E

E >12

hourshours

E

hours

The order may greatly affect the performance of L2S.

E

E >12

hours

E

E >12

E



Annotations

• Introduce annotations to symbols
• 𝐸𝐷 indicates 𝐸 can be expanded downward

• 𝐸𝑈 indicates 𝐸 can be expanded upward

• 𝐸𝑈𝐷 indicates 𝐸 can be expanded in both directions



From Grammar to Rewriting 
Rules
Grammar Top-down Rules Bottom-up Rules

E → E “+” E ED ⇒ E → ED “+” ED EU ⇒ EU → E “+” ED

EU ⇒ EU → ED “+” E

E → E “>12” ED ⇒ E → ED “>12” EU ⇒ EU → E “>12”

E → “hours” ED ⇒ E → “hours” “hours”U ⇒ EU → “hours”

Creation Rules

⇒ ED

⇒ EDU

⇒ “hours”U

// starting from the root
// starting from a middle node
// starting from a leaf

Ending Rule EU ⇒ E



Example

• Top-down

• Bottom-up

E

E >12

hours

E

ED >12

ED

EU

E >12

hourshoursU

EU

hours

⇒ ED
ED ⇒

E → ED “>12”
ED ⇒

E → “hours”

⇒ “hours”U

“hours”D ⇒
E → “hours” E

E >12

hours

EU ⇒
EU → E “+” ED

EU ⇒E



Unambiguity

• A set of rewriting rules are unambiguous if 
• there is at most one unique set of rule applications to 

construct any program.

• When the rule set is unambiguous, we still have
• 𝑃 𝑝𝑟𝑜𝑔 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 = ς𝑖 𝑃 𝑟𝑢𝑙𝑒𝑖 𝑐𝑜𝑛𝑡𝑒𝑥𝑡, 𝑝𝑟𝑜𝑔𝑖 , 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖
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Challenge 2: How to find the 
most probable program?
• Local Optimal ≠ Global Optimal

26

E0

E2 >12

hours

E0

E1 >0

value

E0

E2E1

0.6 * 0.2 
= 0.12

0.3 * 0.8 
= 0.24



Idea 1: Use Metaheuristic 
Search
• Beam Search: 

• Keep n most probable partial programs

• Expand the programs to get new programs

• Genetic Search: 
• Keep n most probably complete programs

• Mutate the programs to get new programs
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Idea 2: Pruning off Invalid Choices

• Generating constraints from the partial AST
• Type constraints
• Size constraints
• Semantic constraints from E

• Use a solver to determine invalid choices
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E

ED >12

ED ⇒ E → ED “+” ED

∣ E → ED “>12”
|   E → “hours”



Summary

• L2S Combines four tools
• Rewriting rules: defining a search problem

• Constraint solving: pruning off invalid choices in each 
step

• Machine-learned models: estimating the probabilities 
of choices in each step

• Search algorithms: solving the search problem



Evaluation

• Evaluation 1:
• Repairing Conditional Expressions

• Evaluation 2:
• Generating Code from Natural Language Expression
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Repairing Conditional 
Expressions
• Condition bugs are common

• Steps:
1. Localize a buggy if condition with SBFL and predicate 

switching
2. Synthesize an if condition to replace the buggy one
3. Validate the new program with tests

hours = convert(value);
+ if (hours > 12)
+   throw new ArithmeticException();

Missing boundary checks

- if (hours >= 24)
+ if (hours > 24)

withinOneDay=true;
Conditions too weak or too strong



L2S Configuration

• Rewriting rules
• Bottom-up
• Estimate the leftmost variable first

• Machine learning
• Xgboost
• Manually designed features

• Constraints
• Type constraints & size constraints

• Search algorithm
• Beam search
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Results
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Also repaired 8 unique bugs that have never been repaired by any approach.

Benchmark: Defects4J



Generating Code from 
Natural Language Expression
• Can we generate code 

automatically to avoid 
repetitive coding?

• Existing approaches 
use RNN to translate 
natural language 
descriptions to 
programs
• Long dependency 

problem: work poorly 
on long programs
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L2S Configuration

• Rewriting rules
• Top-down

• Machine learning
• A CNN-based network

• Constraints
• Size constraints

• Search algorithm
• Beam search
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A CNN-based Network 
Architecture
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Results
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Benchmark: HearthStone



Newest Results

• Replacing CNN with Transformer
• Transformer: a new neural architecture at 2017

• The flexibility of L2S allows to easily utilize new models
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Conclusion

• Program Estimation: to find the most probable 
program under a context

• L2S: combining four tools to solve program 
estimation

• Why worked?
• Machine learning to estimate probability

• Rewriting rules and constraints to confine the space

• Search algorithms to locate the best program

• Better to combine the tools we have
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深度学习程序缺陷实证研究

现象

•崩溃/异常(64%)

•效果差(23%)

•效率低(5%)

原因

•错误结构或参数(22%)

•张量维数不匹配(14%)

•混淆Tensorflow和传统语
言(10%)

• Tensorflow API升级(25%)

•误用Tensorflow API(19%)

•网络模型低效(1.7%)

挑战

•概率正确

•巧合正确

•执行随机

•全面依赖

•行为未知
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Thank you for listening!


