

Learning to Synthesize

Yingfei Xiong
Peking University
SAVE 2019

Bug Fixing Costs a Lot

- Developers spend 50% of their time debugging^[1]
- The development team often does not have enough resource for bug-fixing [2]
- Software is often released with known bugs [3]

^[1] Britton et al. Quantify the time and cost saved using reversible debuggers. Cambridge report, 2013

^[2] J. Anvik, L. Hiew, and G. C. Murphy, "Coping with an open bug repository," eXchange, 2005, pp. 35–39

^[3] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan, "Bug isolation via remote program sampling," in PLDI, 2003, pp. 141–154

Automated Program Repair

Weak Specification Problem

- Programs usually have only weak specification such as tests.
- Early systems aim to meet the specification, often producing low-quality patches.

Precisions of some popular systems (before 2016)

How to deal with the weak specification?

- Find the most-likely patch under the current context
- Precisions of Recent tools:
 - ACS [1] +Patch Filtering [2]: 85%
 - ConCap [3]: 84%
- This talk:
 - A generalization of this weak specification problem
 - A general framework to address this problem

^[1] Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang Huang, Lu Zhang. Precise Condition Synthesis for Program Repair. ICSE'17.

^[2] Yingfei Xiong, Xinyuan Liu#, Muhan Zeng#, Lu Zhang, Gang Huang. Identifying Patch Correctness in Test-Based Program Repair. ICSE'18.

^[3] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, Shing-Chi Cheung: Context-aware patch generation for better automated program repair. ICSE'18.

Program Estimation

 We aim to find the program that are most-likely to be written under the current context.

```
public static long factorial(final int n) {
    if( ... ) { }
    n < 19
    n < 21
}</pre>

n < 21
</pre>
```

- We define this problem as program estimation:
 - Given a context context, a (weak) specification spec, and a space of programs Prog, find program $prog = \operatorname{argmax}_{prog \in Prog \land prog \vdash spec} P(prog \mid context)$
- A sub-problem of program synthesis

Application: Test-based Program Repair

Context = buggy program & at least one failed test

Passing Test

Failed Test

Buggy code

```
/** Compute the maximum of two values
  * @param a first value
  * @param b second value
  * @return b if a is lesser or equal to b, a otherwise
  */
public static int max(final int a, final int b) {
    return (a <= b) ? a : b;
}</pre>
```

Application: Code Completion

Context = partial code

```
public static long fibonacci(int n) {
   if ( ?? ) return n;
   else return fibonacci(n-1) + fibonacci(n-2);
}
```

Application: Program by Examples

Context = input/output examples

Input	Output
0d 5h 26m	n 5:00
0d 4h 57m	4:30
0d 4h 27m	4:00
0d 3h 57m	a 3:30

Application: Code Generation from Natural Language

Context = natural language description

```
/**
 * Internal helper method for natural logarithm function.
 * @param x original argument of the natural logarithm function
 * @param hiPrec extra bits of precision on output (To Be Confirmed)
 * @return log(x)
 */
```

Application: Test Generation

- Context = program under test
- Probability = bug-detection capability

```
public int add(int a, int b) {
    ...
}
Context

public void testAdd() {
    Program to be generated
```

Challenges

• How to estimate the probability $P(prog \mid context)$?

• How to find program s such that $prog \in Prog$ and $P(prog \mid context)$ is the largest?

Learning to synthesis (L2S)

A general framework to address program estimation

- Combining four tools
 - Rewriting rules: defining a search problem
 - Constraint solving: pruning off invalid choices in each step
 - Machine-learned models: estimating the probabilities of choices in each step
 - Search algorithms: solving the search problem

Example: Condition Completion

 Given a program without a conditional expression, completing the condition

```
public static long fibonacci(int n) {
   if ( ?? ) return n;
   else return fibonacci(n-1) + fibonacci(n-2);
}
```

```
E → E ">12"

| E ">0"

| E "+" E

| "hours"

| "value"

| ...
```

Space of Conditions

- Useful in program repair
 - Many bugs are caused by incorrect conditions
 - Existing work could localize the faulty condition
 - Can we generate a correct condition to replace the incorrect one?

Challenge 1: Estimating the Probability

- Idea: Using machine learning
 - To train over a set of programs and their contexts
- Problem: machine learning usually works for classification problems
 - where the number of classes are usually small
- Idea: turn the generation problem into a set of classification problem along the grammar

Decomposing Generation

- In each step, we estimate the probabilities of the rules to expand the left-most non-terminal
 - A classification problem

Probability of the program

- $P(prog \mid context) = \prod_{i} P(rule_i \mid context, prog_i, position_i)$
 - *context*: The context of the program
 - $prog_i$: The AST generated at the ith step
 - $position_i$: The non-terminal to be expanded at the ith step
 - rule: the chosen rule at the ith step
 - *prog*: the complete program

Training models

- Train a model for each non-terminal
 - to classify rules expanding this non-terminal
- Training set preparation
 - The original training set:
 - A set of programs
 - Their contexts
 - Decomposing the training set:
 - Parse the programs
 - Extract the rules chosen for each non-terminal

Feature Engineering

- Extract features from
 - context : The context
 - $prog_i$: The generated partial AST
 - $position_i$: The position of the node to be expanded

Can we choose non-leftmost nonterminal?

 If expanding V gives us more confidence, can we expand V first?

Yes. We still have

$$P(prog \mid context) = \prod_{i} P(rule_i \mid context, prog_i, position_i)$$

Can we use a different expansion order?

Top-down

The order may greatly affect the performance of L2S.

Annotations

- Introduce annotations to symbols
 - E^D indicates E can be expanded downward
 - E^U indicates E can be expanded upward
 - E^{UD} indicates E can be expanded in both directions

From Grammar to Rewriting Rules

Grammar	Top-down Rules	Bottom-up Rules
E → E "+" E	$E^{D} \Rightarrow E \rightarrow E^{D}$ "+" E^{D}	$ \mathbf{E}^{\mathbf{U}} \Rightarrow \mathbf{E}^{\mathbf{U}} \rightarrow \mathbf{E} "+" \mathbf{E}^{\mathbf{D}} \\ \mathbf{E}^{\mathbf{U}} \Rightarrow \mathbf{E}^{\mathbf{U}} \rightarrow \mathbf{E}^{\mathbf{D}} "+" \mathbf{E} $
E → E ">12"	$E^{D} \Rightarrow E \rightarrow E^{D} ">12"$	$E^{U} \Rightarrow E^{U} \rightarrow E$ ">12"
$E \rightarrow$ "hours"	$E^D \Rightarrow E \rightarrow \text{"hours"}$	"hours" $\Rightarrow E^U \rightarrow$ "hours"

Creation Rules ⇒ E^D // starting from the root ⇒ E^{DU} // starting from a middle node ⇒ "hours" // starting from a leaf Ending Rule $E^U \Rightarrow E$

Example

• Top-down

Bottom-up

Unambiguity

- A set of rewriting rules are unambiguous if
 - there is at most one unique set of rule applications to construct any program.

- When the rule set is unambiguous, we still have
 - $P(prog \mid context) = \prod_{i} P(rule_i \mid context, prog_i, position_i)$

Challenge 2: How to find the most probable program?

Local Optimal ≠ Global Optimal

$$E_0$$
 $E \to E " > 12" 0.3$
 $E \to E " > 0" 0.6$

$$0.6 * 0.2$$
 $E_1 > 0$ value

$$0.3 * 0.8$$

= 0.24 E_2 >12

Idea 1: Use Metaheuristic Search

- Beam Search:
 - Keep n most probable partial programs
 - Expand the programs to get new programs
- Genetic Search:
 - Keep n most probably complete programs
 - Mutate the programs to get new programs

Idea 2: Pruning off Invalid Choices

$$E^{D} \Rightarrow E \rightarrow E^{D} "+" E^{D}$$

$$\mid E \rightarrow E^{D} ">12"$$

$$\mid E \rightarrow "hours"$$

- Generating constraints from the partial AST
 - Type constraints
 - Size constraints
 - Semantic constraints from E
- Use a solver to determine invalid choices

Summary

- L2S Combines four tools
 - Rewriting rules: defining a search problem
 - Constraint solving: pruning off invalid choices in each step
 - Machine-learned models: estimating the probabilities of choices in each step
 - Search algorithms: solving the search problem

Evaluation

- Evaluation 1:
 - Repairing Conditional Expressions
- Evaluation 2:
 - Generating Code from Natural Language Expression

Repairing Conditional Expressions

Condition bugs are common

```
hours = convert(value);
+ if (hours > 12)
+ throw new ArithmeticException();
```

Missing boundary checks

```
if (hours >= 24)+ if (hours > 24)withinOneDay=true;
```

Conditions too weak or too strong

Steps:

- Localize a buggy if condition with SBFL and predicate switching
- 2. Synthesize an if condition to replace the buggy one
- 3. Validate the new program with tests

L2S Configuration

- Rewriting rules
 - Bottom-up
 - Estimate the leftmost variable first
- Machine learning
 - Xgboost
 - Manually designed features
- Constraints
 - Type constraints & size constraints
- Search algorithm
 - Beam search

Results

Benchmark: Defects4J

Also repaired 8 unique bugs that have never been repaired by any approach.

Generating Code from Natural Language Expression

- Can we generate code automatically to avoid repetitive coding?
- Existing approaches use RNN to translate natural language descriptions to programs
 - Long dependency problem: work poorly on long programs


```
[NAME]

Acidic Swamp Ooze

[ATK] 3

[DEF] 2

[COST] 2

[DUR] -1

[TYPE] Minion

[CLASS] Neutral

[RACE] NIL

[RARITY] Common

[DESCRIPTION]

"Battlecry: Destroy Your Opponent's Weapon"
```


L2S Configuration

- Rewriting rules
 - Top-down
- Machine learning
 - A CNN-based network
- Constraints
 - Size constraints
- Search algorithm
 - Beam search

A CNN-based Network Architecture

Benchmark: HearthStone

Model	StrAcc	Acc+	BLEU
LPN (Ling et al. 2016)	6.1	_	67.1
SEQ2TREE (Dong and Lapata 2016)	1.5	_	53.4
SNM (Yin and Neubig 2017)	16.2	~ 18.2	75.8
ASN (Rabinovich, Stern, and Klein 2017)	18.2	_	77.6
ASN+SUPATT (Rabinovich, Stern, and Klein 2017)	22.7	-	79.2
Our system	27.3	30.3	79.6

Newest Results

- Replacing CNN with Transformer
 - Transformer: a new neural architecture at 2017
 - The flexibility of L2S allows to easily utilize new models

	Model	StrAcc	Acc+	BLEU
Plain	LPN (Ling et al., 2016)	6.1	_	67.1
Plê	SEQ2TREE (Dong and Lapata, 2016)	1.5	_	53.4
	YN17 (Yin and Neubig, 2017)	16.2	$\sim\!18.2$	75.8
	ASN (Rabinovich et al., 2017)	18.2	_	77.6
	ReCode (Hayati et al., 2018)	19.6	_	78.4
	CodeTrans-A	25.8	25.8	79.3
pa.	ASN+SUPATT (Rabinovich et al., 2017)) 22.7	_	79.2
ctured	SZM19 (Sun et al., 2019)	27.3	30.3	79.6
Stru	CodeTrans-B	31.8	33.3	80.8

Conclusion

- Program Estimation: to find the most probable program under a context
- L2S: combining four tools to solve program estimation
- Why worked?
 - Machine learning to estimate probability
 - Rewriting rules and constraints to confine the space
 - Search algorithms to locate the best program
- Better to combine the tools we have

深度学习程序缺陷实证研究

现象

- 崩溃/异常(64%)
- 效果差(23%)
- 效率低(5%)

原因

- 错误结构或参数(22%)
- 张量维数不匹配(14%)
- 混淆Tensorflow和传统语言(10%)
- Tensorflow API升级(25%)
- 误用Tensorflow API(19%)
- 网络模型低效(1.7%)

挑战

- 概率正确
- 巧合正确
- 执行随机
- 全面依赖
- 行为未知

Thank you for listening!

Main References:

- [1] Yingfei Xiong, Bo Wang, Guirong Fu, Linfei Zang. Learning to Synthesize. Gl'18: Genetic Improvment Workshop, May 2018
- [2] Zeyu Sun, Qihao Zhu, Lili Mou, Yingfei Xiong, Ge Li, Lu Zhang. A Grammar-Based Structural CNN Decoder for Code Generation. AAAI'19: Thirty-Third AAAI Conference on Artificial Intelligence, January 2019.
- [3] Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, Lu Zhang. An Empirical Study on TensorFlow Program Bugs. ISSTA'18: International Symposium on Software Testing and Analysis, July 2018.