Learning to Synthesize

Yingfei Xiong
Peking University
SAVE 2019

Bug Fixing Costs a Lot

 Developers spend 50% of their time debugging!!]

* The development team often does not have
enough resource for bug-fixing 4

* Software is often released with known bugs 3!

R e
U L =

[1] Britton et al. Quantify the time and cost saved using reversible debuggers. Cambridge report, 2013
[2]J. Anvik, L. Hiew, and G. C. Murphy, “Coping with an open bug repository,” eXchange, 2005, pp. 35-39
[3] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan, “Bug isolation via remote program sampling,” in PLDI, 2003, pp. 141-154

Automated Program Repair

o
Program » » High-Quality » I$|J
Patches T

Developer:
Repair QualityTT
Repair EfficiencyT 1

Specification Automated Program
Repair System

3 [1] Yida Tao, Jindae Kim, Sunghun Kim, Chang Xu: Automatically generated patches as debugging aids: a human study. SIGSOFT FSE 2014: 64-74

Weak Specification Problem

* Programs usually have only weak specification such
as tests.

* Early systems aim to meet the specification, often
producing low-quality patches.

60.00% .
40.00% 36:50% 32.70% 4

20.00% 18.50% 14.30%

0.00% Low-Quality » m'l

Prophet Angelix jGenProg Nopol Patches T
Developer:
Precisions of some popular systems Repair Qualityll
(before 2016) Repair Efficiency!M

4 [1] Yida Tao, Jindae Kim, Sunghun Kim, Chang Xu: Automatically generated patches as debugging aids: a human study. SIGSOFT FSE 2014: 64-74

How to deal with the weak
specification?

* Find the most-likely patch under the current
context
* Precisions of Recent tools:
« ACS ! +Patch Filtering!2: 85%
* ConCap3!: 84%

* This talk:
* A generalization of this weak specification problem

e A general framework to address this problem

[1] Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang Huang, Lu Zhang. Precise Condition Synthesis for Program Repair. ICSE'17.
[2] Yingfei Xiong, Xinyuan Liu#, Muhan Zeng#, Lu Zhang, Gang Huang. Identifying Patch Correctness in Test-Based Program Repair. ICSE'18.
[3] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, Shing-Chi Cheung: Context-aware patch generation for better automated program repair. ICSE’18.

Program Estimation

 We aim to find the program that are most-likely to be
written under the current context.

public static long factorial(final int n){ Math.abs(n) <

if(...){ } n == Integer.Max VALUE
} <n < 1
n <

* We define this problem as program estimation:

* Given a context context, a (weak) specification spec, and a
space of programs Prog,
find program

prog = argmaXyrogerProgaprogrspec P(prog | Context)
* A sub-problem of program synthesis

Application: Test-based
Program Repair

e Context = buggy program & at least one failed test

Buggy code
Passing Test

/** Compute the maximum of two values

* a first value

* b second value

* b if a is lesser or equal to b, a otherwise

. */
[Failed Test } public static int max(final int a, final int b) {

return (a <= b) 7?7 a : b;

}

Application: Code Completion

* Context = partial code

public static long fibonacci(int n) {
if C 272) return n;
else return fibonacci(n-1) + fibonacci(n-2);

}

Application:
Program by Examples

* Context = input/output examples

Input Output

Od 5h 26m 5:00
0d 4h 57m 4:30
Od 4h 27m 4:00
Od 3h 57m 3:30

Application: Code Generation
from Natural Language

* Context = natural language description

/**
* Internal helper method for natural logarithm function.
* X original argument of the natural logarithm function
* hiPrec extra bits of precision on output (To Be Confirmed)

* log(xD
*/I

Application: Test Generation

e Context = program under test
* Probability = bug-detection capability

public int add(int a, int b) {

Context

}

public void testAdd() {
Program to be generated

}

11

Challenges

* How to estimate the probability P(prog | context)?

* How to find program s such that prog € Prog and
P(prog | context) is the largest?

Learning to synthesis (L2S)

* A general framework to address program
estimation

 Combining four tools
* Rewriting rules: defining a search problem

* Constraint solving: pruning off invalid choices in each
step

* Machine-learned models: estimating the probabilities
of choices in each step

* Search algorithms: solving the search problem

Example: Condition Completion

* Given a program without a conditional expression,

completing the condition
E % E II>12H

public static long fibonacci(int n) { | E “>0”
if C 22) return n; | E “+” E
else return fibonacci(n-1) + fibonacci(n-2); . ,

1 | “hours
| “value”

. . Space of Conditions
e Useful in program repair

* Many bugs are caused by incorrect conditions
 Existing work could localize the faulty condition

* Can we generate a correct condition to replace the incorrect
one”?

14

Challenge 1:
Estimating the Probability

* Idea: Using machine learning
* To train over a set of programs and their contexts

* Problem: machine learning usually works for
classification problems
* where the number of classes are usually small

* |dea: turn the generation problem into a set of
classification problem along the grammar

Decomposing Generation

* In each step, we estimate the probabilities of the
rules to expand the left-most non-terminal

* A classification problem

E E E
& &
» E >12 E >12
“
hours
Expand E with Expand E with

E->E“>12" E -> “hours”

16

Probability of the program

 P(prog | context) =
[I; P(rule; | context,prog;, position;)

context: The context of the program

prog;: The AST generated at the ith step

position;: The non-terminal to be expanded at the ith step
rule: the chosen rule at the ith step

prog: the complete program

context proA Ji corAltext
/—Aﬁ (: I \
Sif(¢ o,) throw new ArgException();

position;

17

Training models

* Train a model for each non-terminal
* to classify rules expanding this non-terminal

* Training set preparation
* The original training set:

* Aset of programs
* Their contexts

 Decomposing the training set:
* Parse the programs
e Extract the rules chosen for each non-terminal

18

Feature Engineering

* Extract features from
* context : The context
* prog; : The generated partial AST
* position; : The position of the node to be expanded

context prog; context
Hﬁ))
e \
o if(© b) throw new ArgException();
—

position;

19

Can we choose non-leftmost
nonterminal?

E

E >V

* If expanding V gives us more confidence, can we
expand V first?

* Yes. We still have
P(prog | context) = HP(rule; | context, prog;, position;)
i

20

Can we use a different
expansion order?

e Top-down
E E E
&
E >12 » E >12
&~
hours
* Bottom-up
E
/\
m | =
~ ~
hours hours hours

21 The order may greatly affect the performance of L2S.

Annotations

* Introduce annotations to symbols
« ED indicates E can be expanded downward
» EV indicates E can be expanded upward
« EYD indicates E can be expanded in both directions

Rules

-rom Grammar to Rewriting

Grammar Top-down Rules Bottom-up Rules
E-E“+E |E°P=>E->EP“+EP EVsSEY-E“EP

EY = EY - EP “+"E
E->E“12” E’=>E->EP“12” | EY=>EY-SE“12”
E - “hours” |EP = E = “hours” “hours”Y = EY - “hours”

Creation Rules

= ED
= EDU

// starting from the root
// starting from a middle node
= “hours”Y // starting from a leaf

Ending Rule

EVU = E

Example

* Top-down

EP =

= iD ED E - ED “>12”

* Bottom-up
“hours”® =
E - “hours”

= “hours”Y l

EP =
E E - “hours” E
T &~
ED >12 E >12
“
hours
EVU =
EU N E II+II ED 5
E EVU =E
EU — >
E >12 E >12
el - —
hours hours

hourSU hOU IS

Unambiguity

* A set of rewriting rules are unambiguous if

* there is at most one unique set of rule applications to
construct any program.

 When the rule set is unambiguous, we still have
* P(prog | context) = []; P(rule; | context,prog;, position;)

25

Challenge 2:
most probab

* Local Optimal # Global Optimal

How to find the
e program?

o ES>E“>12" 0.3
O'E—SE“>0" 0.6
E — “hours” 0.1 E — “hours” 0.8
E; E— “value” 0.2 E, E — “value” 0.1
E—S-E“+”E 0.05 E—-E“+”E 0.05
E, E,
=0.12 E; >0 _ E, >12
E =0.24 =
value hours

26

ldea 1: Use Metaheuristic
Search

* Beam Search:
* Keep n most probable partial programs
* Expand the programs to get new programs

e Genetic Search:

* Keep n most probably complete programs
* Mutate the programs to get new programs

27

ldea 2: Pruning off Invalid Choices

EP = E - EP “+” EP

| {))

@ >12 | E — “hours”

* Generating constraints from the partial AST
* Type constraints
* Size constraints
* Semantic constraints from E

e Use a solver to determine invalid choices

28

Summary

e L2S Combines four tools
* Rewriting rules: defining a search problem

* Constraint solving: pruning off invalid choices in each
step

* Machine-learned models: estimating the probabilities
of choices in each step

* Search algorithms: solving the search problem

Evaluation

* Evaluation 1:
* Repairing Conditional Expressions

* Evaluation 2:
* Generating Code from Natural Language Expression

30

Repairing Conditional
Expressions

* Condition bugs are common

hours = convert(value);
+ if (hours > 12) Missing boundary checks
+ throw new ArithmeticException();

- if (hours >= 24)
+ if (hours > 24) Conditions too weak or too strong
withinOneDay=true;

* Steps:
1. Localize a buggy if condition with SBFL and predicate
switching

2. Synthesize an if condition to replace the buggy one
3. Validate the new program with tests

L2S Configuration

* Rewriting rules
* Bottom-up
e Estimate the leftmost variable first

* Machine learning
e Xgboost
 Manually designed features

* Constraints
* Type constraints & size constraints

* Search algorithm
e Beam search

32

Results

Benchmark: Defects4)

Number of Repaired Bugs Precision

30 90
80

25
70

20 60
50

15
40

10 I I 30 I I
20

5
10

0 0

ConCap SimFix Elixir ConCap SimFix Elixir
W |[F-Related General M |F-Related General

Also repaired 8 unique bugs that have never been repaired by any approach.

33

Generating Code from
Natural Language Expression

* Can we generate code
automatically to avoid
repetitive coding?

P — p— p— p— p— — — —
—

 Existing approaches
use RNN to translate
natural language
descriptions to

():
programs ey
(). (y 2,
CHARACTER_CLASS.ALL, CARD_RARITY.COMMON,
L4 Long dependency battlecry=Battlecry(Destroy(), WeaponSelector(EnemyPlayer())))
R] _minion(self, pl):
problem: work poorly return winton(s, 23

on long programs

34

L2S Configuration

* Rewriting rules
e Top-down

* Machine learning
* A CNN-based network

* Constraints
* Size constraints

 Search algorithm
e Beam search

35

A CNN-based Network
Architecture

Information Type CNN Modules Pooling & Attention Prediction
Program Q Max Attentive I
Context e 2o =M CNN l > l
description PRilE S TL_BE
Predicted CNN . i [Attentive
rules i pooling
Partial AST ' @
¥ = | [
: Tree-based | | Pre-order » Max Attentive = >
Partial AST —— "“c\n " CNN pooling |-i—»| pooling © g
B
Tree-path ‘4 .| Attentive
Ancestors —— " ~\N pooling
Position :
Scope Name »| Embedding
e ».

36

Results

Benchmark: HearthStone

Model StrAcc Acc+ BLEU
LPN (Ling et al. 2016) 6.1 — 67.1
SEQ2TREE (Dong and Lapata 2016) 1.5 = 534
SNM (Yin and Neubig 2017) 16.2 ~18.2 75.8
ASN (Rabinovich, Stern, and Klein 2017) 18.2 - 77.6
ASN+SUPATT

(Rabinovich, Stern, and Klein 2017) 22.7 B 79.2

Our system 27.3 303 79.6

37

Newest Results

* Replacing CNN with Transformer
* Transformer: a new neural architecture at 2017
* The flexibility of L2S allows to easily utilize new models

Model StrAcc Acc+ BLEU

£ | LPN (Ling et al., 2016) 6.1 - 671

A& | SEQ2TREE (Dong and Lapata, 2016) 1.5 - 534

YNI17 (Yin and Neubig, 2017) 16.2 ~18.2 75.8

ASN (Rabinovich et al., 2017) 18.2 — 77.6

ReCode (Hayati et al., 2018) 19.6 - 78.4

‘ CodeTrans-A 258 258 79.3

E ASN+SUPATT (Rabinovich et al., 2017) 22.7 — 79.2

g SZM19 (Sun et al., 2019) 27.3 30.3 79.6
—

| £ | CodeTrans B 318 333 808 |

38

Conclusion

* Program Estimation: to find the most probable
program under a context

e |L2S: combining four tools to solve program
estimation

* Why worked?
 Machine learning to estimate probability
* Rewriting rules and constraints to confine the space
e Search algorithms to locate the best program

e Better to combine the tools we have

NS

\—‘ﬁ‘

o JHI/ T (64%)
o SR 72(23%)
o RERAK(5%)

40

o B IR S5 BN S E(22%)

o K EAELAILAC(14%)

o VB VG Tensorflow 4% S 15
5 (10%)

e Tensorflow APIF}25(25%)

e 1% HTensorflow API(19%)

o X LA AU (1.7%)

o MR IEHf
o IG5 IEW
o PATHENL
o 4 THI A 5t
o IT NARF

Thank you for listening!

Main References:

[1] Yingfei Xiong, Bo Wang, Guirong Fu, Linfei Zang. Learning to Synthesize. GI'18:
Genetic Improvment Workshop, May 2018

[2] Zeyu Sun, Qihao Zhu, Lili Mou, Yingfei Xiong, Ge Li, Lu Zhang. A Grammar-Based
Structural CNN Decoder for Code Generation. AAAI'19: Thirty-Third AAAI
Conference on Artificial Intelligence, January 2019.

[3] Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, Lu Zhang. An
Empirical Study on TensorFlow Program Bugs. ISSTA'18: International Symposium
on Software Testing and Analysis, July 2018.

41

