
Learning to Synthesize

Yingfei Xiong

Peking University

SAVE 2019

Bug Fixing Costs a Lot

• Developers spend 50% of their time debugging[1]

• The development team often does not have
enough resource for bug-fixing [2]

• Software is often released with known bugs [3]

2

[1] Britton et al. Quantify the time and cost saved using reversible debuggers. Cambridge report, 2013
[2] J. Anvik, L. Hiew, and G. C. Murphy, “Coping with an open bug repository,” eXchange, 2005, pp. 35–39
[3] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan, “Bug isolation via remote program sampling,” in PLDI, 2003, pp. 141–154

Automated Program Repair

3

Program
High-Quality

Patches

Automated Program
Repair System

Developer:
Repair Quality↑↑
Repair Efficiency↑ [1]

Specification

[1] Yida Tao, Jindae Kim, Sunghun Kim, Chang Xu: Automatically generated patches as debugging aids: a human study. SIGSOFT FSE 2014: 64-74

Weak Specification Problem

• Programs usually have only weak specification such
as tests.

• Early systems aim to meet the specification, often
producing low-quality patches.

4

Low-Quality
Patches

Developer:
Repair Quality↓↓
Repair Efficiency↓[1]

38.50% 35.70%

18.50% 14.30%

0.00%

20.00%

40.00%

60.00%

Prophet Angelix jGenProg Nopol

Precisions of some popular systems
(before 2016)

[1] Yida Tao, Jindae Kim, Sunghun Kim, Chang Xu: Automatically generated patches as debugging aids: a human study. SIGSOFT FSE 2014: 64-74

How to deal with the weak
specification?
• Find the most-likely patch under the current

context

• Precisions of Recent tools:
• ACS [1] +Patch Filtering [2] : 85%

• ConCap [3] : 84%

• This talk:
• A generalization of this weak specification problem

• A general framework to address this problem

5

[1] Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang Huang, Lu Zhang. Precise Condition Synthesis for Program Repair. ICSE'17.
[2] Yingfei Xiong, Xinyuan Liu#, Muhan Zeng#, Lu Zhang, Gang Huang. Identifying Patch Correctness in Test-Based Program Repair. ICSE'18.
[3] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, Shing-Chi Cheung: Context-aware patch generation for better automated program repair. ICSE’18.

Program Estimation

• We aim to find the program that are most-likely to be
written under the current context.

• We define this problem as program estimation:
• Given a context 𝑐𝑜𝑛𝑡𝑒𝑥𝑡, a (weak) specification 𝑠𝑝𝑒𝑐, and a

space of programs 𝑃𝑟𝑜𝑔,
find program
𝑝𝑟𝑜𝑔 = argmax𝑝𝑟𝑜𝑔∈𝑃𝑟𝑜𝑔∧𝑝𝑟𝑜𝑔⊢𝑠𝑝𝑒𝑐 𝑃(𝑝𝑟𝑜𝑔 | 𝑐𝑜𝑛𝑡𝑒𝑥𝑡)

• A sub-problem of program synthesis

Application: Test-based
Program Repair

• Context = buggy program & at least one failed test

Passing Test

Failed Test

Buggy code

Application: Code Completion

• Context = partial code

Application:
Program by Examples
• Context = input/output examples

Application: Code Generation
from Natural Language
• Context = natural language description

Application: Test Generation

• Context = program under test

• Probability = bug-detection capability

11

public int add(int a, int b) {
…

}

public void testAdd() {
…

}

Context

Program to be generated

Challenges

• How to estimate the probability 𝑃(𝑝𝑟𝑜𝑔 | 𝑐𝑜𝑛𝑡𝑒𝑥𝑡)?

• How to find program 𝑠 such that 𝑝𝑟𝑜𝑔 ∈ 𝑃𝑟𝑜𝑔 and
𝑃 𝑝𝑟𝑜𝑔 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 is the largest?

Learning to synthesis (L2S)

• A general framework to address program
estimation

• Combining four tools
• Rewriting rules: defining a search problem

• Constraint solving: pruning off invalid choices in each
step

• Machine-learned models: estimating the probabilities
of choices in each step

• Search algorithms: solving the search problem

Example: Condition Completion

• Given a program without a conditional expression,
completing the condition

• Useful in program repair
• Many bugs are caused by incorrect conditions
• Existing work could localize the faulty condition
• Can we generate a correct condition to replace the incorrect

one?

14

E → E “>12”
∣ E “>0”
∣ E “+” E
∣ “hours”
∣ “value”
∣ …

Space of Conditions

Challenge 1:
Estimating the Probability
• Idea: Using machine learning

• To train over a set of programs and their contexts

• Problem: machine learning usually works for
classification problems
• where the number of classes are usually small

• Idea: turn the generation problem into a set of
classification problem along the grammar

15

Decomposing Generation

• In each step, we estimate the probabilities of the
rules to expand the left-most non-terminal
• A classification problem

16

E

E >12

hours

E

E >12

E

Expand E with
E -> E “> 12”

Expand E with
E -> “hours”

Probability of the program

• 𝑃 𝑝𝑟𝑜𝑔 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 =
ς𝑖 𝑃 𝑟𝑢𝑙𝑒𝑖 𝑐𝑜𝑛𝑡𝑒𝑥𝑡, 𝑝𝑟𝑜𝑔𝑖 , 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖

• 𝑐𝑜𝑛𝑡𝑒𝑥𝑡: The context of the program
• 𝑝𝑟𝑜𝑔𝑖: The AST generated at the ith step
• 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖: The non-terminal to be expanded at the ith step
• rule: the chosen rule at the ith step
• 𝑝𝑟𝑜𝑔: the complete program

17

E

E >12…;if() throw new ArgException();

𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑝𝑟𝑜𝑔𝑖

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖

Training models

• Train a model for each non-terminal
• to classify rules expanding this non-terminal

• Training set preparation
• The original training set:

• A set of programs

• Their contexts

• Decomposing the training set:
• Parse the programs

• Extract the rules chosen for each non-terminal

18

Feature Engineering

• Extract features from
• 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 : The context

• 𝑝𝑟𝑜𝑔𝑖 : The generated partial AST

• 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖 : The position of the node to be expanded

19

E

E >12
…;if() throw new ArgException();

𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑝𝑟𝑜𝑔𝑖

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖

Can we choose non-leftmost
nonterminal?

• If expanding V gives us more confidence, can we
expand V first?

• Yes. We still have

𝑃 𝑝𝑟𝑜𝑔 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 =ෑ

𝑖

𝑃 𝑟𝑢𝑙𝑒𝑖 𝑐𝑜𝑛𝑡𝑒𝑥𝑡, 𝑝𝑟𝑜𝑔𝑖 , 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖

20

E

E V>

Can we use a different
expansion order?

21

• Top-down

• Bottom-up
E

E >12

hourshours

E

hours

The order may greatly affect the performance of L2S.

E

E >12

hours

E

E >12

E

Annotations

• Introduce annotations to symbols
• 𝐸𝐷 indicates 𝐸 can be expanded downward

• 𝐸𝑈 indicates 𝐸 can be expanded upward

• 𝐸𝑈𝐷 indicates 𝐸 can be expanded in both directions

From Grammar to Rewriting
Rules
Grammar Top-down Rules Bottom-up Rules

E → E “+” E ED ⇒ E → ED “+” ED EU ⇒ EU → E “+” ED

EU ⇒ EU → ED “+” E

E → E “>12” ED ⇒ E → ED “>12” EU ⇒ EU → E “>12”

E → “hours” ED ⇒ E → “hours” “hours”U ⇒ EU → “hours”

Creation Rules

⇒ ED

⇒ EDU

⇒ “hours”U

// starting from the root
// starting from a middle node
// starting from a leaf

Ending Rule EU ⇒ E

Example

• Top-down

• Bottom-up

E

E >12

hours

E

ED >12

ED

EU

E >12

hourshoursU

EU

hours

⇒ ED
ED ⇒

E → ED “>12”
ED ⇒

E → “hours”

⇒ “hours”U

“hours”D ⇒
E → “hours” E

E >12

hours

EU ⇒
EU → E “+” ED

EU ⇒E

Unambiguity

• A set of rewriting rules are unambiguous if
• there is at most one unique set of rule applications to

construct any program.

• When the rule set is unambiguous, we still have
• 𝑃 𝑝𝑟𝑜𝑔 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 = ς𝑖 𝑃 𝑟𝑢𝑙𝑒𝑖 𝑐𝑜𝑛𝑡𝑒𝑥𝑡, 𝑝𝑟𝑜𝑔𝑖 , 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖

25

Challenge 2: How to find the
most probable program?
• Local Optimal ≠ Global Optimal

26

E0

E2 >12

hours

E0

E1 >0

value

E0

E2E1

0.6 * 0.2
= 0.12

0.3 * 0.8
= 0.24

Idea 1: Use Metaheuristic
Search
• Beam Search:

• Keep n most probable partial programs

• Expand the programs to get new programs

• Genetic Search:
• Keep n most probably complete programs

• Mutate the programs to get new programs

27

Idea 2: Pruning off Invalid Choices

• Generating constraints from the partial AST
• Type constraints
• Size constraints
• Semantic constraints from E

• Use a solver to determine invalid choices

28

E

ED >12

ED ⇒ E → ED “+” ED

∣ E → ED “>12”
| E → “hours”

Summary

• L2S Combines four tools
• Rewriting rules: defining a search problem

• Constraint solving: pruning off invalid choices in each
step

• Machine-learned models: estimating the probabilities
of choices in each step

• Search algorithms: solving the search problem

Evaluation

• Evaluation 1:
• Repairing Conditional Expressions

• Evaluation 2:
• Generating Code from Natural Language Expression

30

Repairing Conditional
Expressions
• Condition bugs are common

• Steps:
1. Localize a buggy if condition with SBFL and predicate

switching
2. Synthesize an if condition to replace the buggy one
3. Validate the new program with tests

hours = convert(value);
+ if (hours > 12)
+ throw new ArithmeticException();

Missing boundary checks

- if (hours >= 24)
+ if (hours > 24)

withinOneDay=true;
Conditions too weak or too strong

L2S Configuration

• Rewriting rules
• Bottom-up
• Estimate the leftmost variable first

• Machine learning
• Xgboost
• Manually designed features

• Constraints
• Type constraints & size constraints

• Search algorithm
• Beam search

32

Results

33

0

5

10

15

20

25

30

ConCap SimFix ACS Elixir

Number of Repaired Bugs

IF-Related General

0

10

20

30

40

50

60

70

80

90

ConCap SimFix ACS Elixir

Precision

IF-Related General

Also repaired 8 unique bugs that have never been repaired by any approach.

Benchmark: Defects4J

Generating Code from
Natural Language Expression
• Can we generate code

automatically to avoid
repetitive coding?

• Existing approaches
use RNN to translate
natural language
descriptions to
programs
• Long dependency

problem: work poorly
on long programs

34

L2S Configuration

• Rewriting rules
• Top-down

• Machine learning
• A CNN-based network

• Constraints
• Size constraints

• Search algorithm
• Beam search

35

A CNN-based Network
Architecture

36

Results

37

Benchmark: HearthStone

Newest Results

• Replacing CNN with Transformer
• Transformer: a new neural architecture at 2017

• The flexibility of L2S allows to easily utilize new models

38

Conclusion

• Program Estimation: to find the most probable
program under a context

• L2S: combining four tools to solve program
estimation

• Why worked?
• Machine learning to estimate probability

• Rewriting rules and constraints to confine the space

• Search algorithms to locate the best program

• Better to combine the tools we have

39

深度学习程序缺陷实证研究

现象

•崩溃/异常(64%)

•效果差(23%)

•效率低(5%)

原因

•错误结构或参数(22%)

•张量维数不匹配(14%)

•混淆Tensorflow和传统语
言(10%)

• Tensorflow API升级(25%)

•误用Tensorflow API(19%)

•网络模型低效(1.7%)

挑战

•概率正确

•巧合正确

•执行随机

•全面依赖

•行为未知

40

Main References:

[1] Yingfei Xiong, Bo Wang, Guirong Fu, Linfei Zang. Learning to Synthesize. GI'18:
Genetic Improvment Workshop, May 2018

[2] Zeyu Sun, Qihao Zhu, Lili Mou, Yingfei Xiong, Ge Li, Lu Zhang. A Grammar-Based
Structural CNN Decoder for Code Generation. AAAI'19: Thirty-Third AAAI
Conference on Artificial Intelligence, January 2019.

[3] Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, Lu Zhang. An
Empirical Study on TensorFlow Program Bugs. ISSTA'18: International Symposium
on Software Testing and Analysis, July 2018.

41

Thank you for listening!

