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Bug Detection
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Neural Network Architecture



An architecture vendor Many Developers

3. Quality assurance needs to be provided for architectures

A NN Architecture Many NN Models

Software
Systems
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DataCode (Architecture) Training (Magic) NN Model

1. Bugs at model level are difficult to fix

Hours, Days, Weeks, Months, …

2. Bugs in architectures may cause failures in training

Why Neural Network Architecture?



Bugs leading to errors in numerical operations, such as “NaN”, 
“INF”, or crashes during training or inference.
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Numerical Bugs
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…
1. y_softmax = tf.nn.softmax(h_fc)
2. cross_entropy = y_ * tf.log(y_softmax)
…

y_

h_fc

Mul

Softmax

Log

y_softmax ∈ [0,1]

h_fc ∈ [-100,100]

We can use static analysis to infer 
the range of tensors.

An Example of Numerical Bugs
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NN Architecture Computation Graph Static Analysis Check Unsafe Operations 

Log
Exp
…

Detecting Numerical Bugs in 
Neural Network Architectures



Infinitely many possible inputs and parameters for an NN 
architecture

𝑥 = 0.14, 0.55, … , 0.99 𝜎 𝑥 = [0,1]

1. How about tensors?
2. How can we improve the precision of interval abstraction? 

Abstract Interpretation



1. Tensor Partitioning

2. Interval Abstraction with Affine Equality Relation

Abstraction for Neural Network Architectures
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Tensor Expansion
• Instantiate every element
• Precise but not scalable

Tensor Smashing
• Smash an array into one element
• Scalable but not precise

𝜎 𝐴 =
[−1,0] [−1,0]
[−1,0] [−1,0]

𝜎 𝐴 =
[−1,0] [−1,0]
[−1,0] [1,1]

𝜎 𝐴 =
[0,1] [−1,0]
[−1,0] [1,1]

𝜎 𝐴 = −1,0

𝜎 𝐴 = −1,1

𝜎 𝐴 = −2,2

Tensor Partitioning combines the strengths,
scalable and precise enough  

1. A = Matrix(2, 2);

2. A[1][1] = 1;

3. A[0][0] += A[1][1];

//within [-1,0]

Abstraction on Tensors



• Many elements of a tensor are subject to the same operations. 
Provide opportunity to reduce analysis effort

• Some operations like concatenate and split provide partition positions.
Partition positions come free.
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Motivation of Tensor Partitioning
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Tensor Partitioning 
• Partition the tensor into a set of disjoint parts

• Smash each part into one element
𝐴 is partition into 
[0..1]*[0..0], [0..1]*[1..1]

𝐴 =
𝐴[0,0] 𝐴[0,1]
𝐴[1,0] 𝐴[1,1]

0 1

0

1𝜎 𝐴 = ([−1,0] [−1,0])

𝜎 𝐴 = ([−1,0] [−1,1])

𝜎 𝐴 = ([−2,1] [−1,1])

1. A = Matrix(2,2);

2. A[1][1] = 1;

3. A[0][0] += A[1][1];

//within [-1,0]

Abstraction on Tensors



Many elementwise affine operations in computation graphs

Affine equality relation is more precise than sole interval 
abstraction.
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Motivation of Affine Equality Relation



1. a, b

2. x = a + b;

3. y = a – b;

4. z = x + y;

𝜎 𝑎 = 0,1 , 𝜎 𝑏 = 1,2

𝜎 𝑥 = 0,1 + 1,2 = 1,3

𝜎 𝑦 = 0,1 − 1,2 = −2,0

𝜎 𝑧 = 1,3 + −2,0 = −1,3
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Interval abstraction abstracts away 
the relation between x, y, and z

Sole Interval Abstraction



1. a, b

2. x = a + b;

3. y = a – b;

4. z = x + y;

𝜎 𝑎 = 0,1 , 𝜎 𝑏 = 1,2

𝜎 𝑥 = 0,1 + 1,2 = 1,3

𝜎 𝑦 = 0,1 − 1,2 = −2,0

𝜎 𝑧 = 1,3 + −2,0 = −1,3
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Affine Equality Relation:      σ𝑖𝜔i𝑥𝑖 = 𝜔0

x = a + b

y = a - b

z = x + y = 2a

Interval Abstraction with Affine Equality Relation

0,1 + 0,1 = 0,2



Evaluation
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• 9 buggy architectures from previous study [1, 2] 

• 48 real-world architectures from tensorflow/models [3],

containing different NN architectures (including CNN, RNN, 

GAN, HMM) in various research domains
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[1] Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, and Lu Zhang. 2018. An empirical study on TensorFlow program 
bugs. ISSTA 2018.
[2] Augustus Odena, Catherine Olsson, David Andersen, and Ian J. Goodfellow. 2019. TensorFuzz: Debugging Neural Networks 
with Coverage-Guided Fuzzing. ICML 2019.
[3] https://github.com/tensorflow/models/tree/master/research

A Collection of Neural Network Architectures



DEBAR
(Tensor Partitioning + Affine Equality Relation):

Accuracy: 93.0%, all in 3 minutes, 12.1s on average

100% accuracy on 9 buggy architectures
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Tensor Partitioning + Sole Interval Abstraction

Accuracy: 80.6%, 12.1s on average

Tensor Expansion + Affine Equality Relation:

33/57 > 30mins; on rest 24, DEBAR doesn’t lost accuracy

Tensor Smashing + Affine Equality Relation:

Accuracy: 87.1%, 12.2s on average

Instantiate every element in an array

𝜎 𝐴 =
[0,1] [−1,0]

[−1,0] [1,1]

Smash an array into one element
𝜎 𝐴 = −2,2

Framework
(Tensor Abstraction + Numerical Abstraction)

Main Results



Found 11 buggy statements in the code repository 

Submitted pull requests, and 3 buggy statements have been 
repaired by the developers
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Bugs in Real-World Architectures
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Detect Numerical Bugs in 
Neural Network Architectures 

Collect 57 Computation 
Graphs for Future Research

1. Interval Abstraction with Affine 
Equality Relation

2. Tensor Partitioning

Design Abstraction Techniques for 
Analyzing Neural Architectures 

How to analyze the dynamic 
computation graphs? 

How to map the buggy operations to 
the buggy code statements ?

Summary


