
Detecting Numerical Bugs in
Neural Network Architectures

1

Yuhao Zhang1, Luyao Ren1, Liqian Chen2, Yingfei Xiong1,
Shing-Chi Cheung3, Tao Xie1

Peking University1

National University of Defense Technology2

The Hong Kong University of Science and Technology3

Detecting Numerical Bugs in
Neural Network Architectures

Background & Motivation

2

Neural Network Architecture Neural Network Model

-0.2

Training

Existing work on NN model:
Testing

Verification
Bug Detection

…
?

3

Neural Network Architecture

An architecture vendor Many Developers

3. Quality assurance needs to be provided for architectures

A NN Architecture Many NN Models

Software
Systems

4

-
0.2

DataCode (Architecture) Training (Magic) NN Model

1. Bugs at model level are difficult to fix

Hours, Days, Weeks, Months, …

2. Bugs in architectures may cause failures in training

Why Neural Network Architecture?

Bugs leading to errors in numerical operations, such as “NaN”,
“INF”, or crashes during training or inference.

5

Numerical Bugs

6

…
1. y_softmax = tf.nn.softmax(h_fc)
2. cross_entropy = y_ * tf.log(y_softmax)
…

y_

h_fc

Mul

Softmax

Log

y_softmax ∈ [0,1]

h_fc ∈ [-100,100]

We can use static analysis to infer
the range of tensors.

An Example of Numerical Bugs

7

NN Architecture Computation Graph Static Analysis Check Unsafe Operations

Log
Exp
…

Detecting Numerical Bugs in
Neural Network Architectures

Infinitely many possible inputs and parameters for an NN
architecture

𝑥 = 0.14, 0.55, … , 0.99 𝜎 𝑥 = [0,1]

1. How about tensors?
2. How can we improve the precision of interval abstraction?

Abstract Interpretation

1. Tensor Partitioning

2. Interval Abstraction with Affine Equality Relation

Abstraction for Neural Network Architectures

11

Tensor Expansion
• Instantiate every element
• Precise but not scalable

Tensor Smashing
• Smash an array into one element
• Scalable but not precise

𝜎 𝐴 =
[−1,0] [−1,0]
[−1,0] [−1,0]

𝜎 𝐴 =
[−1,0] [−1,0]
[−1,0] [1,1]

𝜎 𝐴 =
[0,1] [−1,0]
[−1,0] [1,1]

𝜎 𝐴 = −1,0

𝜎 𝐴 = −1,1

𝜎 𝐴 = −2,2

Tensor Partitioning combines the strengths,
scalable and precise enough

1. A = Matrix(2, 2);

2. A[1][1] = 1;

3. A[0][0] += A[1][1];

//within [-1,0]

Abstraction on Tensors

• Many elements of a tensor are subject to the same operations.
Provide opportunity to reduce analysis effort

• Some operations like concatenate and split provide partition positions.
Partition positions come free.

12

Motivation of Tensor Partitioning

13

Tensor Partitioning
• Partition the tensor into a set of disjoint parts

• Smash each part into one element
𝐴 is partition into
[0..1]*[0..0], [0..1]*[1..1]

𝐴 =
𝐴[0,0] 𝐴[0,1]
𝐴[1,0] 𝐴[1,1]

0 1

0

1𝜎 𝐴 = ([−1,0] [−1,0])

𝜎 𝐴 = ([−1,0] [−1,1])

𝜎 𝐴 = ([−2,1] [−1,1])

1. A = Matrix(2,2);

2. A[1][1] = 1;

3. A[0][0] += A[1][1];

//within [-1,0]

Abstraction on Tensors

Many elementwise affine operations in computation graphs

Affine equality relation is more precise than sole interval
abstraction.

14

Motivation of Affine Equality Relation

1. a, b

2. x = a + b;

3. y = a – b;

4. z = x + y;

𝜎 𝑎 = 0,1 , 𝜎 𝑏 = 1,2

𝜎 𝑥 = 0,1 + 1,2 = 1,3

𝜎 𝑦 = 0,1 − 1,2 = −2,0

𝜎 𝑧 = 1,3 + −2,0 = −1,3

15

Interval abstraction abstracts away
the relation between x, y, and z

Sole Interval Abstraction

1. a, b

2. x = a + b;

3. y = a – b;

4. z = x + y;

𝜎 𝑎 = 0,1 , 𝜎 𝑏 = 1,2

𝜎 𝑥 = 0,1 + 1,2 = 1,3

𝜎 𝑦 = 0,1 − 1,2 = −2,0

𝜎 𝑧 = 1,3 + −2,0 = −1,3

16

Affine Equality Relation: σ𝑖𝜔i𝑥𝑖 = 𝜔0

x = a + b

y = a - b

z = x + y = 2a

Interval Abstraction with Affine Equality Relation

0,1 + 0,1 = 0,2

Evaluation

17

• 9 buggy architectures from previous study [1, 2]

• 48 real-world architectures from tensorflow/models [3],

containing different NN architectures (including CNN, RNN,

GAN, HMM) in various research domains

18

[1] Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, and Lu Zhang. 2018. An empirical study on TensorFlow program
bugs. ISSTA 2018.
[2] Augustus Odena, Catherine Olsson, David Andersen, and Ian J. Goodfellow. 2019. TensorFuzz: Debugging Neural Networks
with Coverage-Guided Fuzzing. ICML 2019.
[3] https://github.com/tensorflow/models/tree/master/research

A Collection of Neural Network Architectures

DEBAR
(Tensor Partitioning + Affine Equality Relation):

Accuracy: 93.0%, all in 3 minutes, 12.1s on average

100% accuracy on 9 buggy architectures

19

Tensor Partitioning + Sole Interval Abstraction

Accuracy: 80.6%, 12.1s on average

Tensor Expansion + Affine Equality Relation:

33/57 > 30mins; on rest 24, DEBAR doesn’t lost accuracy

Tensor Smashing + Affine Equality Relation:

Accuracy: 87.1%, 12.2s on average

Instantiate every element in an array

𝜎 𝐴 =
[0,1] [−1,0]

[−1,0] [1,1]

Smash an array into one element
𝜎 𝐴 = −2,2

Framework
(Tensor Abstraction + Numerical Abstraction)

Main Results

Found 11 buggy statements in the code repository

Submitted pull requests, and 3 buggy statements have been
repaired by the developers

20

Bugs in Real-World Architectures

21

Detect Numerical Bugs in
Neural Network Architectures

Collect 57 Computation
Graphs for Future Research

1. Interval Abstraction with Affine
Equality Relation

2. Tensor Partitioning

Design Abstraction Techniques for
Analyzing Neural Architectures

How to analyze the dynamic
computation graphs?

How to map the buggy operations to
the buggy code statements ?

Summary

