
Generalized Equivariance and Preferential Labeling
for GNN Node Classification

Zeyu Sun,1 Wenjie Zhang,1 Lili Mou,2 Qihao Zhu,1 Yingfei Xiong,1 Lu Zhang1

1 Key Laboratory of High Confidence Software Technologies, MoE;
School of Computer Science, Peking University, 100871, P. R. China

2 Department of Computing Science, Alberta Machine Intelligent Institute (Amii)
University of Alberta, Edmonton T6G 2E8, Canada

{szy , zhang wen jie, zhuqh, xiongyf, zhanglucs}@pku.edu.cn, doublepower.mou@gmail.com

Abstract

Existing graph neural networks (GNNs) largely rely on
node embeddings, which represent a node as a vector
by its identity, type, or content. However, graphs with
unattributed nodes widely exist in real-world applications
(e.g., anonymized social networks). Previous GNNs either
assign random labels to nodes (which introduces artefacts
to the GNN) or assign one embedding to all nodes (which
fails to explicitly distinguish one node from another). Further,
when these GNNs are applied to unattributed node classifica-
tion problems, they have an undesired equivariance property,
which are fundamentally unable to address the data with mul-
tiple possible outputs. In this paper, we analyze the limita-
tion of existing approaches to node classification problems.
Inspired by our analysis, we propose a generalized equiv-
ariance property and a Preferential Labeling technique that
satisfies the desired property asymptotically. Experimental
results show that we achieve high performance in several
unattributed node classification tasks.1

1 Introduction
Graphs are a widely used type of data structure in com-
puter science. A graph can be represented as G = 〈V,E〉,
where V is a set of nodes, and E is a set of node pairs
known as edges (directed or undirected). With the prosperity
of deep learning techniques, graph neural networks (GNNs)
are shown to be effective to various graph-related applica-
tions, such as program analysis (Mou et al. 2016), social
networks (Hamilton, Ying, and Leskovec 2017), knowledge
graphs (Hamaguchi et al. 2017), molecule analysis (Scarselli
et al. 2009), and the satisfiability (SAT) problem (Zhang
et al. 2020).

Existing GNNs highly rely on node embeddings, which
are a vector representation of a node, typically based on its
identity, type, or content. For example, a GNN for a knowl-
edge graph typically embeds an entity/concept (e.g., a “cat”
and a “mammal”) as a vector (Wang, Ye, and Gupta 2018),
whereas a GNN for molecules embeds the atom (e.g., hydro-
gen and oxygen atoms) as a vector (Scarselli et al. 2009).

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1The code and data are available at
https://github.com/zysszy/Preferential-Labeling

In many applications, however, the nodes in a graph may
not be attributed, and we call such a graph an unattributed
graph. A common scenario is that there is no attribute re-
lated to the nodes. For example, community detection for
large-scale social networks may lack the identity informa-
tion of nodes, i.e., a person, possibly due to privacy con-
cerns (Backstrom, Dwork, and Kleinberg 2007). Another
scenario is that the attribute of a node is an artefact and cap-
tures no semantic meanings. Figure 1 shows a graph that
represents a propositional satisfiability (SAT) problem (Sel-
sam et al. 2019), where x1 and c1 are arbitrary namings of
the literals (variable or its negations) and clauses (disjunc-
tion of literals), and could be renamed without changing the
nature of the formula. If such an identifier is represented by
table look-up embeddings, it would become an artefact in
the GNN, because these embeddings do not represent com-
mon knowledge among different training samples. Nor do
they generalize to new samples.

To encode unattributed graphs, previous methods typ-
ically adopt an arbitrary labeling for nodes and repre-
sent them by embeddings (Allamanis, Brockschmidt, and
Khademi 2018; Wei et al. 2020). As mentioned, this in-
troduces artefacts to GNNs. Recently, Selsam et al. (2019)
have realized that such artefacts are undesired, and assign
all nodes with the same embedding. However, this approach
may suffer from the problem that the graph neural network
becomes insensitive to the nodes.

In this work, we analyze unattributed node classification
tasks, which require equivariance, i.e., the change of node
labels should be reflected correspondingly in the output. To
address the mentioned problems, a naı̈ve idea is to still as-
sign different node embeddings, but to eliminate such arte-
facts by an ensemble of multiple labelings. For training, the
labeling is randomly sampled every time we process a data
sample; during inference, an ensemble of multiple random
labelings is adopted for a sample. In this way, the nodes
are distinguishable given any labeling, but such artefacts are
smoothed out by the ensemble average.

Our theoretical analysis, however, shows that such a naı̈ve
treatment does not work well for node classification. An
equivariant GNN is unable to solve equivariant node clas-
sification problems where multiple outputs are appropriate
for an input graph.

To this end, we propose a generalized equivariance prop-

x1 ¬x1 x2 ¬x2

c1 c2

Figure 1: A SAT formula can be represented by a graph,
where a node xi is a literal (a variable or its negation) and a
node ci is a clause (disjunction of literal nodes). The core-
sponding SAT formula is the conjunction of clauses, and in
this example, it is ¬x1 ∧ (x1 ∨ ¬x2).

erty that is more suited to unattributed node classification.
We further propose a Preferential Labeling approach, which
assigns multiple labelings during training but only updates
the parameters with the best labeling. For inference, we also
assign multiple labelings and make a prediction according
to the best one. In this way, Preferential Labeling asymptot-
ically achieves our generalized equivariance property, and
works well for multi-output equivariant node classification.

We evaluated our approach on two unattributed node clas-
sification applications, maximum independent set solving
(MIS) and propositional satisfiability solving (SAT). Ex-
perimental results show that our approach successfully al-
leviates the limitations of existing GNNs when encoding
unattributed graphs, where the number of errors drops by
39% in the MIS problem and 76% in the SAT problem.

2 Methodology
In this section, we first present the problem formulation and
analyze the equivariance property on unattributed graphs.
Then, we present our Preferential Labeling approach to ad-
dress equivariant node classification.

2.1 Problem Formulation
A problem on unattributed graphs can be formalized as pre-
dicting output Y given a graph X . A predicate function
H(X,Y), specific to a task, determines if Y is appropriate
for a given X . The predicate is true if and only if Y is an
appropriate solution for X .

For an unattributed graph G = 〈V,E〉, the input can be
fully represented by an adjacency matrix X ∈ {0, 1}n×n,
where n is the number of nodes. In a node classification task,
the output is a matrix Y ∈ Rn×k for n nodes and k classes.

To analyze how node indexes affect (or shall not affect)
a GNN, we introduce the notation Sn to represent the per-
mutation group for [n]. Given π ∈ Sn, the action of π
on an unattributed graph X ∈ {0, 1}n×n is defined as
(π(X))i,j = X(π−1(i)),(π−1(j)), and its corresponding ac-
tion on Y ∈ Rn×k is given by (π(Y))i,c = Y(π−1(i)),c, i.e.,
π denotes the same shuffle on the rows and columns ofX , as
well as the rows of Y . Here, π is the mapping from node in-
dexes to permuted indexes. Thus, π−1 is retrieving the orig-
inal node indexes in X and Y from the permuted indexes i
and j in π(X) and π(Y).

Equivariance. We now formulate the equivariance prop-
erty of node classification tasks. It essentially asserts that for

any permutation π ∈ Sn,

H(X,Y) implies H(π(X), π(Y)) (1)

That is to say, if we permute the order of nodes, the solution
should be changed correspondingly.

Suppose for every X there exists a unique Y satisfying
H(X,Y), the mapping from X to Y can be modeled by a
function h and the equivariance property becomes the form
that we commonly see

h(π(X)) = π(h(X)) (2)

for every permutation π ∈ Sn.
In the above formulation, we define the equivariance

property of a node classification task. In fact, equivariance
can also be said in terms of GNN output f(X), given by

f(π(X)) = π(f(X)) (3)

2.2 Limitations of Existing GNNs on
Unattributed Graphs

We analyze the limitations of existing GNNs on unattributed
graphs. As mentioned in Section 1, previous approaches for
unattributed graph either assign random labels to nodes (Al-
lamanis, Brockschmidt, and Khademi 2018; Wei et al. 2020)
or assign the same embedding to all nodes (Li, Chen, and
Koltun 2018; Selsam et al. 2019). When they are applied
to unattributed node classifications, they suffer from at least
one of the two limitations: 1) node distinction and 2) equiv-
ariance property.

Node Distinction. We first consider distinguishing differ-
ent nodes in a graph. The state-of-the-art approaches (Li,
Chen, and Koltun 2018; Selsam et al. 2019; Zhang et al.
2020) assign all nodes with the same embedding, and thus,
the model cannot distinguish different nodes effectively.
Consider a common graph convolutional network (GCN),
which learns the hidden representation for a node by encod-
ing the node vector with the neighbors via a set of fully-
connected layers. In the example given by Figure 2, all four
nodes will have the same hidden representation, because ev-
ery node is represented by the same embedding and all nodes
have the same neighboring information.

Equivariance Property. We now consider the equivari-
ance property of node classification for unattributed graphs,
which is believed to be important for various GNN applica-
tions (Chen, Li, and Bruna 2018; Azizian et al. 2020).

In node classification for unattributed graphs, if the node
index changes, the output would change accordingly, shown
in Eqn (1). Thus, it is tempting to design an equivariant
GNN satisfying Eqn (3) for node classification tasks, as
suggested by Wu et al. (2021). Otherwise, the GNN would
be sensitive to labeling artefacts (Allamanis, Brockschmidt,
and Khademi 2018; Wei et al. 2020), if it does not sat-
isfy some form of equivariance. Previous work achieves the
equivariance property (3) by using the same embeddings for
all nodes (Li, Chen, and Koltun 2018; Selsam et al. 2019;
Zhang et al. 2020).

However, we hereby show that an equivariant GNN sat-
isfying (3) will fail on node classification problems, where

4 3

21

Figure 2: Graph C4, a circle of length 4. This graph is auto-
isomorhpic under π : 1 7→ 2, 2 7→ 3, 3 7→ 4, 4 7→ 1.

multiple outputs are appropriate. In other words, the map-
ping from X to Y is not a function, and given an input X ,
there exists multiple Y such that H(X,Y) holds. Usually,
GNN predicts one appropriate Y by a function Y = f(X).

We show the drawback of equivariant GNNs with an ex-
ample of a non-trivial auto-isomorphic graph, i.e., there ex-
ists a non-identity permutation π such that π(X) = X . If
(3) holds, then π(X) = X implies f(X) = π(f(X)). This
means that GNN output must be the same for all correspond-
ing nodes shuffled by π.

This, unfortunately, may be a bad solution for various
tasks. Consider the maximum independent set (MIS) prob-
lem that selects the largest number of vertices that are not di-
rectly connected. In Figure 2, for example, {1, 3} is an MIS
and {2, 4} is also an MIS. However, an equivariant GNN
cannot predict any MIS in this example, because there exists
a permutation π (e.g., π : 1 7→ 2, 2 7→ 3, 3 7→ 4, 4 7→ 1)
essentially tying the output of all nodes.

It should be mentioned that we show the limitation by
an example of non-trivial auto-isomorphism. Our analysis
is suggestive to real applications, where graphs often have
similar local structures.

2.3 Our Solution
We start with a naı̈ve attempt to address both node distinc-
tion and equivariance in GNNs. With further analysis, we
propose a generalized equivariance property and our Prefer-
ential Labeling approach.

A Naı̈ve Attempt. To address the limitation of the node
distinction, a naı̈ve idea is still to assign node embeddings
by randomly labeling the nodes, but to use an ensemble of
different node labelings to eliminate artefacts (Murphy et al.
2019; Sato, Yamada, and Kashima 2021). For training, node
labels are assigned randomly; this serves as a way of data
augmentation, and can be thought of as training an ensemble
over epochs. During inference, it assigns multiple random
labels and uses an average ensemble for prediction.

However, it is not appropriate if we directly apply such
a naı̈ve idea to equivariant node classification. The standard
cross-entropy training is essentially to

minimize
ω

∑
(X,Y)∈D

∑
π∈Sn

n∑
i=1

DKL ((π(Y))i || fi(π(X);ω)) ,

where ω denotes the trainable parameters in a GNN, D is
the training set, andDKL is the Kullback–Leibler divergence
between the predictions and the ground truth. (π(Y))i and
fi(π(X)) are the ith row in a matrix, representing the target
and predicted distributions of a node. However, the train-
ing objective will enforce the GNN to learn the same pre-

diction of nodes under auto-isomorphism, because for ev-
ery π ∈ Sn, the KL objective requires π(Y) = f(π(X)).
For some auto-isomorphic permutation τ , i.e., τ(X) = X ,
this implies f(X) = f(τ(X)) = τ(Y). Since Y = f(X),
we will have f(X) = τ(f(X)). This is precisely the lim-
itation that we have analyzed in Section 2.2, namely, auto-
isomorphism tying the prediction of a GNN.

To address this issue, we propose a desired generalized
equivariance property.

Generalized Equivariance Property. An equivariant
GNN satisfying (3) fails for equivariant node classification,
because it unreasonably assumes the output is a function of
input, i.e., approximating (1) by (2).

We relax this constraint for multi-output node classifica-
tion and analyze the desired form of equivariance in this set-
ting. We denote H(X) = {Y : H(X,Y)} be the set of
all correct outputs given a graph X . The training set typi-
cally provides one groundtruth solution Y∗ ∈ H(X∗) for a
specific graphX∗, as usually one solution suffices in real ap-
plications (and this coincides with GNNs whose output is a
function of input).

We would defineH∗(·)|D as a minimal equivariant subset
of H(·) such that Y∗ ∈ H∗(X∗), with the domain restricted
to D = {X : X = π(X∗) for some π ∈ Sn}.

This starts from defining

H∗(X∗) = {γ(Y∗) : γ ∈ Sn and γ(X∗) = X∗} , (4)

which essentially endorses multiple correct outputs other
than the given Y∗ due to self-isomorphism γ.

Then, the equivariance property suggests H∗(X) =
π (H∗(X∗)), if X = π(X∗) for some π. Here, we abuse
the notation as π(H∗(X∗))

∆
= {π(Y) : Y ∈ H∗(X∗)}.

We would like to design a neural network predicting a
correct solution, i.e.,

f(X∗) ∈ H∗(X∗). (5)

Due to the equivariance ofH∗, we have

f(π(X∗)) ∈ H∗(π(X∗)) = π(H∗(X∗)). (6)

By the definition of H∗ in (4), Eqn (5) implies that there
exists γ1 ∈ Sn such that γ1(X∗) = X∗ and f(X∗) =
γ1(Y∗). Likewise, Eqn (6) implies that there exists γ2 ∈ Sn
such that γ2(X∗) = X∗ and f(π(X∗)) = πγ2(Y∗). Com-
bining these and denoting γ2γ

−1
1 by γ, we see that there ex-

ists γ ∈ Sn such that

γ(X∗) = X∗ and f(π(X∗)) = πγ(f(X∗)). (7)

We call (7) the generalized equivariance property. In fact,
(3) is a special case of (7), where γ is an identity permuta-
tion. However, we relax (3) by allowing an additional auto-
isomorphic permutation γ in the solution space, and thus, it
does not suffer from the limitation in Section 2.2.

The analysis shows that an ideal GNN for unattributed
node classification should satisfy (7) rather than (2).

GNN
2

3
1

4

3
1
4

2
3

4
2

1
GNN

GNNInput Graph

(a) Dynamic Labeling
Prediction
Ensemble

(b) Training / Inference

Training

(a) Labeling

Input Graph Ensemble
Prediction

(b) Training / Inference

Training

Inference

Figure 3: An overview of our Preferential Labeling ap-
proach.

Preferential Labeling. Inspired by the above analysis, we
propose a simple yet effective approach, Preferential Label-
ing, which asymptotically satisfies (7). The overview of our
approach is shown in Figure 3.

For training, Preferential Labeling assigns nodes with a
random permutation of labels. A node is represented by a
table-lookup embedding based on the assigned label. To sat-
isfy (7), we dynamically sample multiple label assignments
for an input graph in each epoch, but only train the GNN
with the best labeling (i.e., having the lowest loss). When
processing the graph in the next epoch, we re-assign node
labels and lookup for a (possibly) different preferred em-
bedding by other random permutations.

Formally, we allocate e1, · · · , eN as embedding parame-
ters in our GNN model, where N is the total number of em-
beddings; these embeddings have not been associated with
any graph or node. In each epoch when processing a graph
that has nodes V = {v1, · · · , vn}with n ≤ N , we randomly
sample a permutation π ∈ Sn. By the convention of our pa-
per, π operates on adjacency matrices; consequently, a node
vi is now represented by eπ−1(i) for GNN processing.

We repeat this sampling process K times, and compute
the loss of these permutations when fed to GNN. Finally, we
select the permutation that has the lowest loss as the final
permutation for training. In different training epochs, these
permutations are re-sampled even for the same data sample.

The training process can be described as

minimize
ω

∑
(X,Y)∈D

min
π∈Sn

n∑
i=1

DKL ((π(Y))i || fi(π(X);ω)) ,

(8)
where we train the model with the best labeling π, which is
a permutation of both X and Y matrices (Section 2.1).

Consider the inference of a k-way classification prob-
lem. The GNN with permutation πm outputs a probability
as
(
p

(m)
1 , · · · , p(m)

k

)
. We pick the prediction that has the

highest joint predicted probability (product of node proba-
bilities). Eventually, our Preferential Labeling approach pre-
dicts a label by c = argmaxi{pi}.

Our Preferential Labeling does not suffer from the limita-
tion of equivariance, because our network is not an equiv-
ariant function as in (2). However, we will achieve the
generalized equivariance property (7) asymptotically, be-
cause the labeling of X is optimized out (except for auto-
isomorphism) during training and inference by taking the
preferred π, detailed below.

Theoretical Analysis. We show that the inference of our
Preferential Labeling asymptotically satisfies the general-
ized equivariance property for node classification, if we have
enough sampled permutations. We also draw a connection
with Expectation–Maximization (EM) algorithms.

During our inference, we assign multiple labelings to a
graph, and pick the prediction that has the highest predicted
probability as our output. Formally, we consider the joint
predicted probability of a graph X with labeling τ as

s(X, τ) =

n∏
i=1

max
j=1,··· ,k

fij(τ(X)), (9)

where f denotes a GNN function, outputing an n×k matrix
(n: the number of nodes, k: the number of category). The ith
row is the predicted distribution of the ith node.

During inference, we have multiple labelings τ . We pick
the best one that maximizes s(X, τ), given by

τ
(X)
∗ = argmax

τ∈Sn

s(X, τ). (10)

The prediction of our Preferential Labeling is

Ŷ (X) =
(
τ

(X)
∗

)−1 (
f
(
τ

(X)
∗ (X)

))
. (11)

The formula follows our convention of adjacency matrix
representations. When we perform node labeling, we per-
mute the indexes of both X and Y by τ (X)

∗ . After GNN pro-
cessing, we need an inverse permutation

(
τ

(X)
∗
)−1

to obtain
the predictions for X , because our prediction should be cor-
responding to the original graph X , rather than τ (X)

∗ (X).

Theorem 1. Ŷ (·) achieves generalized equivariance, i.e.,
for any graph X and permutation π ∈ Sn, there exists γ ∈
Sn such that γ(X) = X and Ŷ (π(X)) = πγ(Ŷ (X)).

Proof. Consider any graphX and permutation π. Replacing
X by π(X) in Eqn (10), we have

τ
(π(X))
∗ = argmax

τ∈Sn

s(π(X), τ). (12)

Notice that Eqns (12) and Eqn (10) are essentailly the same
problem, and that their optima should be achieved by the
same element, i.e., τ (X)

∗ (X) = τ
(π(X))
∗ π(X).

This essentially means that the two permutations τ (X)
∗ and

τ
(π(X))
∗ π yield the same result on X , implying that they

are the same, except for an auto-isomorphic permutation.
In other words, there exists γ such that γ(X) = X and
τ

(X)
∗ = τ

(π(X))
∗ πγ, which can be rearranged as

τ
(π(X))
∗ = τ

(X)
∗ γ−1π−1. (13)

Replacing X by π(X) in Eqn (11), we have

Ŷ (π(X)) = (τ
(π(X))
∗)−1(f(τ

(π(X))
∗ π(X))) (14)

= πγ(τ
(X)
∗)−1(f(τ

(X)
∗ γ−1π−1π(X))) (15)

= πγ(τ
(X)
∗)−1(f(τ

(X)
∗ (X))) (16)

= πγ(Ŷ (X)), (17)

where (15) is due to the substitution with (13); (16) is due
to the cancellation of π−1π and the auto-isomorphism of γ,
i.e., γ(X) = X; and (17) is due to the definition of Ŷ in (11).

Our Preferential Labeling is also related to EM algo-
rithms.
Theorem 2. The training of Preferential Labeling in (8) is a
hard Expecatation–Maximization algorithm with a uniform
prior on Sn.

Proof. The labeling π can be thought of as a latent vari-
able in the task of mapping a graph X to output Y . The
min operator in (8) is to seek π ∈ Sn maximizing the
likelihood of output given input and the latent labeling, de-
noted by P (Y |X,π). With the assumption of uniform prior
P (π) for π ∈ Sn, this is equivalent to cross-entropy train-
ing with one latent labeling π that maximizes the posterior
P (π|X,Y) ∝ P (Y |X,π)P (π), known as hard EM (Sam-
dani, Chang, and Roth 2012).

This easy theorem provides further intuition on our Pref-
erential Labeling approach. EM algorithms are known for
handling multi-modal mixtures of distributions, similar to
multi-output node classification. The training of our Prefer-
ential Labeling is also analogous to the E-step, which de-
termines the fitness of the sample to a mixture component.
Our approach adopts a hard EM variant that selects a single
best permutation, because full marginalization of Sn is in-
tractable. Also, we assume a uniform prior for Sn, which is
particularly suitable for eliminating labeling artefacts.

3 Experiments
We conducted experiments on two node classification tasks.
We chose state-of-the-art or standard GNN architectures, but
compare our approach with various embedding strategies.

3.1 Competing Methods
Static Labeling. The static labeling assigns an embedding
based on the identity of a node (e.g., x1 and c1 in Figure 1),
although such identity does not represent meaningful seman-
tics in different samples. Static learning is widely applied in
previous work (Boldi et al. 2012; Allamanis, Brockschmidt,
and Khademi 2018).

Same Embedding. This baseline assigns all nodes in
the unattributed graph with the same embedding. This is
adopted in previous work (Li, Chen, and Koltun 2018;
Zhang et al. 2020) to eliminate the artefacts of node labeling.

Random Labeling. The random labeling assigns an em-
bedding randomly during training and inference. This is a
special case of our approach with K = 1, and no actual
preferential training is performed.

Degree Feature. An intuitive way to encode a node with-
out labeling artefact is by its degree information, which cap-
tures some local information of the node. In this baseline,
we use 1/(dv + 1) as a one-dimensional, non-learnable em-
bedding feature, where dv is the degree of node v. We use
the above formula so that the feature is in (0, 1].

Row # GCN (Li, Chen, and Koltun 2018) Accuracy
1 Same 75.59%
2 Degree Feature 73.22%
3 Degree Ranking Embedding 71.58%
4 Static Labeling 74.57%
5 Random Labeling 75.28%

6 Preferential Labeling-10 85.04%

Table 1: The results for MIS solving. “Preferential Labeling-
10” indicates 10 random labelings in both training and infer-
ence.

Degree Ranking Embedding. The drawbacks of using
degree information as a single numerical feature are its low-
dimensionality and non-learnability. In this baseline, we ex-
tend the idea by embedding the ranking of node degrees.
Specifically, we sort all nodes by the degrees in descending
order, and a node having ith largest degree is encoded by ith
embedding vector ei.

3.2 Experiment I: MIS Solving
We first evaluate our Preferential Labeling on solving the
maximum independent set (MIS). In graph theory, an in-
dependent set is a set of nodes without any edge. An in-
dependent set is maximum, if it has the largest number of
nodes among all independent sets. MIS solving is an NP-
hard problem that aims to find out a maximum independent
set from a graph.

For an input graph, the goal of the GNN in this task is to
predict a binary label for each node, deciding whether a node
is in the MIS. To induce an MIS from model predictions, we
use a simple search algorithm. We first sort all nodes in de-
scending order based on the predicted probability that the
node is in the MIS. Then, we iterate over nodes in order and
select the top node into the MIS; its neighbors are removed
from the list. The process is iterated until we have processed
the entire node list. In this way, the selected nodes are guar-
anteed to be an independent set. Our evaluation determines
whether it is maximum.

Model. In this experiment, we adopt the state-of-the-art
model (GCN; Li, Chen, and Koltun 2018) for MIS solving.
Li, Chen, and Koltun (2018) use the same embedding for all
nodes. The model contains 20 graph convolutional layers,
which are regularized by dropout with rate of 0.1. For the
hidden size of all layers used in this model, we set it to 128.
For training, we use Adam (Kingma and Ba 2015) to train
the model with learning rate 10−4 on a single Titan RTX.

Dataset. We follow the data synthesis process in previous
work (Li, Chen, and Koltun 2018) and generate 173,751,
20,000, 20,000 graphs for training, development, and test,
respectively. The number of nodes in a graph is generated
from a uniform distribution U [100, 150].

Results. Table 1 shows the results for MIS solving. Since
our post-processing ensures the output is an independent set,
the performance evaluation focuses on whether it is maxi-
mum. If the predicted set has the same number of nodes as
the groundtruth MIS, we say the model solves this MIS cor-
rectly; otherwise, the model makes an error.

Error Rate
Row # NLocalSAT (Zhang et al. 2020) Test-5 Test-10 Test-20 Test-40 Avg.

1 Same 5.26% 8.17% 15.03% 27.62% 14.02%
2 Degree Feature 5.31% 8.37% 14.25% 24.94% 13.22%
3 Degree Ranking Embedding 5.45% 10.23% 16.17% 28.04% 14.97%
4 Static 6.11% 9.86% 16.89% 28.88% 15.44%
5 Static & Inference-10 (Averaging) 5.00% 8.77% 15.74% 29.70% 14.80%
6 Static & Inference-10 (Max Prob.) 1.77% 3.65% 7.86% 16.22% 7.38%
7 Random 3.38% 6.17% 12.70% 23.66% 11.48%
8 Random & Inference-10 (Averaging) 3.39% 6.07% 12.42% 23.34% 11.31%
9 Random & Inference-10 (Max Prob.) 2.72% 5.03% 11.37% 22.06% 10.30%

10 Preferential Labeling-10 (Max Prob.) 1.13% 1.68% 1.81% 5.24% 2.47%

Table 2: The results for SAT solving. “Test-k” indicates a test set where each sample has k variables. “Inference-m” indicates
m random labelings during inference.

We observe that Static Labeling (Row 4) has low perfor-
mance as it introduces labeling artefacts. Same and Random
Labelings (Rows 1 and 5) eliminate such artefacts and per-
form better. The Degree Feature (Row 2) and Degree Rank-
ing Embedding (Row 3) suffer from the limitation of the
equivariance property mentioned in Section 2.2, and per-
form worse than other baselines.

By contrast, Preferential Labeling (Row 6) is able to elim-
inate labeling artefacts, and at the same time, achieve the de-
sired generalized equivariance property in Eqn (7). Its per-
formance is higher than all competing approaches, with the
number of errors dropping by 39% from the best baseline.

3.3 Experiment II: SAT Solving
We further evaluate Preferential Labeling on the SAT solv-
ing problem. The propositional satisfiability problem (SAT)
is one of the most fundamental problems in computer sci-
ence. A propositional formula is said to be satisfiable, if
there exists an assignment of propositional variables to ei-
ther True or False that makes the formula True; such assign-
ment is known as a certificate.

We consider a specific setting of SAT solving, where the
given formula is known to be satisfiable, and the goal is to
predict a certificate, i.e., whether a variable should be as-
signed with True or False. This is a key step in SAT solvers.

Model. The GNN model and settings are generally
adopted from the state-of-the-art NLocalSAT (Zhang et al.
2020).

A SAT formula is represented as a bipartite graph, where
a node is either a clause or a literal (see Figure 1 for an
example). The nodes are represented by identifiers, which
are labeling artefacts. In our experiment, we applied a
convolution-based NLocalSAT model (Zhang et al. 2020),
which achieves state-of-the-art performance for SAT solv-
ing. Zhang et al. (2020) use the same embedding for all
clause/literal nodes. The model has 16 convolutional lay-
ers, regularized by a dropout rate of 0.1. In our model, we
perform Preferential Labeling for literals and clauses from
respective candidate labelings/embeddings.

Dataset. We used the SAT dataset in Zhang et al. (2020).
The training and development sets contain 500K and 396K

SAT formulas, respectively. The number of variables in a
formula is generated from a uniform distribution U [10, 40],
whereas the number of clauses is generated fromU [2, 6]. For
testing, the dataset contains four sets of different levels of
difficulty. Specifically, the number of variables in a formula
is 5, 10, 20, or 40 in each test set, denoted by Test-5, Test-10,
Test-20, or Test-40, each containing 40K, 20K, 10K, or 5K
test formulas.

Results. Table 2 shows the results for SAT solving, where
the performance of a model is evaluated by the formula-level
error rate, i.e., if the predicted assignment does not make the
formula true, we say the model makes an error.

As mentioned, Static Labeling (Row 4) introduces arte-
facts of node identities, whereas using the same embedding
(Row 1) is unable to distinguish different nodes well. The
Degree Feature baseline alleviates these issues and performs
better than Rows 1 and 4 in this task. However, they do not
perform well in general.

We analyze the performance of an equivariant GNN that
satisfies Eqn (2). This can be achieved by Random Label-
ing for training (Rows 8 and 9), by explicitly introducing
averaging ensembles during inference (Rows 5 and 8) as
the naı̈ve attempt introduced in Section 2.3, or by using the
same embedding (Row 1) or the degree embedding (Rows 2
and 3). Their performance, although better than Static La-
beling (Row 4), appears inadequate.

We then evaluate the effect of Preferential Labeling in the
inference stage, applied to different baseline models. This
relaxes (3) but satisfies generalized equivariance (7) during
inference. We see the error rates (Rows 6 and 9) are consid-
erably lower than the GNN as an equivariant function.

Moreover, Preferential Labeling explicitly reduces label-
ing artefacts during training. With the inference algorithm
controlled, our approach largely outperforms training with
Static and Random Labelings (Row 10 vs. Rows 6 and 9).

We analyze how the number of random labelings affects
model performance during inference, shown in Figure 4. We
observe that all models achieve higher performance with
more labelings. However, the improvement for Random La-
beling is marginal, as it suffers from the limitation of an
equivariant function in a fundamental way, regardless of the

0

5

10

15

20

2 4 6 8 10 12 14
#random labelings (inference only)

E
rr

or
 R

at
e

(%
)

Static Random Preferential

Figure 4: Error rate versus the number of random labelings
during inference. We compare the embedding strategies for
training, and all variants use the labeling with the maximum
predicted probability for inference.

0

5

10

15

2 4 6 8 10 12 14
#random labelings (train & inference)

E
rr

or
 R

at
e

(%
)

Preferential

Figure 5: Error rate versus the number of random labelings
during both training and inference.

number of labelings.
Static Labeling and Preferential Labeling do not achieve

good performance if the number of labelings is small (e.g.,
≤ 2). A plausible explanation is that the few labelings during
inference may not comply with the training, resulting in high
variance. However, the performance improves largely when
we have more labelings, as these models are able to relax the
function equivariance but achieve generalized equivariance
asymptotically. Specifically, our proposed Preferential La-
beling is consistently better than Static Labeling by a large
margin, as our model is explicitly trained with the best per-
mutation in a hard EM fashion.

Finally, we analyze in Figure 5 how the number of both
training and inference labelings affect the performance of
Preferential Labeling. In this figure, we use the average er-
ror rate (the results on other settings are available at the link
in Footnote 1). Results show that if the number of labeling
is one, it reduces to random labeling, yielding poor perfor-
mance. However, the error rate drops significantly when the
number increases, and becomes stable when the number is
great than or equal to 5. This shows that our approach could
still be applied when computational resources are restricted.

4 Related Work
Graph neural networks (GNNs) have been widely re-
searched in recent years (Scarselli et al. 2009; Battaglia

et al. 2018). GNNs have a variety of applications in dif-
ferent domains, ranging from social networks (Kipf and
Welling 2017; Hamilton, Ying, and Leskovec 2017), knowl-
edge graphs (Hamaguchi et al. 2017), and programming
source code (Mou et al. 2016; Mou and Jin 2018).

A common GNN architecture is the graph convolutional
network (GCN, Kipf and Welling, 2017). Recently, re-
searchers have designed various GNN architectures, such as
gated graph neural network (Li et al. 2016), graph attention
networks (Velickovic et al. 2018), and Transformer-based
GNN (Cai and Lam 2020). However, the focus of this pa-
per is not the architecture design. Rather, we focus on node
representations in unattributed graphs.

To represent a node in graphs, DeepWalk (Perozzi, Al-
Rfou, and Skiena 2014) learns the node presentation by
predicting the neighbors in an unsupervised way. Such
pretraining-style node embedding does not generalize to
new graphs. In certain applications, researchers use domain-
specific information as labels. For example, a node in a
knowledge graph is represented by text (Lin, Liu, and
Sun 2016) and a variable in code analysis/generation tasks
is often denoted by its name or subtokens (Allamanis,
Brockschmidt, and Khademi 2018; Sun et al. 2020; Xiong
and Wang 2021).

The embedding of nodes in unattributed graphs is not
extensively addressed in previous literature. Existing work
generally applies either an arbitrary labeling (Allamanis,
Brockschmidt, and Khademi 2018) or the same embed-
ding (Li, Chen, and Koltun 2018; Selsam et al. 2019; Zhang
et al. 2020), which suffer from several limitations as dis-
cussed in this paper. To address this, we propose Preferential
Labeling for unattributed node classification tasks.

Our Preferential Labeling is also related to, but dif-
ferent from Xu et al. (2019) and Garg, Jegelka, and
Jaakkola (2020), where they show that GNNs are limited in
determining graph isomorphism. We instead showed equiv-
ariant GNNs are limited in solving one-to-many equivari-
ant problems, and further proposed the desired generalized
equivariant property. Moreover, our Preferential Labeling
does not suffer from the above limitation, because it assumes
nodes are unlabeled, but we have (preferential) labelings.

5 Conclusion

In this paper, we address the task of node classification of
unattributed graphs. We analyze the limitations of existing
GNNs, showing that an equivariant GNN may not solve an
equivariant node classification task, when multiple outputs
are correct. We propose a generalized equivariance prop-
erty, which allows an additional auto-isomorphic permuta-
tion. Based on our analysis, we further propose Preferen-
tial Labeling that samples multiple permutations and uses
the best one for training and inference; theoretical analy-
sis shows that our Preferential Labeling achieves the desired
generalized equivariance property asymptotically. We con-
ducted extensive experiments on MIS solving and SAT solv-
ing tasks to demonstrate the effectiveness and generality of
our approach.

Acknowledgments
The work is supported in part by the National Key Re-
search and Development Program of China under Grant No.
2019YFE0198100, the Innovation and Technology Com-
mission of HKSAR under Grant No. MHP/055/19, Na-
tional Natural Science Foundation of China under Grant
No. 61922003, and the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC) under grant
No. RGPIN2020-04465. Lili Mou is supported in part by
the Amii Fellow Program, the Canada CIFAR AI Chair Pro-
gram, and a donation from DeepMind. This research is also
supported by Compute Canada (www.computecanada.ca).

References
Allamanis, M.; Brockschmidt, M.; and Khademi, M. 2018.
Learning to represent programs with graphs. In Interna-
tional Conference on Learning Representations.
Azizian, W.; et al. 2020. Expressive power of invariant and
equivariant graph neural networks. In International Confer-
ence on Learning Representations.
Backstrom, L.; Dwork, C.; and Kleinberg, J. M. 2007.
Wherefore art thou r3579x?: Anonymized social networks,
hidden patterns, and structural steganography. In Proceed-
ings of the 16th International Conference on World Wide
Web, 181–190.
Battaglia, P. W.; Hamrick, J. B.; Bapst, V.; Sanchez-
Gonzalez, A.; Zambaldi, V.; Malinowski, M.; Tacchetti, A.;
Raposo, D.; Santoro, A.; Faulkner, R.; et al. 2018. Relational
inductive biases, deep learning, and graph networks. arXiv
preprint.
Boldi, P.; Bonchi, F.; Gionis, A.; and Tassa, T. 2012. Inject-
ing uncertainty in graphs for identity obfuscation. Proceed-
ings of the VLDB Endowment, 1376–1387.
Cai, D.; and Lam, W. 2020. Graph transformer for graph-to-
sequence learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, 7464–7471.
Chen, Z.; Li, L.; and Bruna, J. 2018. Supervised community
detection with line graph neural networks. In International
Conference on Learning Representations.
Garg, V.; Jegelka, S.; and Jaakkola, T. 2020. Generalization
and representational limits of graph neural networks. In In-
ternational Conference on Machine Learning, 3419–3430.
Hamaguchi, T.; Oiwa, H.; Shimbo, M.; and Matsumoto, Y.
2017. Knowledge transfer for out-of-knowledge-base enti-
ties: A graph neural network approach. In Proceedings of
the 26th International Joint Conference on Artificial Intelli-
gence, 1802–1808.
Hamilton, W. L.; Ying, Z.; and Leskovec, J. 2017. Induc-
tive representation learning on large graphs. In Proceedings
of the 31st International Conference on Neural Information
Processing Systems, 1024–1034.
Kingma, D. P.; and Ba, J. 2015. Adam: A method for
stochastic optimization. In International Conference on
Learning Representations.
Kipf, T. N.; and Welling, M. 2017. Semi-supervised classi-
fication with graph convolutional networks. In International
Conference on Learning Representations.

Li, Y.; Tarlow, D.; Brockschmidt, M.; and Zemel, R. S. 2016.
Gated graph sequence neural networks. In International
Conference on Learning Representations.
Li, Z.; Chen, Q.; and Koltun, V. 2018. Combinatorial opti-
mization with graph convolutional networks and guided tree
search. In Proceedings of the 32nd International Conference
on Neural Information Processing Systems, 537–546.
Lin, Y.; Liu, Z.; and Sun, M. 2016. Knowledge representa-
tion learning with entities, attributes and relations. In Pro-
ceedings of the Twenty-Fifth International Joint Conference
on Artificial Intelligence, 2866–2872.
Mou, L.; and Jin, Z. 2018. Tree-Based Convolutional Neural
Networks: Principles and Applications. Springer.
Mou, L.; Li, G.; Zhang, L.; Wang, T.; and Jin, Z. 2016. Con-
volutional neural networks over tree structures for program-
ming language processing. In Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, 1287–1293.
Murphy, R.; Srinivasan, B.; Rao, V.; and Ribeiro, B. 2019.
Relational pooling for graph representations. In Interna-
tional Conference on Machine Learning, 4663–4673.
Perozzi, B.; Al-Rfou, R.; and Skiena, S. 2014. DeepWalk:
Online learning of social representations. In Proceedings of
the 20th ACM SIGKDD International Conference on Knowl-
edge discovery and data mining, 701–710.
Samdani, R.; Chang, M.-W.; and Roth, D. 2012. Unified
expectation maximization. In Proceedings of the 2012 Con-
ference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technolo-
gies, 688–698.
Sato, R.; Yamada, M.; and Kashima, H. 2021. Random fea-
tures strengthen graph neural networks. In Proceedings of
the 2021 SIAM International Conference on Data Mining,
333–341.
Scarselli, F.; Gori, M.; Tsoi, A. C.; Hagenbuchner, M.; and
Monfardini, G. 2009. The graph neural network model.
IEEE Transactions on Neural Networks, 20(1): 61–80.
Selsam, D.; Lamm, M.; Bünz, B.; Liang, P.; de Moura, L.;
and Dill, D. L. 2019. Learning a SAT solver from single-
Bit supervision. In International Conference on Learning
Representations.
Sun, Z.; Zhu, Q.; Xiong, Y.; Sun, Y.; Mou, L.; and Zhang,
L. 2020. TreeGen: A tree-based transformer architecture for
code generation. In Proceedings of the AAAI Conference on
Artificial Intelligence, 8984–8991.
Velickovic, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò,
P.; and Bengio, Y. 2018. Graph attention networks. In Inter-
national Conference on Learning Representations.
Wang, X.; Ye, Y.; and Gupta, A. 2018. Zero-shot recog-
nition via semantic embeddings and knowledge graphs. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 6857–6866.
Wei, J.; Goyal, M.; Durrett, G.; and Dillig, I. 2020. Lamb-
daNet: Probabilistic type inference using graph neural net-
works. In International Conference on Learning Represen-
tations.

Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; and Yu, P. S.
2021. A comprehensive survey on graph neural networks.
IEEE Transactions on Neural Networks and Learning Sys-
tems, 32(1): 4–24.
Xiong, Y.; and Wang, B. 2021. L2S: A framework for syn-
thesizing the most probable program under a specification.
TOSEM: ACM Transactions on Software Engineering and
Methodology.
Xu, K.; Hu, W.; Leskovec, J.; and Jegelka, S. 2019. How
powerful are graph neural networks? In International Con-
ference on Learning Representations.
Zhang, W.; Sun, Z.; Zhu, Q.; Li, G.; Cai, S.; Xiong, Y.; and
Zhang, L. 2020. NLocalSAT: Boosting local search with so-
lution prediction. In Proceedings of the Twenty-Ninth Inter-
national Joint Conference on Artificial Intelligence, 1177–
1183.

