
The ET Program Repair Tool for Java
Yuan-An Xiao, Qihao Zhu, Yingfei Xiong∗

{xiaoyuanan,zhuqh,xiongyf}@pku.edu.cn
Key Laboratory of High Confidence Software Technologies (Peking University), MoE; School of Computer Science,

Peking University
Beijing, China

ABSTRACT
This is the ET tool participating in APR-Comp 2024. It is an end-
to-end program repair approach that performs fault localization,
patch generation, and patch validation.

ET is ranked as #1 in the Functional Errors - Java track.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging; Software evolution.

KEYWORDS
Automated Program Repair

ACM Reference Format:
Yuan-An Xiao, Qihao Zhu, Yingfei Xiong. 2024. The ET Program Repair Tool
for Java. In 2024 ACM/IEEE International Workshop on Automated Program
Repair (APR ’24 ), April 20, 2024, Lisbon, Portugal. ACM, New York, NY, USA,
3 pages. https://doi.org/10.1145/3643788.3648016

1 INTRODUCTION
ET is a Java program repair tool submitted to both the Functional
Errors - Java track and the AI Generated Code - Java track in the
APR-Comp 2024 competition [8].

The name ET comes from the initials of ExpressAPR [13, 14] and
Tare [17], two major technologies used in this tool. The tool is pub-
licly available on Zenodowith theDOI 10.5281/zenodo.8405059 [15].

In this paper, we briefly introduce the usage and the internal
repair workflow of ET. We also report the results of ET in the
competition.

2 USAGE
ET is distributed with a pre-built image on DockerHub (xmcp/et:
240114.1 [11]) and integrated into the Cerberus [6] program repair
framework through Pull Request #115 [12]. It should work on any
Linux computer under the specification of the two tracks in APR-
Comp.

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
APR ’24 , April 20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0577-9/24/04
https://doi.org/10.1145/3643788.3648016

PV Worker * 6

FL Split

PG Preproc

Patch Dispatcher

PV Preproc

PG Start

Tare

StarCoder-FT

PV Worker * 6

PV Worker

PV Worker

Save

PV Worker ×(N-2)

FLLegend: PG PV Dependency Data Flow

Figure 1: Workflow of ET

The user should prepare the benchmark as a Cerberus driver
(e.g., aprcompfuncjava), and run the below Cerberus command line
to evaluate ET against this benchmark:

$ python3 Cerberus.py –use-gpu –cpu-count 8 -task repair

–tool et –benchmark aprcompfuncjava

ET will output at most five plausible patches in the output/

artifacts/(bug-id)/patches directory, as required by the compe-
tition. Patch files are named as 𝑛.diff, where 1 ≤ 𝑛 ≤ 5. All files
follow the unified diff format [7]. The directory will be empty if no
plausible patches are found. ET will also store other information in
the output directory, including candidate patches, fault localization
results, and logs, for troubleshooting.

3 REPAIR WORKFLOW
3.1 Outline
As a generate-and-validate APR approach, ET internally takes three
steps to repair a bug.

1. Fault Localization (FL), where it runs the test suite to find
suspicious lines;

2. Patch Generation (PG), where two neural-network models
generate candidate patches against each suspicious line;

3. Patch Validation (PV), where it repeatedly runs the test suite
against patched code and finds plausible patches.

The overall workflow of ET is shown in Figure 1.Wewrite a main
script in Python to glue all integrated procedures among three steps
together. To maximize performance in the eight-core environment,
multiple procedures can run in parallel whenever there are no
dependencies. Each rectangle block refers to a procedure, and each
arrow refers to a dependency between procedures. Procedures in
different steps are drawn in different colors for ease of reading.

In the rest of this section, we go through technologies and li-
braries used in ET.

https://doi.org/10.1145/3643788.3648016
https://doi.org/10.1145/3643788.3648016


APR ’24 , April 20, 2024, Lisbon, Portugal Xiao, et al.

3.2 Fault Localization
For fault localization, we calculate the Ochiai [1] score with a
tweaked version of the Flacoco [4] tool.

Our tweaked version of Flacoco fixes several bugs we have en-
countered on the demo benchmark of both tracks, where there may
be nested test classes, ignored / disabled test cases, and test methods
with whitespace characters1. We also tweaked it to output the list
of failing test methods for patch validation.

After Flacoco outputs the list of suspicious locations, we truncate
it to at most 150 lines for the functional track or 75 lines for the AI
track. To avoid exhausting the VRAM in the patch generation step,
the list is then split into several chunks, each chunk including no
more than 30 lines.

3.3 Patch Generation
For patch generation, we run two independent models in parallel:
Tare [17] and fine-tuned StarCoder [9]. Both models take a chunk
from the fault localization step at a time, search for possible modifi-
cations for each suspicious line in the chunk, and report them back
to the patch dispatcher thread in the main script via a PUSH-PULL

ZeroMQ socket [5].

3.3.1 Tare. Tare is a type-aware neural model for program repair.
Since the previous tools do not consider the constraints of code cap-
tured by a set of typing rules, the previous models often generate
untypable patches. Tare learns the type information of the patches
via learning the individual typing rules. To encode an individual
typing rule, Tare proposes three novel techniques: (1) a novel type
of grammar, T-Grammar, that integrates the type information into
a standard grammar, (2) a novel representation of code, T-Graph,
which integrates the key information needed for type-checking an
AST, and (3) a novel transformer-based neural network, that en-
codes the T-Graph and generates the patches guided by T-Grammar.
Integrated with these techniques, Tare tends to generate more ty-
pable patches and repairs the most bugs in Defects4J v1.2.

Tare requires a preprocessing step that reads all identifier names
in the project. We run this preprocessing step in parallel with the
fault localization step to minimize time usage.

3.3.2 StarCoder-FT. As the large pre-trained models show promis-
ing performance on several code-related tasks, we develop a pro-
gram repair model based on the large pre-trained model, StarCoder
Base-1b [9]. To enhance the repair ability of the base model, we use
the collected patch datasets [10, 16] to finetune the base model for
3 epochs. We add two special tokens, buggyline_begin and buggy-
line_end, to mark the faulty position. During inference, we use the
sampling generation approach with the temperature set to 0.8.

3.4 Patch Validation
For patch validation, we choose ExpressAPR [13, 14], an efficient
patch validation approach. Considering that the benchmark in APR-
Comp uses Maven [2] for project management, and some projects
require the submodule feature that is currently not supported by the
replication package of ExpressAPR, we re-implemented techniques

1We are surprised to find that method names can contain whitespace characters in
some JVM languages like Kotlin. This is observed in the lettuce-core project in the
benchmark of the Functional Errors - Java track.

public double constrain(double value) {
if (contains(value)) {

return value;
}
if (value > this.upper) {

return this.upper;
}

- return this.lower;
+ return (value < (lower)) ? lower :
+ (value > (upper)) ? upper : value;

}

Figure 2: A patch generated by ET for the JFreeChart project

from the ground up. We also use mvnd [3], a daemonized version
of Maven, to further increase the patch validation speed.

The patch validation step requires a preprocessing procedure to
set up mvnd and make a distinct copy of the project directory for
each of the 𝑁 patch validation workers (𝑁 is the number of CPU
cores available: 8 for the functional track or 4 for the AI track). It is
run in parallel with the previous steps.

After the preprocessing procedure is finished, we spawn 𝑁 work-
ers for patch validation, two of which are spawned after the patch
generation step is finished to avoid overloading the system. Each
worker repeatedly fetches a candidate patch from the patch dis-
patcher thread, compiles and tests the patch, and marks it as plau-
sible if the test succeeds.

3.5 Epilogue
When all patches are validated, or the time reaches 30 seconds
before the timeout, the main script immediately saves plausible
patches onto the disk and then terminates.

In case there are more than five plausible patches, which exceeds
the limit of the competition, ET picks five plausible patches that
maximize the number of covered locations. For example, when all
plausible patches come from four suspicious locations, it picks two
patches for the first location, and one patch for each of the other
three locations.

4 RESULTS
ET is ranked as #1 in the Functional Errors - Java track and #2 in the
AI Generated Code - Java track. Therefore, it has shown the ability
to fix bugs in open-source projects like JFreeChart (as shown in
Figure 2) and code generated by large language models.

After inspecting the results, we have found one implementation
bug that affects the performance of ET. The current patch validation
process only considers classes named as Test*, *Test or *Tests
as test cases, following the convention of Maven. However, the
benchmark has several test cases that fall beyond this pattern (e.g.,
new_Test_115689) and are thus ignored by ET. We are unable to
fix this issue because the competition does not allow modifying
the tool after the submission deadline. We expect a performance
increase if this issue is fixed.



The ET Program Repair Tool for Java APR ’24 , April 20, 2024, Lisbon, Portugal

5 CONCLUSION
In this paper, we proposed ET, an end-to-end Java program repair
tool for Java. In the APR-Comp 2024, ET is ranked as #1 in the
Functional Errors - Java track and #2 in the AI Generated Code - Java
track, showing the ability to repair real-world bugs.

ACKNOWLEDGMENTS
This work was supported by the National Key Research and Devel-
opment Program of China under Grant No. 2022YFB4501902, and
ZTE Industry-University-Institute Cooperation Funds under Grant
No.HC-CN-20210319008.

REFERENCES
[1] Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan JC Van Gemund. 2009. A

practical evaluation of spectrum-based fault localization. Journal of Systems and
Software 82, 11 (2009), 1780–1792.

[2] Apache Software Foundation. 2023. Apache Maven. https://maven.apache.org/
[3] Apache Software Foundation. 2023. mvnd - the Maven Daemon. https://github.

com/apache/maven-mvnd
[4] ASSERT-KTH. 2023. flacoco. https://github.com/ASSERT-KTH/flacoco
[5] ZeroMQ authors. 2023. ZeroMQ. https://zeromq.org/
[6] NUS-APR. 2023. Cerberus Framework. https://github.com/nus-apr/cerberus
[7] Python Software Foundation. 2023. difflib — Helpers for computing deltas. https:

//docs.python.org/3/library/difflib.html#difflib.unified_diff

[8] Ridwan Shariffdeen. 2023. 1st International Competition on Automated Program
Repair. https://apr-comp.github.io/

[9] StarCoder. 2023. StarCoder. https://huggingface.co/bigcode/starcoder
[10] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin

White, and Denys Poshyvanyk. 2022. An Empirical Investigation into Learning
Bug- Fixing Patches in the Wild via Neural Machine Translation. https://doi.org/
10.5281/zenodo.7478730

[11] Yuan-An Xiao. 2023. Docker image xmcp/et:231004.2. https:
//hub.docker.com/layers/xmcp/et/231004.2/images/sha256-
78351cfb9bafad82d61bc594719f22f4f596ad52da669bc98bd856ef640e7c27

[12] Yuan-An Xiao. 2023. Pull request of ET. https://github.com/nus-apr/cerberus/
pull/115

[13] Yuan-An Xiao, Chenyang Yang, Bo Wang, and Yingfei Xiong. 2023. Acceler-
ating Patch Validation for Program Repair with Interception-Based Execution
Scheduling. arXiv:2305.03955 [cs.SE] https://doi.org/10.48550/arXiv.2305.03955

[14] Yuan-An Xiao, Chenyang Yang, Bo Wang, and Yingfei Xiong. 2023. ExpressAPR:
Efficient Patch Validation for Java Automated Program Repair Systems. In 2023
38th IEEE/ACM International Conference on Automated Software Engineering (ASE).
2038–2041. https://doi.org/10.1109/ASE56229.2023.00012

[15] Qihao Zhu Yuan-An Xiao. 2023. ET repair tool. https://zenodo.org/doi/10.5281/
zenodo.8405059

[16] Qihao Zhu, Zeyu Sun, Yuan-an Xiao, Wenjie Zhang, Kang Yuan, Yingfei Xiong,
and Lu Zhang. 2021. A Syntax-Guided Edit Decoder for Neural Program Repair.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 341–353.
https://doi.org/10.1145/3468264.3468544

[17] Qihao Zhu, Zeyu Sun, Wenjie Zhang, Yingfei Xiong, and Lu Zhang. 2023. Tare:
Type-Aware Neural Program Repair. In 2023 IEEE/ACM 45th International Confer-
ence on Software Engineering (ICSE). IEEE, 1443–1455.

https://maven.apache.org/
https://github.com/apache/maven-mvnd
https://github.com/apache/maven-mvnd
https://github.com/ASSERT-KTH/flacoco
https://zeromq.org/
https://github.com/nus-apr/cerberus
https://docs.python.org/3/library/difflib.html#difflib.unified_diff
https://docs.python.org/3/library/difflib.html#difflib.unified_diff
https://apr-comp.github.io/
https://huggingface.co/bigcode/starcoder
https://doi.org/10.5281/zenodo.7478730
https://doi.org/10.5281/zenodo.7478730
https://hub.docker.com/layers/xmcp/et/231004.2/images/sha256-78351cfb9bafad82d61bc594719f22f4f596ad52da669bc98bd856ef640e7c27
https://hub.docker.com/layers/xmcp/et/231004.2/images/sha256-78351cfb9bafad82d61bc594719f22f4f596ad52da669bc98bd856ef640e7c27
https://hub.docker.com/layers/xmcp/et/231004.2/images/sha256-78351cfb9bafad82d61bc594719f22f4f596ad52da669bc98bd856ef640e7c27
https://github.com/nus-apr/cerberus/pull/115
https://github.com/nus-apr/cerberus/pull/115
https://arxiv.org/abs/2305.03955
https://doi.org/10.48550/arXiv.2305.03955
https://doi.org/10.1109/ASE56229.2023.00012
https://zenodo.org/doi/10.5281/zenodo.8405059
https://zenodo.org/doi/10.5281/zenodo.8405059
https://doi.org/10.1145/3468264.3468544

	Abstract
	1 Introduction
	2 Usage
	3 Repair Workflow
	3.1 Outline
	3.2 Fault Localization
	3.3 Patch Generation
	3.4 Patch Validation
	3.5 Epilogue

	4 Results
	5 Conclusion
	Acknowledgments
	References

