
Search-Based Inference of
Polynomial Metamorphic Relations

Jie Zhang, Junjie Chen, Dan Hao, Yingfei Xiong, Bing Xie∗, Lu Zhang, Hong Mei
Key Laboratory of High Confidence Software Technologies (Peking University), MoE, China

Institute of Software, School of EECS, Peking University, China
{zhangjie12,chenjj14,haod,xiongyf04,xiebing,zhanglu,meih}@sei.pku.edu.cn

ABSTRACT
Metamorphic testing (MT) is an effective methodology for
testing those so-called “non-testable” programs (e.g., sci-
entific programs), where it is sometimes very difficult for
testers to know whether the outputs are correct. In meta-
morphic testing, metamorphic relations (MRs) (which spec-
ify how particular changes to the input of the program under
test would change the output) play an essential role. How-
ever, testers may typically have to obtain MRs manually.

In this paper, we propose a search-based approach to au-
tomatic inference of polynomial MRs for a program under
test. In particular, we use a set of parameters to represent
a particular class of MRs, which we refer to as polynomial
MRs, and turn the problem of inferring MRs into a problem
of searching for suitable values of the parameters. We then
dynamically analyze multiple executions of the program, and
use particle swarm optimization to solve the search problem.
To improve the quality of inferred MRs, we further use MR
filtering to remove some inferred MRs.

We also conducted three empirical studies to evaluate our
approach using four scientific libraries (including 189 scien-
tific functions). From our empirical results, our approach is
able to infer many high-quality MRs in acceptable time (i.e.,
from 9.87 seconds to 1231.16 seconds), which are effective in
detecting faults with no false detection.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and debugging—
Testing tools

General Terms
Algorithm, Experimentation, Verification

Keywords
Metamorphic testing; Invariant inference; Particle swarm
optimization

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’14, September 15-19, 2014, Sweden
Copyright 2014 ACM 978-1-4503-3013-8/14/09 ...$15.00.
http://dx.doi.org/10.1145/2642937.2642994

1. INTRODUCTION
In software testing, a test oracle is needed to determine

whether the program under test exhibits an acceptable be-
havior. Typically, it is very costly for testers to obtain a
suitable test oracle for the program under test [28]. For some
programs (e.g., scientific programs), which Weyuker [66]
refers to as “non-testable” programs, obtaining test oracles
may be extremely difficult or even impossible. In such a
circumstance, testers may be unable to decide whether the
program outputs are correct for most given inputs.

To facilitate testing the so-called“non-testable”programs,
Chen et al. [11] proposed metamorphic testing (MT), which
detects program faults in by looking for violations of meta-
morphic relations (MRs). Typically, an MR specifies how a
particular change to the input would change the output. For
example, to test the sin program, in metamorphic testing,
the tester can check whether sin(x+ π) is equal to −sin(x)
without knowing the exact value of sin(x). That is, the MR
“sin(x+ π)=−sin(x)” can be used to test the sin function.

Typically, testers need to manually acquire MRs. How-
ever, many MRs may be difficult to acquire due to the lack
of thorough knowledge of the program under test. As sci-
entific programs usually deal with complex computation, it
is even more difficult to manually acquire MRs for scien-
tific computing without thorough knowledge of such pro-
grams. For example, for the sin program, some MRs like
“sin(x+ π) = −sin(x)” are easy to infer but some MRs like
“sin2(π/2− x) + sin2(x) = 1” are not. As demonstrated by
Chen et al. [14], more MRs may help achieve more adequate
testing. Such manual acquisition of a number of MRs may
become a bottleneck of metamorphic testing.

To facilitate this labor-intensive work, Kanewala and Bie-
man [33] proposed a machine-learning based technique to
predict whether a program contains some forms of MRs.
For example, for the sin program, this technique predicts
whether it contains a form of MR like “sin(x) − c1sin(x +
c2) = 0” where c1 and c2 are constants, but does not gener-
ate the values of constants c1 and c2. Different from their
technique, in this paper, we aim to automatically infer spe-
cific MRs instead.

As it is difficult to infer arbitrary relations automatically,
we need to consider a particular class of relations. After
manually studying 70 MRs reported in the literature [38,
12, 47, 68, 83, 14, 70, 58, 59, 71, 44], we found that 43
(61.4%) MRs are polynomial, i.e., the relations between in-
puts and the relations between outputs are both polynomial
equations. Therefore, in this paper, we focus on inferring
only such polynomial MRs.

In particular, we propose a novel search-based approach
to inferring polynomial MRs1 by analyzing multiple execu-
tions of the program under test. Our approach aims to in-
fer polynomial metamorphic relations in particular forms,
which can be represented as a series of parameters. For those
parameterized MRs, our approach uses particle swarm opti-
mization [54] to search for suitable values of the parameters.
That is, our approach tries to find a set of parameter values
that characterize the analyzed executions in the form of an
MR. Furthermore, to improve the quality of MRs, our ap-
proach applies statistics based filtering to the inferred MRs.
Based on our study on the literature of MRs [38, 47, 68,
83, 12, 14, 70, 58, 59, 71, 44], 23 (53.5%) polynomial MRs
are simple polynomial MRs whose relations between inputs
are linear equations and whose relations between outputs
are linear or quadratic equations. Therefore, in the cur-
rent stage our approach focuses on inferring these particular
polynomial MRs. However, our approach is general and can
be used to infer other polynomial MRs, which is illustrated
in Section 7.2 as an extension to our approach.

Based on our approach, we implemented a tool named
MRI (i.e., Metamorphic Relation Inferrer) and conducted
three empirical studies on MRI to evaluate our approach
using 189 scientific functions from Apache, JDK, GSL, and
MATLAB. The first study investigates the feasibility of our
approach. The second study investigates the quality of MRs
inferred by our approach. The third study investigates whether
MR filtering in our approach may improve the quality of in-
ferred MRs. Our empirical results demonstrate that our ap-
proach is able to infer many high-quality MRs in acceptable
time. Furthermore, MR filtering in our approach actually
improves the quality of inferred MRs.

In summary, this paper makes the following contributions.
• A novel search-based2 approach to inferring polyno-

mial MRs via dynamically analyzing multiple execu-
tions using particle swarm optimization.
• An evaluation on four scientific libraries demonstrat-

ing the feasibility of our approach and the quality of
inferred MRs.

2. EXAMPLES
To further motivate our research, we use some example

metamorphic relations for three trigonometric functions to
demonstrate that even for some widely known functions there
may be some unfamiliar metamorphic relations.

To most people, the sin function is one of the most pop-
ular trigonometric functions. Let us consider the metamor-
phic relation “sin2(π/2−x)+sin2(x) = 1”. At a glance, this
metamorphic relation looks quite unfamiliar, but as we know
that “cos2(x) + sin2(x) = 1” and “cos(x) = sin(π/2 − x)”,
we may derive this metamorphic relation by ourselves. For
the cos function, “cos(2x) = 2cos2(x)− 1” is a metamorphic
relation. Deriving this metamorphic relation would be much
more difficult, because it involves complex mathematical de-
ductions. Furthermore, it may be even more difficult to de-
rive the metamorphic relation “tan2(x) − 2tan(x)tan(2x −
1Strictly speaking, the MRs our approach inferred are likely
MRs.
2Search based software engineering [26], is an important
branch of software engineering, which applies search tech-
niques to solve various software-engineering problems [10, 8,
43]. To our knowledge, our approach is the first application
of search based software engineering in MR inference.

3π/2)−1 = 0” for the tan function, as tan is much less used
than sin and cos.

As mathematicians have thoroughly investigated all the
preceding trigonometric functions, testers may find the pre-
ceding metamorphic relations by searching in a textbook or
the Internet. However, when the program under test does
not exactly match some thoroughly investigated function, it
may be painful for testers to derive its metamorphic rela-
tions.

Previously, Kanewala and Bieman [33] proposed a ma-
chine learning based approach to predicting likely metamor-
phic relations by some features, which are extracted from the
control flow graph of a program. However, this approach can
only predict whether the program has a particular metamor-
phic relation or not. Let us take the sin function as an ex-
ample. By analyzing the source code implementing the sin
function, this machine-learning based approach may predict
that this function has an MR whose input change and out-
put change are both additive3. That is, for the sin function,
this machine-learning based approach may infer metamor-
phic relations like sin(x) + c1sin(x+ c2) = 0, where c1 and
c2 are constants and x is the input parameter of the function
sin. However, this approach does not provide the values of
constants c1 and c2 at all.

3. APPROACH
Before presenting our approach, we present some back-

ground information of particle swarm optimization (PSO)
in Section 3.1. In our approach, we present definitions of
MRs in their parameterized forms in Section 3.2, our PSO-
based search algorithm for determining the parameters in
Section 3.3, and our statistical based technique for filtering
MRs in Section 3.4.

3.1 Background
Particle swarm optimization (PSO) [54], originally pro-

posed by Kennedy and Eberhart [34] in 1995, is a swarm
intelligence optimization algorithm simulating the birds for-
aging behavior. In PSO, each candidate solution is called a
particle, and multiple particles coexist and optimize cooper-
atively to achieve the optimal solution. In particular, each
particle has a velocity and a location, which keep changing
during the search. There is a fitness function to evaluate how
close the location of a particle is to an optimal location.

Consider searching in aD-dimensional space withN parti-
cles. We use V t

i =<vti1, v
t
i2, ..., v

t
iD> and Lt

i=<l
t
i1, l

t
i2, ..., l

t
iD>

to denote the velocity and the location of the i-th (1 ≤ i ≤
N) particle at moment t (t=1, 2, ...), where vtid and ltid denote
the values of V t

i and Lt
i in the d-th (1 ≤ d ≤ D) dimension,

respectively. Then Formula 1 calculates the velocity of the
i-th particle in the next moment (i.e., moment t+ 1).

vt+1
id = ωvtid + ξ1r1(ptid − ltid) + ξ2r2(ptgd − ltid) (1)

In Formula 1, ω, ξ1, and ξ2 are three weights in positive
numbers (where ω is referred to as the inertia weight and the
other two weights referred to as the acceleration factors); r1
and r2 are two random numbers between 0 and 1; ptid is the
d-th dimension of the personal optimum location that the

3If the input to a program is modified by adding or subtract-
ing a constant, its output will remain or increase. Kanewala
and Bieman [33] defined such a change to an input/output
as additive.

i-th particle has reached on and before moment t; and ptgd
is the d-th dimension of the global optimum location that
all particles have reached on and before moment t. In other
words, besides the two random numbers r1 and r2, there
are three factors that may impact the velocity of a particle
in moment t + 1: the velocity in moment t, the personal
optimal location that the particle has ever reached, and the
global optimal location that any particle has ever reached.
Based on its velocity in moment t + 1, the location of the
i-th particle can be calculated with Formula 2.

lt+1
id = ltid + vt+1

id (2)

In the beginning (i.e., moment 1), the N particles are as-
signed with locations and velocities randomly. The N par-
ticles keep updating their velocities and locations according
to Formulae 1 and 2 until reaching moment T (which is a
termination threshold). Then, the global optimum location
that any particle has ever reached is returned as the final
solution. Typically, each dimension is given a range, and if
the location of any particle at any moment during the search
is out of range, the location value in the corresponding di-
mension is set to the boundary values.

3.2 Parameterizing MRs
As a metamorphic relation (MR) usually specifies how a

change to the input would result in a change to the out-
put [33], we formalize an MR4 as Formula 3.

Ri(I1, I2)⇒ Ro(O1, O2) (3)

In Formula 3, I1 and I2 are the original input and the
changed input, O1 and O2 are the outputs corresponding
to I1 and I2, Ri is a relation between input I1 and input
I2, and Ro is a relation between output O1 and output O2.
Without loss of generality, either I1 or I2 represents a vec-
tor of values, but either O1 or O2 represents only one value.
The reason is that we can treat each output value individu-
ally when the program under test has more than one output
value.

Although Formula 3 can exactly characterize an MR, it
still cannot be directly used for MR inference, because both
Ri and Ro can be in any form. As most MRs studied in
the literature are polynomial, we further confine Ri and Ro

in Formula 3 to polynomial equations. With this confine-
ment, an MR can be characterized with the values of the
parameters in the two polynomial equations.

Furthermore, as mentioned in the introduction, most poly-
nomial metamorphic relations are simple polynomial meta-
morphic relations whose relations between inputs are linear
equations and whose relations between outputs are linear
equations or quadratic equations. That is, many MRs dis-
cussed in the literature are typically in much simpler forms
than MRs involving two arbitrary polynomial equations.
Therefore, in the current stage of our research, there are
two cases under investigation: (1) Ri is a linear equation,
and Ro is a linear equation, too. (2) Ri is a linear equation,
while Ro is a quadratic equation. We will give a formula
denoting MRs with each case.

Suppose that there are n input values for each input with
<x1, x2, ..., xn> and<y1, y2, ..., yn> representing the two in-

4Chen et al. [14] further generalized an MR as “an expected
relation among the inputs and outputs of multiple execu-
tions”. We will investigate these generalized MRs in our
future work.

puts (i.e., I1 and I2). As we mentioned, I1 is the original
input and I2 is the input derived from I1. As Ri is a linear
equation that represents the relation between I1 and I2, ev-
ery input value of I2 (i.e.,yi) can be denoted as a linear com-
bination of all input values of I1, i.e., yi =

∑n
j=1 aijxj + bi.

When Ro is a linear equation, we can represent Ro by
c1O1 + c2O2 + d = 0, where O1 and O2 are the two out-
puts. Given a program under test (denoted as P), let us use
P (x1, x2, ..., xn) to denote output O1, and P (

∑n
j=1 a1jxj +

b1, ...,
∑n

j=1 anjxj + bn) to denote output O2. Then Ro can
be further represented as:

c1P (x1, x2, ...xn)+

c2P (

n∑
j=1

a1jxj + b1, ...,

n∑
j=1

anjxj + bn) + d = 0
(4)

Similarly, we can have a formula denoting MRs with Ri to be
a linear equation and Ro to be quadratic. As Ro is quadratic,
we can represent Ro by c1O

2
1 + c2O1O2 + c3O

2
2 + d1O1 +

d2O2 + e = 0, where O1 and O2 are the two outputs. For
simplicity, we use P (I1) and P (αI1 + β) to denote the two
outputs O1 and O2, where α represents the matrix a[i, j] and
β represents the vector <b1, b2, ..., bn>. Formula 5 denotes
MRs with Ro to be quadratic.

c1P
2(I1) + c2P (I1)P (αI1 + β) + c3P

2(αI1 + β)

+d1P (I1) + d2P (αI1 + β) + e = 0
(5)

It should be noted that Formula 4 is actually a degenerate
form of Formula 5, where the three coefficients of the three
terms with degree 2 are all zero. However, in our search
algorithm discussed in Section 3.3, we need to force the al-
gorithm to produce non-degenerate MRs. For example, if
we allow the algorithm to produce degenerate MRs, it may
produce all zero for all the parameters. Therefore, we use
both formulae in our search algorithm without allowing any
degenerate MRs.

In the following, we demonstrate that all the MRs dis-
cussed previously can be represented with our two formu-
lae. For “sin(x + π)=−sin(x)”, when a11 = 1, b1 = π,
c1 = 1, c2 = 1, and d = 0, Formula 4 actually repre-
sents this MR. Using Formula 5, when a11 = −1, b1 = π/2,
c1 = c3 = 1, c2 = 0, d1 = d2 = 0, and e = −1, it represents
“sin2(π/2−x) + sin2(x) = 1”; when a11 = 2, b1 = 0, c1 = 2,
c2 = c3 = 0, d1 = 0, d2 = −1, and e = −1, it represents
“cos(2x) = 2cos2(x) − 1”. Similarly, we can also use For-
mula 5 to represent “tan2(x)− 2tan(x)tan(2x− 3π/2)− 1 =
0”.

In fact, given a program under test, the number of MRs
that can be represented in Formula 4 or Formula 5 might
still be infinite. Thus, it might still be infeasible to infer all
the MRs satisfying the two formulae.

For ease of presentation, we refer to an MR inferred by
using Formula 4 a type-one MR (denoted as 1-MR), whereas
an MR inferred by using Formula 5 is called a type-two MR
(denoted as 2-MR).

3.3 Searching for MR Parameters
Given a program under test (denoted as P) and M inputs

(denoted as I1, I2,...,IM) of P , the problem of inferring a
polynomial MR for P can be turned into a search problem
of finding some vector of parameter values in Formula 4 or
Formula 5 such that for (almost) every input Ii (1 ≤ i ≤M)

the vector of parameter values and Ii satisfy Formula 4 or
Formula 5.

To solve the preceding search problem, we adopt a PSO
algorithm due to the following reasons. First, as PSO is
very effective to search in continuous space, it may help find
parameter values in real numbers. Second, as the location
updating mechanism in PSO can keep particles from sway-
ing among multiple optimal locations, it is suitable for the
situation that there may be many MRs satisfying Formula 4
and/or Formula 5. However, when there are not many MRs,
PSO is also effective due to the global optimal location and
the velocity of the previous iteration can lead a particle to
escape local optimal locations.

For simplicity of presentation, we focus on Formula 4 in
the rest of this subsection. It is straightforward to extend to
Formula 5. In our PSO, a candidate solution (i.e., a particle)
is a set of parameter values (i.e., values of c1, c2, aij , bi and
d). For every set of parameter values, the fitness function
counts the number of inputs that satisfy Formula 4.

Formally, we define the fitness function for Formula 4 as
follows. Given a vector (denoted as L) of values for c1, c2,
aij (1 ≤ i, j ≤ n), bi (1 ≤ i ≤ n), and d, if L and input
Ik (1 ≤ k ≤ M) satisfy Formula 4, we define f(L, k) = 1;
otherwise we define f(L, k) = 0. Thus, the fitness of vector
L can be defined as Formula 6, which actually counts the
number of inputs that satisfy Formula 4 for L.

fitness(L) =

M∑
k=1

f(L, k) (6)

As the location of every particle keeps changing, sometimes
the values of c1 and c2 may be close to zero, which will
make our MR pointless. To prevent our PSO algorithm from
producing MRs in degenerate forms, when both values of c1
and c2 in a particle are close to zero, we reset them to a
new value. In particular, we use a threshold (denoted as ϕ).
When both c1 and c2 are between -ϕ and ϕ, we set them to
-ϕ or ϕ depending on their being positive or negative.

As one execution of our PSO algorithm generates only
one possible MR, we need to execute our PSO algorithm
many times to obtain a number of MRs. Due to the random
initialization of locations and velocities of the particles and
the random factors (i.e., r1 and r2) in Formula 1, different
executions may produce different MRs. It is possible that an
execution of our PSO algorithm may not always produce a
good enough solution (whose fitness is lower than a threshold
denoted as F). In such cases, we drop all not good enough
solutions. Specific parameter-setting (e.g., F) of our PSO
algorithm is presented in Section 4.

3.4 MR Filtering
Our PSO algorithm infers MRs based on the multiple ex-

ecutions of the program, and thus the quality of inferred
MRs may be dependent on the test inputs of a program. In-
tuitively, our PSO algorithm tends to produce high-quality
MRs if many test inputs are used. However, it is costly to
conduct our PSO algorithm with a large number of test in-
puts. Therefore, our proposed approach uses statistics based
filtering to remove low-quality MRs.

For each MRs inferred by our PSO algorithm, the statis-
tics based filtering algorithm applies a large number of ran-
domly generated test inputs to program P , and records
whether this MR is violated by each test input. If an MR
is violated by an unignorable percentage (which is denoted

as S) of test inputs, we deem such an MR as a low-quality
MR and remove it from the set of inferred MRs. By repeat-
ing the preceding process several times (which is denoted
as Nof), we deliver a set of high-quality MRs by removing
some low-quality MRs.

4. IMPLEMENTATION
Based on the approach described in Section 3, we imple-

mented a tool named MRI (Metamorphic Relation Inferrer).
For our PSO algorithm, we use the following settings as

recommended in the literature of PSO [60, 36, 61]: we set
the two acceleration factors (i.e., ξ1 and ξ2 in Formula 1)
as 1.49445, the number of particles (i.e., N) as 20, and the
termination threshold (i.e., the total number of moments
T) as 350. The inertia weight (i.e., ω in Formula 1) is a
changing value for different moments. We set the value of ω
for moment t (denoted as ωt) according to Formula 7 (also
recommended in PSO literature), where ωs (which is the
value for moment 1) is 0.9 and ωe (which is the value for
moment T) is 0.4.

ωt = ωs − (ωs − ωe)(t/T)2 (7)

We set ϕ (which is the threshold to avoid degenerate MRs)
as 0.5 and F (which is the threshold to select good enough
solutions) as 95%*M. Note that, in Formula 4, parameters
c1, c2, and d can be inflated. If we multiply the three param-
eters with a common factor, we can have another MR that
is semantically equivalent to the original MR. Thus, there
can be a large number of MRs with the values of c1, c2, and
d close to zero. Therefore, using a value significantly larger
than zero for ϕ would also help save the efforts of inferring
too many semantically equivalent MRs. Of course, 0.5 may
not be the best value to achieve this goal. The setting of F
as 95%*M is to due to statistical considerations, as such a
setting implies that it is highly probable that an input can
satisfy the inferred MR. Similarly, we also set S as 5%.

As PSO algorithm requires to set the boundary values
for the parameters c1, c2, c3, d1, d2, α, β, and e, we con-
ducted a trial using the sin function of Apache 2.2 to decide
the proper boundary values of these parameters, with which
MRI may infer high-quality MRs. In particular, we varied
the boundary values for these parameters and applied MRI
with any specified values of these parameters to the sin func-
tion. After manually checking their inferred MRs for the sin
function, we determined the boundary values for these pa-
rameters based on the effectiveness of their inferred MRs.
As a result, in our implementation, the boundary values for
c1, c2, c3, d1, d2, and α are from -2 to 2, the boundary value
for β is from -10 to 10, and the boundary value for e is from
0 to 10.

Moreover, in MRI, as the test inputs used in our PSO
algorithm and MR filtering are randomly generated, we set
the range of test inputs to be from 0 to 20. Besides, the
number of test inputs used in our PSO algorithm is set to
100, the number of test inputs used in MR filtering is set to
1000, and Nof is set to 10.

5. EMPIRICAL SETUP
To evaluate our approach, we conducted three empiri-

cal studies on 189 scientific functions from four scientific
libraries to answer the following research questions

In the first study, we investigate the feasibility of our ap-
proach. In this study, we are interested in the following re-
search question (RQ1): Is our approach able to infer MRs?

In the second study, we investigate the quality of inferred
MRs. In this study, we are interested in the following re-
search question (RQ2): How is the quality of MRs inferred
by our approach?

In the third study, we investigate the impact of MR fil-
tering in our approach. In this study, we are interested in
the following research question (RQ3): Does MR filtering
improve the quality of inferred MRs?

5.1 Subjects
Our approach infers MRs by analyzing multiple execu-

tions of a program rather than its source code. That is, our
approach is a black-box technique, which requires no source
code under test and may be applied to scientific functions
in various languages. Therefore, in our empirical studies we
used four scientific libraries which are written in Java and
C/C++.

The four scientific libraries are Apache Commons Mathe-
matics Library, the math class of Java Development Kit, the
GNU Scientific Library, and the scientific library of MAT-
LAB. Apache Commons Mathematics Library5 (abbreviated
as Apache in this paper) is a library of self-contained mathe-
matical and statistical components in Java. The math class
of Java Development Kit6 (abbreviated as JDK in this pa-
per) provides methods for numeric operations in the Java
platform. The GNU Scientific Library7 (abbreviated as GSL
in this paper) is a numeric library of mathematical rou-
tines in C/C++ language. MATLAB8 is a powerful com-
puting environment developed by MathWorks, which also
contains a very large number of scientific functions. Among
the four libraries, Apache and GSL are open-source scien-
tific libraries, whereas JDK and MATLAB are commercial
scientific libraries. That is, the source code of the latter two
libraries is not available.

As each scientific library contains a very large number of
scientific functions, it is impossible for us to run our ap-
proach on all the scientific functions due to time limit on
experimentation, so we further selected the packages that
perform plain mathematical computations (e.g., not matrix
operations or statistical functions). In particular, we used
the scientific programs in FastMath.java of Apache. For
JDK and MATLAB, we used their same scientific programs
as Apache. For GSL, we used the scientific programs in
the “specfunc” directory. As a result, we got a dataset con-
sisting of 56 scientific functions of Apache 2.2, 53 scientific
functions of JDK 1.6, 55 scientific functions of GSL 1.8,
and 25 scientific functions of MATLAB R2012b. Table 1
presents the basic information of these scientific functions,
where the last three columns present the version informa-
tion, the total number of scientific functions, and the total
number of lines of code used in the studies. More informa-
tion on these functions can be found in the project webpage:
http://infermrs.sourceforge.net/. As the source code of
JDK 1.6 and that of MATLAB R2012b is not available, we
do not list its number of lines of code in this table.

5http://commons.apache.org/proper/commons-math
6http://www.oracle.com/technetwork/java/javase/
downloads/index.html
7http://www.gnu.org/software/gsl/
8http://www.mathworks.cn

Table 1: Subjects
Library Version #Function LOC
Apache 2.2 56 1,626
JDK 1.6 53 -
GSL 1.8 55 7,309
MATLAB R2012b 25 -

5.2 Process
In this subsection, we present the details of how we con-

ducted the three empirical studies.

5.2.1 Study I
In the first study, for each function, we repeated our PSO

algorithm 500 times. After MR filtering MRI inferred a set
of 1-MRs and 2-MRs for each subject. We also recorded the
total time spent on MR inference for each subject.

5.2.2 Study II
First, we investigated the correctness of MRs inferred in

the first study. As sin, cos, and tan are typical scientific
functions, which are available through many mathematics
books, we chose the three functions implemented in different
libraries as representative subjects and manually checked
the correctness of their inferred MRs as follows. For each
of these inferred MRs, we looked through Wikipedia9 and a
mathematics book [22] to check whether it is correct.

Some inferred MRs can be deduced by others. For exam-
ple, sin(−x) − sin(x − π) = 0 can be deduced by sin(x) +
sin(−x) = 0 and sin(x) + sin(x − π) = 0. In software
testing, if developers have already used the latter two MRs,
they may not run again the sin function with the former
MR (i.e., sin(−x)− sin(x− π) = 0) because faults detected
by the former MR may also be detected by the latter MRs.
To acquire the set of MRs that cannot be deduced by each
other, we define a set of representative MRs for any set of
inferred MRs. In particular, for any given set of inferred
MRs (i.e., 1-MRs or 2-MRs) of a subject, its set of repre-
sentative MRs is the minimized subset of the given set, and
each MR of the given set can be deduced by using one or
more MRs in its representative set. For example, for a set of
inferred MRs {sin(−x)−sin(x−π) = 0, sin(x)+sin(−x) =
0, sin(x) + sin(x− π) = 0}, its set of representative MRs is
{sin(x) + sin(−x) = 0, sin(x) + sin(x − π) = 0}. In this
study, for each trigonometric function, we manually summa-
rized its set of representative 1-MRs and 2-MRs respectively.
If multiple minimal subsets exist, we chose one that has the
smallest size.

Besides, Apache 2.2, JDK 1.6, and MATLAB R2012b im-
plement some common scientific functions. For each com-
mon scientific function (e.g., exp), we compared the number
of MRs inferred from different libraries.

Second, we investigated the fault-detection capability of
MRs inferred in the first study through regression testing [69,
78]. In particular, to simulate the regression testing in soft-
ware evolution, we applied the MRs inferred from the correct
version of a project on detecting faults in its subsequent ver-
sion. Among the functions used in the empirical studies, 11
functions (i.e., sin, cos, tan, log10, loglp, asinh, atan, and
four abs functions with various inputs) have changed from
Apache 2.2 to Apache 3.2. The other functions used in the

9http://en.wikipedia.org/wiki/Trigonometric/
_functions/#Sine.2C/_cosine/_and/_tangent

empirical studies have no change during software evolution.
Therefore, in the second study we used these 11 functions
of Apache 3.2 to investigate the fault-detection capability
of MRs inferred from the first study. As the functions of
Apache have been widely used in practical software devel-
opment, they hardly contain any faults. Therefore, for these
functions we constructed faults using program mutation fol-
lowing procedure similar to prior work [46, 77]. The differ-
ence between versions shows the developers’ modification on
the previous version, and thus we generated faults only in
such difference so as to simulate most developers’ faults in
software evolution. In particular, for each of the 11 func-
tions of Apache 3.2, we applied MuClipse [62] to generate a
number of mutants whose mutation operators10 occur only
on the different statements between Apache 2.2 and Apache
3.2. Each mutant, which is the result of applying a mutation
operator on the source code, is viewed as a faulty program
in our second study.

If an MR is violated by a faulty program, we deem the
MR detects the fault. However, if the MR is also violated
by the original, unseeded program of Apache 3.2, we deem
this MR is of low quality and the detection is a false detec-
tion. For each of the 11 functions of Apache 3.2, we ran-
domly generated 1000 test inputs. Then, we ran these test
inputs on both the generated faulty versions of Apache 3.2
and the original version of Apache 3.2 for each MR inferred
from Apache 2.2. As our approach infers MRs that are sup-
ported by at least 95% inputs, the inferred MRs should be
used in a statistical way of metamorphic testing, which is
referred to as statistical metamorphic testing in this paper.
In statistical metamorphic testing, only when the violation
of an inferred MR become statistically non-trivial, we deem
the program to be likely to contain faults. In particular, we
consider an MR was violated when at least 5% of the test
inputs were violated considering anomaly detection.

5.2.3 Study III
To learn whether MR filtering improves the quality of in-

ferred MRs, we compared the quality of MRs inferred with
MR filtering and the quality of MRs inferred without MR
filtering in regression testing following the same procedure
of the second study. In this study, for each faulty program
of Apache 3.2, we used statistical metamorphic testing to
evaluate the quality of these MRs, recording the number of
true detections and the number of false detections. Finally,
we compared the numbers of true detections and false de-
tections between MRs inferred with MR filtering and MRs
inferred without MR filtering.

5.3 Threats to Validity
The threat to internal validity lies in the implementation

of our approach. To reduce the threat from implementing
errors, the authors of this paper reviewed the source code
after implementing the proposed approach.

The main threats to external validity lie in the subjects
and faults. First, similar to prior work [14] in metamorphic
testing, we used four scientific libraries consisting of small11

10Mutation operators define some operations like statement
deletion, statement replacement, and so on.

11After manually studying the scientific functions used in the
literature of software engineering [5, 63, 7, 23], we found that
the scientific functions used in their evaluation are usually
very small, which are usually smaller than 100 lines of code.

Table 2: Basic statistics on MR inference
Number of MRs for each scientific program

Library 1-MRs 2-MRs
Avg. Max. Min. Avg. Max. Min.

Apache 87.96 353 0 46.63 401 0
JDK 85.04 348 0 47.72 395 0
GSL 80.85 331 0 52.78 239 0
MATLAB 47.24 168 0 13.52 78 0

Execution time of MR inference for each scientific program
Library 1-MRs (seconds) 2-MRs (seconds)

Avg. Max. Min. Avg. Max. Min.
Apache 49.87 261.03 15.19 33.33 96.20 16.25
JDK 42.37 404.08 14.92 45.35 421.88 17.02
GSL 97.70 315.05 9.87 352.88 1231.16 18.15
MATLAB 123.99 202.41 67.53 247.10 474.29 88.01

scientific functions whose MRs may be manually checked.
As our approach is a black-box technique that does not an-
alyze the source code, whether the scientific functions are
small or large does not affect the feasibility of our approach.
However, the functionality of scientific functions has much
impact on the feasibility of our approach because our ap-
proach infers MRs based on their executions. To reduce this
threat, we used a large number of scientific programs from
different libraries. Moreover, although our approach is eval-
uated based on scientific programs, the approach has no such
restrictions and can be applied to any programs. To reduce
this threat, we will evaluate our approach by other programs
in the future. Second, the faults were generated by using a
mutation tool because prior work [2] shows that such faults
can be used in the empirical studies of software testing. As
these faults may be not representative of real faults, we will
conduct more empirical studies on more programs with real
faults in the future. Furthermore, in the evaluation we used
the implementation of our approach introduced in Section 4,
whose value for each parameter is set based on the literature
of PSO and our trial on the sin function. However, as our
approach does not have any restrictions on the values of the
parameters, in future work we will conduct empirical stud-
ies to evaluate the effectiveness of our approach with other
values of these parameters.

6. RESULTS

6.1 RQ1: MR Inference
Table 2 presents the basic statistics on MR inference, in-

cluding the number of inferred MRs for each scientific func-
tion and the execution time of our approach on inferring
MRs for each scientific function. The complete results can be
found in http://infermrs.sourceforge.net/. From this
table, for each scientific function, the number of 1-MRs is
from 0 to 353, whereas the number of 2-MRs is from 0 to
401. That is, our approach infers an unignorable number
of 1-MRs and 2-MRs for scientific functions. The execution
time of our approach on inferring MRs for each scientific
function is from 9.87 seconds to 1231.16 seconds, which is
acceptable. Therefore, our approach is able to infer many
MRs quickly.

6.2 RQ2: Quality of Inferred MRs

6.2.1 Correctness
Table 3 presents typical MRs of the three trigonometric

functions sin, cos, and tan. Our approach generates MRs

Table 3: MRs inferred from three trigonometric functions
Function Library 1-MRs 2-MRs

sin(x) − sin(x− 2π) = 0 sin2(x) + sin2(−x + 0.5π) − 1 = 0
sin(x) + sin(x − π) = 0 sin2(−0.5x − 0.75π) + 0.5sin(x) − 0.5 = 0

Apache sin(x) + sin(−x) = 0 sin2(x) + sin2(−x) + 2sin(x)sin(−x) = 0
sin(x) − sin(−x+ π) = 0... sin2(x) + sin2(x − π) + 2sin(x)sin(x − π) = 0...
sin(x) − sin(x− 2π) = 0 sin2(x) + sin2(x − 2.5π) − 1 = 0
sin(x) + sin(x − π) = 0 sin2(x) + 0.5sin(2x − 1.5π) − 0.5 = 0

sin JDK sin(x) + sin(−x) = 0 sin2(x) + sin2(−x) + 2sin(x)sin(−x) = 0
sin(x) + sin(−x− 4π) = 0... sin2(x) + sin2(x − π) + 2sin(x)sin(x − π) = 0...
sin(x) − sin(−x− π) = 0 sin2(x) − sin2(−x − 2π) − sin(x) − sin(−x − 2π) = 0

sin(x) + sin(x + π) = 0 sin(x) + 0.5sin2(−x) + 1.5sin(x)sin(−x) + 0.5sin(x) + 0.5sin(−x) = 0
GSL sin(x) + sin(−x) = 0 sin2(x) − sin(x)sin(−x + π) + sin(x) − sin(−x + π) = 0

sin(x) − sin(−x− 3π) = 0... sin2(x) + sin2(−x) − 2sin(x)sin(−x) = 0...
sin(x) + sin(−x) = 0 sin2(x) + sin2(−x + 0.5π) − 1 = 0
sin(x) + sin(x − π) = 0 sin2(x) + sin2(−x − π) − 2sin(x)sin(−x − π) = 0

MATLAB sin(x) + sin(−x+ 2π) = 0 sin2(x) + sin(x)sin(x − π) + 2sin(x) + 2sin(x − π) = 0
sin(x) − sin(x− 2π) = 0... sin2(x) + 0.5sin(2x + 0.5π) − 0.5 = 0...

cos(x) + cos(−x− π) = 0 cos2(x) + cos2(−x − 0.5π) − 1 = 0
cos(x) − cos(x− 2π) = 0 cos2(−0.5x − 1.5π) + 0.5cos(x) − 0.5 = 0

Apache cos(x) + cos(x − π) = 0 cos2(x) − cos2(x + π) = 0
cos(x) − cos(−x) = 0... cos2(x) + cos2(−x) − 2cos(x)cos(−x) = 0...
cos(x) + cos(−x− π) = 0 cos2(x) + cos2(−x + 0.5π) − 1 = 0
cos(x) − cos(x− 2π) = 0 cos2(0.5x − 2π) − 0.5cos(x) − 0.5 = 0

cos JDK cos(x) + cos(x − π) = 0 cos2(x) + cos(x)cos(−x + π) − cos(x) − cos(−x + π) = 0
cos(x) − cos(−x) = 0... cos2(x) − cos(x)cos(−x) = 0...
cos(x) − cos(x+ 2π) = 0 cos2(x) + 0.5cos2(x + π) + 1.5cos(x)cos(x + π) − 1.5cos(x) − 1.5cos(x + π) = 0
cos(x) + cos(x − π) = 0 cos2(x) − cos(x)cos(−x + 2π) − cos(x) + cos(−x + 2π) = 0

GSL cos(x) − cos(−x) = 0 cos2(0.5x) − 0.5cos(x) − 0.5 = 0
cos(x) − cos(−x− 3π) = 0... cos2(x) + cos2(x− 2π) − 2cos(x)cos(x− 2π) = 0...
cos(x) − cos(−x+ 2π) = 0 cos2(−0.5x − 1.5π) + 0.5cos(x) − 0.5 = 0
cos(x) − cos(−x) = 0 cos2(x) + 3cos2(x − π) + 4cos(x)cos(x − π) = 0

MATLAB cos(x) + cos(x − π) = 0 cos2(x) + cos2(x + 0.5π) − 1 = 0
cos(x) + cos(x+ π) = 0... cos2(x) − cos2(−x − π) + cos(x) + cos(−x − π) = 0...

tan(x) + tan(−x + π) = 0 tan2(0.5x + 1.25π) − 2tan(x)tan(0.5x + 1.25π) − 1 = 0
tan(x) − tan(x− 2π) = 0 tan2(x) + tan2(−x) + 2tan(x)tan(−x) = 0

Apache tan(x) − tan(x − π) = 0 tan2(x) − tan2(x + π) − tan(x) + tan(x + π) = 0
tan(x) − tan(x+ 2π) = 0... tan2(x) + tan2(x+ 3π) − 2tan(x)tan(x+ 3π) = 0...
tan(x) + tan(−x + π) = 0 tan2(x) − 2tan(x)tan(2x − 1.5π) − 1 = 0
tan(x) + tan(−x+ 2π) = 0 tan2(x) − tan2(−x) = 0

tan JDK tan(x) − tan(x − π) = 0 tan2(x) − tan2(x + π) + tan(x) − tan(x + π) = 0
tan(x) − tan(x+ π) = 0... tan2(x) + tan2(−x− 2π) + 2tan(x)tan(−x− 2π) = 0...
tan(x) + tan(−x) = 0 tan2(x) + tan2(−x + π) + 2tan(x)tan(−x + π) = 0
tan(x) − tan(x− 2π) = 0 tan2(x) + 0.5tan2(−x) + 1.5tan(x)tan(−x) − 0.5tan(x) − 0.5tan(−x) = 0

MATLAB tan(x) + tan(−x + π) = 0 tan2(x) + tan2(−x+ 2π) + 2tan(x)tan(−x+ 2π) = 0
tan(x) + tan(−x− 2π) = 0... tan2(0.5x − 1.75π) − 2tan(x)tan(0.5x − 1.75π) − 1 = 0...

Table 4: Comparison of some inferred MRs in the first study
1-MRs abs d abs f abs i abs l acos acosh asin asinh atan round d cbrt ceil cos
Apache 141 160 64 73 0 19 0 21 62 118 23 123 207
JDK 132 145 96 72 0 - 0 - 60 120 30 97 213
MATLAB 148 - - - 19 8 44 10 50 78 - 12 129
1-MRs toDegrees signum f expm1 floor gE d gE f log log10 log1p nextUp d nextUp f rint atanh
Apache 0 302 73 115 106 106 40 133 50 331 350 126 0
JDK 5 306 70 120 115 117 60 135 54 348 334 110 -
MATLAB - - - 84 - - 28 95 44 - - - 52
1-MRs round f signum d exp sin sinh sqrt tan tanh cosh toRadians ulp d ulp f
Apache 122 344 64 219 0 9 20 139 0 353 220 236
JDK 122 317 68 227 0 13 13 134 0 336 217 229
MATLAB - - 41 168 0 5 8 125 0 - - -

2-MRs abs d abs f abs i abs l acos acosh asin asinh atan round d cbrt ceil cos
Apache 5 2 44 39 0 3 0 2 14 46 1 28 108
JDK 1 3 30 42 0 - 0 - 7 47 4 31 101
MATLAB 6 - - - 3 1 4 1 6 21 - 20 62
2-MRs toDegrees signum f expm1 floor gE d gE f log log10 log1p nextUp d nextUp f rint atanh
Apache 0 401 26 58 42 56 4 18 6 5 5 48 0
JDK 0 395 30 47 51 57 2 15 1 8 3 50 -
MATLAB - - - 24 - - 2 10 4 - - - 6
2-MRs round f signum d exp sin sinh sqrt tan tanh cosh toRadians ulp d ulp f
Apache 38 391 31 131 0 0 8 80 0 303 214 246
JDK 47 394 26 109 0 2 8 73 0 299 218 225
MATLAB - - 9 78 0 7 6 58 0 - - -

by assigning values to the parameters in the formulae with
some precision. To ease understanding, we present the in-
ferred MRs in this table by using the estimation of these
values. For example, in the sin function, we use π to de-
note 3.1412. GSL does not implement the tan function and
thus we do not list its inferred MRs in this table. For each
subject, we use the bold font to depict its complete sets of
representative MRs. The left columns give 1-MRs inferred
by our approach using Formula 4 whereas the right columns
give 2-MRs inferred by our approach using Formula 5.

From this table, these typical MRs include most impor-
tant MRs of the three trigonometric functions. For exam-
ple, our approach infers series of 1-MRs and 2-MRs for
the cos function of the four scientific libraries. These in-
ferred 1-MRs, represented by cos(x) − cos(−x) = 0 and
cos(x)+cos(x−π) = 0, show that the cos function is a sym-
metric and periodical function. The inferred 2-MRs, repre-
sented by cos2(x) + cos2(−x− 0.5π)− 1 = 0, cos2(−0.5x−
1.5π) + 0.5cos(x) − 0.5 = 0, cos2(x) − cos2(x + π) = 0,
and cos2(x) + cos2(−x) − 2cos(x)cos(−x) = 0, show the
relation between cos(x), cos(2x) and cos(x − 0.5π) besides
the symmetric and periodical characteristics of the cos func-
tion. Furthermore, our approach infers the complex MRs
sin2(π/2 − x) + sin2(x) − 1 = 0 for the sin function and
tan2(x) − 2tan(2x − 3π/2)tan(x) − 1 = 0 for the tan func-
tion from the libraries.

Table 4 presents the total number of MRs inferred from
the common scientific functions. For each function, the num-
bers of inferred MRs from different libraries are close. This
observation is as expected because these functions have the
same functionality, suggesting the correctness of the inferred
MRs. For the same scientific function, the average execution
time of our approach for different libraries is close. That is,
although different libraries may implement a scientific func-
tion in different ways13 (i.e., resulting in different programs),
their kernel source code may not differ much in efficiency
and thus the execution time of our approach for the same
scientific functions of different libraries is close.

From Table 4, the number of inferred MRs is larger than
that of the representative MRs. For example, our approach
generated 219 1-MRs for the sin function of Apache, but
only 2 of them are representative. The other 217 MRs can
be deduced by these 2 representative MRs. As Chen et
al. [11] demonstrate that more MRs may help to achieve
more adequate testing, the MRs that can be deduced by
some representative MRs may not be redundant. Moreover,
more MRs may reduce the cost in software testing. For
example, in order to reveal the faults that can be detected
only by sin(x)−sin(−x+3π) = 0, it may be more costly to
check the two representative MRs (i.e., sin(x)+sin(−x) = 0
and sin(x) + sin(x− π) = 0) rather than one MR. To check
the former MR, developers may run the sin function twice,
whereas checking the latter two MRs, developers may run
the sin function four times.

6.2.2 Fault-Detection Capability
Table 5 gives the results of the second study, where the

second column gives the total number of mutation faults

12The complete list of inferred MRs for these functions can
be found in the project webpage.

13As the source code of JDK and MATLAB is not available,
we cannot check the difference between the source code of
the three libraries.

Table 5: Fault-detection capability of MRs
Seeded #By 1-MRs #By 2-MRs
Faults Total FD TD Total FD TD

sin 17 9 0 9 9 0 9
cos 19 8 0 8 8 0 8
tan 18 8 0 8 8 0 8
log10 58 7 0 7 4 0 4
log1p 115 25 0 25 24 0 24
asinh 297 1 0 1 0 0 0
atan 94 15 0 15 31 0 31
abs d 7 5 0 5 5 0 5
abs f 7 5 0 5 5 0 5
abs i 15 15 0 15 15 0 15
abs l 15 15 0 15 15 0 15

in each scientific function of Apache 3.2, “FD” presents the
number of false detections by the corresponding MRs, “TD”
presents the number of true detections by the corresponding
MRs, and “Total” is the sum of its previous two columns.

From the fifth and eighth columns, the numbers of true
detections for 1-MRs and 2-MRs are usually larger than 0.
That is, the inferred MRs are able to detect faults. From the
fourth and seventh columns, the numbers of false detections
for 1-MRs and 1-MRs are 0. That is, the inferred MRs
always make correct detection. On the other hand, for most
scientific functions (including sin, cos, tan, abs d, abs f ,
abs i, and abs l), the inferred MRs detect about half of the
faults. The only exception is asinh, in which only one fault
is detected out of 297 faults. By further investigating the
injected faults, we found that this is probably because the
rest 296 faults were not triggered by the test inputs: the
mutated statements of all the 296 faults will be executed
only when a strict condition (i.e., variable a is smaller than
0.167) is satisfied . Overall, our inferred MRs were effective
in detecting faults and produced no false detection.

Comparing the results of the two types of MRs (i.e., 1-
MRs and 2-MRs), the number of faults detected by the for-
mer is close to that of the latter. After reviewing these
inferred MRs and their detected faults, we found the reason
to be that our approach always infers some important MRs
that can detect a large number of faults no matter which
formula (i.e., Formula 4 and Formula 5) it used.

6.3 RQ3: Necessity of MR Filtering
Table 6 presents the fault-detection capability of MRs in-

ferred by our approach without MR filtering. For each scien-
tific function, the number of false detections of MRs inferred
without MR filtering is usually larger than 0. For example,
the 1-MRs for the tan function have 10 false detections.
As the functionality of these subjects does not change from
Apache 2.2 to Apache 3.2, these inferred MRs should not
be violated. That is, the false detections in this table result
from low-quality MRs, which are inferred by our approach
without MR filtering. As the number of false detections de-
tected by the MRs inferred with MR filtering is 0 (shown by
Table 5), MR filtering actually improves the quality of MRs
by removing low-quality MRs.

On the other hand, the filtering did reduce the number of
true detections, but the reduced number was small. Overall,
the reduction on fault detection occurred only on 3 out of
11 functions, and in total only 16.9% true detections were
filtered out. Considering the large number of false detections
removed, we believe the filtering procedure is effective and
necessary.

Table 6: Fault-detection capability of MRs without
MR filtering

Seeded #By 1-MRs #By 2-MRs
Faults Total FD TD Total FD TD

sin 17 9 0 9 9 0 9
cos 19 9 0 9 19 11 8
tan 18 18 10 8 18 10 8
log10 58 58 51 7 58 54 4
log1p 115 29 0 29 113 85 28
asinh 297 297 292 5 4 0 4
atan 94 94 65 29 94 63 31
abs d 7 7 2 5 5 0 5
abs f 7 7 2 5 7 2 5
abs i 15 15 0 15 15 0 15
abs l 15 15 0 15 15 0 15

Figure 1: A 3-dimension solution space

7. DISCUSSION

7.1 Limitations
First, our approach requires the input of the program un-

der test to be of numerical values. For example, our ap-
proach in the current stage may not be suitable for pro-
grams whose inputs are pointers or arrays. Therefore, we
may improve the existing PSO algorithms by transforming
these inputs into numerical values.

Second, our approach requires that the program under test
should always produce the same output for the same input.
That is to say, the behavior of the program under test should
not depend on some external state. Thus, our approach may
not be suitable for testing a program involving a database
or a method in an object-oriented program relying on the
state of the object.

7.2 Extensions
According to Chen et al. [14], an MR are supposed to hold

among multiple executions. Based on this, we can change
our Formula 3 to a more general form depicted in Formula 8.

Ri(I1, I2, ...Im)⇒ Ro(O1, O2, ...Om) (8)

Similar to the treatment presented in Section 3, we can
also parameterize this generalized definition of MRs by con-
fining Ri and Ro to be polynomial equations. In fact, we
can further relax the requirement of polynomial equations
to polynomial inequalities.

Therefore, the whole solution space of the extension can
be depicted in Figure 1, where P1 and P2 represent the
two cases our approach has solved. In this solution space,
there are three major directions for further extending our
approach.

First, the Ri relation on inputs can be extended to a poly-
nomial with a higher degree (i.e., greater than 1). For exam-
ple, using a polynomial with a degree of 2 for Ri may help
infer “log10(x2) = 2log10(x)” for the log10 function.

Second, the Ro relation on outputs can also be extended
to a polynomial with a higher degree (i.e., greater than 2).
For example, using a polynomial with a degree of 3 for Ro

may help infer “sin(3x) = 3sin(x)− 4sin3(x)” for sin.
Third, the number of involved inputs can be extended to

more than 2. For example, involving 3 inputs may help infer
“sin(2x) = 2sin(x)sin(π/2− x)” for the sin function.

As our approach in this paper cannot deal with these ex-
tensions, we will improve our PSO algorithm for further in-
vestigating these situations.

8. RELATED WORK

8.1 Metamorphic Testing
Chen et al. originally proposed the methodology of meta-

morphic testing [11] and formally established the method-
ology [15]. Besides application of metamorphic testing on
various areas [12, 48], some researchers focus on the selec-
tion of good MRs, which is related to our work. Chen et
al. [13] demonstrated that it is better to select MRs that
make the multiple executions of the program as different as
possible. Mayer and Guderlei [45] identified some MRs and
classified them using mutation analysis. They also evaluated
MRs according to their potential usefulness. Recently, Liu
et al. [38] proposed to systematically construct MRs based
on some already identified MRs. Differently, our approach
aims to automatically infer MRs without any existing MRs.

Our work is mostly related to the technique proposed by
Kanewala and Bieman [33], which automatically predicts the
existence of some forms of MRs for a program using machine
learning. Different from our approach, their technique does
not produce specific MRs, but tells whether a program may
have a particular form of MRs or not. Their technique and
our approach may be viewed as complement to each other.
In particular, we may use their technique to predict the ex-
istence of a form of MR and use our technique to produce
the specific MR by giving the values of parameters. Fur-
thermore, their technique is a white-box technique, which
extracts features for prediction by analyzing the source code
of the program under test, whereas our technique is a black-
box technique. That is, with the source code of the program
under test, our technique may be further improved to pro-
duce better MRs.

8.2 Program-Invariant Inference
As program invariants are important for fault detection

and program repairing, researchers proposed to infer pro-
gram invariants through analysis, especially dynamic anal-
ysis. For example, Ernst et al. [21] developed a tool named
Daikon to discover program invariants for supporting pro-
gram evolution. Jiang et al. [32] proposed a novel tech-
nique to automatically model and search relationships be-
tween the flow intensities that can be regarded as invariants.
Csallner et al. [16] proposed to infer invariants using dy-
namic symbolic execution. Llano et al. [39] proposed to use
theory formation to discover invariants. Recently, Nguyen
et al. [50] inferred disjunctive invariants with a hybrid ap-
proach. Furthermore, as specifications tell the usage of API
and may be used to detect faults, many researchers focus

on inferring specifications [81, 82, 73], which can be viewed
as program invariants as well. Besides work on invariant
generation [79, 37, 6, 49, 42], some researchers focused on
using invariants to facilitate software testing (e.g., test-case
generation [75] and test-suite reduction [51]), software ver-
ification [52], model inference and transformation [35, 9],
specifications mining [40], and so on.

Our work is related to program-invariant inference be-
cause MRs can also be regarded as program invariants, both
of them may be applied to reveal faults in software test-
ing [20]. However, traditional program invariants are sup-
posed to hold during each single execution, whereas MRs are
supposed to hold across multiple executions. Similar to dy-
namic invariant inference, our approach is also based on the
analysis of program executions. However, our approach is to
search for the values of the parameters in an MR, whereas
dynamic variant inference is to discover invariants that sat-
isfying executions.

8.3 Particle Swarm Optimization
Particle swarm optimization (PSO) [54, 80] is a swarm

intelligence optimization algorithm simulating the birds for-
aging behavior. Due to the efficiency of PSO in solving opti-
mization problems, PSO has been applied to various areas,
including multi-objective optimization, pattern recognition,
signal processing, classification and data clustering.

Recently PSO is applied to some specific areas of software
engineering, e.g., automated test-case generation [67]. In
this paper, we use PSO for MR inference. To our knowledge,
it is the first application of PSO in metamorphic testing.

8.4 Search-Based Software Engineering
Harman and Jones [26] coined the term Search Based Soft-

ware Engineering (SBSE) and argued that software engi-
neering is ideal for the application of metaheuristic search
techniques, such as genetic algorithms. Typically, hill climb-
ing, simulated annealing and genetic algorithms are the three
main metaheuristic search techniques that have been widely
used in software engineering [25].

Search-based optimization techniques have been widely
applied to software testing, including test-suite generation
[8, 4, 56, 24, 53] and optimization [72, 31, 43, 3, 74]. Be-
sides software testing, search-based optimization techniques
have also been applied to fault localization [65], program
analysis [76], software refactoring [29, 30, 55], cost estima-
tion [19], project scheduling [1, 18], decisions design opti-
mization [10], automated negotiation [17], source code par-
allelization [57], requirement engineering [27, 64], variability
management [41], and so on.

Although search-based software engineering is important
and promising, very little research in search-based software
engineering has used PSO as a metaheuristic search tech-
nique. Our work is the first application of search-based soft-
ware engineering for program-invariant inference.

9. CONCLUSION AND FUTURE WORK
In this paper, we propose a novel approach to automat-

ically inferring polynomial metamorphic relations by ana-
lyzing multiple executions of the same program under test.
To our knowledge, this is the first automatic approach to
MR inference. In particular, we view the problem of MR
inference as a searching problem and thus use a typical op-
timization algorithm PSO to solve the problem. Then we

conducted three empirical studies and got the finding that
our approach is able to infer many MRs with high quality in
acceptable time, which are effective in detecting faults with
no false detection.

In our future, we plan to investigate the following issuers.
First, we will extend types of MRs in future work. Be-

sides polynomial equations studied in this paper, some MRs
may be represented by polynomial inequalities. For the sci-
entific function log10(x), if x1 is larger than x2, log10(x1) is
larger than log10(x2). Relations between programs (e.g.,
“sin2(x)+cos2(x)=1”) may also help detect faults in the
functions sin and cos. In future work, we will extend the
definition of MRs and investigate how to infer these MRs.

Second, we will improve our approach by investigating
other PSO algorithms or optimization algorithms. Besides
the PSO algorithm used in this paper, there exist many
other optimization algorithms [1] like hill climbing, which
have been used to solve similar search problems (e.g., test-
suite reduction) in software testing. In future work, we will
investigate some other PSO algorithms for the MR inference
problem or optimization algorithms in MR inference.

10. ACKNOWLEDGMENTS
This work is supported by the National Basic Research

Program of China under Grant No.2014CB347701, the High-
Tech Research and Development Program of China under
Grant No.2013AA01A605, and the National Natural Science
Foundation of China under Grant Nos.61121063, 61332010,
61272157, 61228203, 61225007.

11. REFERENCES
[1] E. Alba and F. Chicano. Management of software

projects with gas. In Proc. MIC, pages 13–18, 2005.

[2] J. H. Andrews, L. C. Briand, and Y. Labiche. Is
mutation an appropriate tool for testing experiments?
In Proc. ICSE, pages 402–411, 2005.

[3] J. H. Andrews, T. Menzies, and F. C. Li. Genetic
algorithms for randomized unit testing. IEEE
Transactions on Software Engineering, 37(1):80–94,
2011.

[4] A. Baars, M. Harman, Y. Hassoun, K. Lakhotia,
P. McMinn, P. Tonella, and T. Vos. Symbolic
search-based testing. In Proc. ASE, pages 53–62, 2011.

[5] E. T. Barr, T. Vo, V. Le, and Z. Su. Automatic
detection of floating-point exceptions. In Proc. POPL,
pages 549–560, 2013.

[6] S. Bensalem, M. Bozga, B. Boyer, and A. Legay.
Incremental generation of linear invariants for
component-based systems. In Proc. ACSD, pages
80–89, 2013.

[7] F. Benz, A. Hildebrandt, and S. Hack. A dynamic
program analysis to find floating-point accuracy
problems. In Proc. PLDI, pages 453–462, 2012.

[8] A. Bertolino. Software testing research: Achievements,
challenges, dreams. In Proc. FOSE, pages 85–103,
2007.

[9] J. Cabot, R. Clarisó, E. Guerra, and J. De Lara. An
invariant-based method for the analysis of declarative
model-to-model transformations. In Proc. MODELS,
pages 37–52, 2008.

[10] G. Canfora and M. Di Penta. New frontiers of reverse
engineering. In Proc. FOSE, pages 326–341, 2007.

[11] T. Y. Chen, S. C. Cheung, and S. M. Yiu.
Metamorphic testing: A new approach for generating
next test cases. Technical Report HKUST-CS98-01,
Hong Kong University of Science and Technology,
1998.

[12] T. Y. Chen, J. Feng, and T. H. Tse. Metamorphic
testing of programs on partial differential equations: A
case study. In Proc. COMPSAC, pages 327–333, 2002.

[13] T. Y. Chen, D. H. Huang, T. H. Tse, and Z. Q. Zhou.
Case studies on the selection of useful relations in
metamorphic testing. In Proc. JIISIC, pages 569–583,
2004.

[14] T. Y. Chen, F.-C. Kuo, T. H. Tse, and Z. Q. Zhou.
Metamorphic testing and beyond. In Proc. STEP,
pages 94–100, 2003.

[15] T. Y. Chen, T. H. Tse, and Z. Q. Zhou. Fault-based
testing without the need of oracles. Information and
Software Technology, 45(1):1–9, 2003.

[16] C. Csallner, N. Tillmann, and Y. Smaragdakis. Dysy:
Dynamic symbolic execution for invariant inference. In
Proc. ICSE, pages 281–290, 2008.

[17] E. Di Nitto, M. Di Penta, A. Gambi, G. Ripa, and
M. L. Villani. Negotiation of service level agreements:
An architecture and a search-based approach. In Proc.
ICSOC, pages 295–306, 2007.

[18] M. Di Penta, M. Harman, and G. Antoniol. The use of
search-based optimization techniques to schedule and
staff software projects: An approach and an empirical
study. Software: Practice and Experience,
41(5):495–519, 2011.

[19] J. J. Dolado. A validation of the component-based
method for software size estimation. IEEE
Transactions on Software Engineering,
26(10):1006–1021, 2000.

[20] M. D. Ernst. Dynamically discovering likely program
invariants. PhD thesis, University of Washington,
2000.

[21] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant,
C. Pacheco, M. S. Tschantz, and C. Xiao. The Daikon
system for dynamic detection of likely invariants.
Science of Computer Programming, 69(1):35–45, 2007.

[22] I. M. Gelfand and M. Saul. Trigonometry. Springer,
2001.

[23] P. Godefroid and J. Kinder. Proving memory safety of
floating-point computations by combining static and
dynamic program analysis. In Proc. ISSTA, pages
1–12, 2010.

[24] F. Gross, G. Fraser, and A. Zeller. Search-based
system testing: high coverage, no false alarms. In
Proc. ISSTA, pages 67–77, 2012.

[25] M. Harman. The current state and future of search
based software engineering. In Proc. FOSE, pages
342–357, 2007.

[26] M. Harman and B. F. Jones. Search-based software
engineering. Information and Software Technology,
43(14):833–839, 2001.

[27] M. Harman, J. Krinke, J. Ren, and S. Yoo. Search
based data sensitivity analysis applied to requirement
engineering. In Proc. GECCO, pages 1681–1688, 2009.

[28] M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. A
comprehensive survey of trends in oracles for software

testing. Technical Report CS-13-01, University of
Sheffield, 2013.

[29] M. Harman and L. Tratt. Pareto optimal search based
refactoring at the design level. In Proc. GECCO,
pages 1106–1113, 2007.

[30] S. Hayashi, Y. Tsuda, and M. Saeki. Search-based
refactoring detection from source code revisions.
IEICE Transactions on Information and Systems,
93(4):754–762, 2010.

[31] S. Huang, M. B. Cohen, and A. M. Memon. Repairing
GUI test suites using a genetic algorithm. In Proc.
ICST, pages 245–254, 2010.

[32] G. Jiang, H. Chen, and K. Yoshihira. Discovering
likely invariants of distributed transaction systems for
autonomic system management. In Proc. ICAC, pages
199–208, 2006.

[33] U. Kanewala and J. M. Bieman. Using machine
learning techniques to detect metamorphic relations
for program without test oracles. In Proc. ISSRE,
pages 1–10, 2013.

[34] J. Kennedy and R. C. Eberhart. Particle swarm
optimization. In Encyclopedia of Machine Learning,
pages 1942–1948, 1995.

[35] I. Krka, Y. Brun, D. Popescu, J. Garcia, and
N. Medvidovic. Using dynamic execution traces and
program invariants to enhance behavioral model
inference. In Proc. ICSE, pages 179–182, 2010.

[36] J. J. Liang, A. K. Qin, P. N. Suganthan, and
S. Baskar. Comprehensive learning particle swarm
optimizer for global optimization of multimodal
functions. IEEE Transactions on Evolutionary
Computation, 10(3):281–295, 2006.

[37] W. Lin, M. Wu, Z. Yang, and Z. Zeng. Exact safety
verification of hybrid systems using sums-of-squares
representation. Science China Information Sciences,
57(5):1–13, 2014.

[38] H. Liu, X. Liu, and T. Y. Chen. A new method for
constructing metamorphic relations. In Proc. QSIC,
pages 59–68, 2012.

[39] M. T. Llano, A. Ireland, and A. Pease. Discovery of
invariants through automated theory formation.
Formal Aspects of Computing, 26(2):203–249, 2014.

[40] D. Lo and S. Maoz. Mining scenario-based
specifications with value-based invariants. In Proc.
OOPSLA, pages 755–756, 2009.

[41] R. E. Lopez-Herrejon and A. Egyed. Sbse4vm: Search
based software engineering for variability
management. In Proc. CSMR, pages 441–444, 2013.

[42] M. Z. Malik, A. Pervaiz, and S. Khurshid. Generating
representation invariants of structurally complex data.
In Proc. TACAS, pages 34–49, 2007.

[43] N. Mansour, R. Bahsoon, and G. Baradhi. Empirical
comparison of regression test selection algorithms.
Journal of Systems and Software, 57(1):79–90, 2001.

[44] J. Mayer and R. Guderlei. An empirical study on the
selection of good metamorphic relations. In Proc.
COMPSAC, pages 475–484, 2006.

[45] J. Mayer and R. Guderlei. An empirical study on the
selection of good metamorphic relations. In Proc.
COMPSAC, pages 475–484, 2006.

[46] H. Mei, D. Hao, L. Zhang, L. Zhang, J. Zhou, and

G. Rothermel. A static approach to prioritizing junit
test cases. IEEE Transactions on Software
Engineering, 38(6):1258–1275, 2012.

[47] C. Murphy. Metamorphic testing techniques to detect
defects in applications without test oracles. PhD thesis,
Columbia University, 2010.

[48] C. Murphy, K. Shen, and G. Kaiser. Automatic
system testing of programs without test oracles. In
Proc. ISSTA, pages 189–200, 2009.

[49] T. Nguyen, D. Kapur, W. Weimer, and S. Forrest.
Using dynamic analysis to discover polynomial and
array invariants. In Proc. ICSE, pages 683–693, 2012.

[50] T. Nguyen, D. Kapur, W. Weimer, and S. Forrest.
Using dynamic analysis to generate disjunctive
invariants. In Proc. ICSE, pages 608–619, 2014.

[51] N. Pan, F. Zeng, and Y.-H. Huang. Test case
reduction based on program invariant and genetic
algorithm. In Proc. WiCOM, pages 1–5, 2010.

[52] C. S. Păsăreanu and W. Visser. Verification of java
programs using symbolic execution and invariant
generation. In Proc. SPIN, pages 164–181, 2004.

[53] Y. Pavlov and G. Fraser. Semi-automatic search-based
test generation. In Proc. ICST, pages 777–784, 2012.

[54] R. Poli, J. Kennedy, and T. Blackwell. Particle swarm
optimization. Swarm Intelligence, 1(1):33–57, 2007.

[55] F. Qayum and R. Heckel. Search-based refactoring
using unfolding of graph transformation systems.
Electronic Communications of the EASST, 38, 2011.

[56] D. Romano, M. Di Penta, and G. Antoniol. An
approach for search based testing of null pointer
exceptions. In Proc. ICST, pages 160–169, 2011.

[57] C. Ryan. Automatic re-engineering of software using
genetic programming, volume 2. Springer, 2000.

[58] S. Segura, R. M. Hierons, D. Benavides, and
A. Ruiz-Cortés. Automated test data generation on
the analyses of feature models: a metamorphic testing
approach. In Proc. ICST, pages 35–44, 2010.

[59] S. Segura, R. M. Hierons, D. Benavides, and
A. Ruiz-Cortés. Automated metamorphic testing on
the analyses of feature models. Information and
Software Technology, 53(3):245–258, 2011.

[60] Y. Shi and R. C. Eberhart. Empirical study of particle
swarm optimization. In Proc. CEC, pages 1945–1950,
1999.

[61] Y. Shi, H. Liu, L. Gao, and G. Zhang. Cellular
particle swarm optimization. Information Sciences,
181(20):4460–4493, 2011.

[62] B. H. Smith and L. Williams. On guiding the
augmentation of an automated test suite via mutation
analysis. Empirical Software Engineering,
14(3):341–369, 2009.

[63] E. Tang, E. Barr, X. Li, and Z. Su. Perturbing
numerical calculations for statistical analysis of
floating-point program (in)stability. In Proc. ISSTA,
pages 131–142, 2010.

[64] P. Tonella, A. Susi, and F. Palma. Interactive
requirements prioritization using a genetic algorithm.
Information and Software Technology, 55(1):173–187,
2013.

[65] S. Wang, D. Lo, L. Jiang, and H. C. Lau. Search-based
fault localization. In Proc. ASE, pages 556–559, 2011.

[66] E. J. Weyuker. On testing non-testable programs. The
Computer Journal, 25(4):465–470, 1982.

[67] A. Windisch, S. Wappler, and J. Wegener. Applying
particle swarm optimization to software testing. In
Proc. GECCO, pages 1121–1128, 2007.

[68] W.K.Chan, S.C.Cheung, and K. R.P.H.Leung.
Towards a metamorphic testing methodology for
service-oriented software applications. In Proc. QSIC,
pages 470–476, 2005.

[69] W. E. Wong, J. R. Horgan, S. London, and
H. Agrawal. A study of effective regression testing in
practice. In Proc. ISSRE, pages 264–274, 1997.

[70] P. Wu. Iterative metamorphic testing. In Proc.
COMPSAC, pages 19–24, 2005.

[71] X. Xie, J. Ho, C. Murphy, G. Kaiser, B. Xu, and T. Y.
Chen. Application of metamorphic testing to
supervised classifiers. In Proc. QSIC, pages 135–144,
2009.

[72] Z. Xu, M. B. Cohen, and G. Rothermel. Factors
affecting the use of genetic algorithms in test suite
augmentation. In Proc. GECCO, pages 1365–1372,
2010.

[73] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and
M. Das. Perracotta: mining temporal API rules from
imperfect traces. In Proc. of ICSE, pages 282–291,
2006.

[74] S. Yoo, M. Harman, and S. Ur. GPGPU test suite
minimisation: search based software engineering
performance improvement using graphics cards.
Empirical Software Engineering, 18(3):550–593, 2013.

[75] Y. Yuan, Z. Fanping, Z. Guanmiao, D. Chaoqiang,
and X. Neng. Test case generation based on program
invariant and adaptive random algorithm. In Proc.
CSE, pages 274–282, 2011.

[76] A. Zeller. Search-based program analysis. In Proc.
SSBSE, pages 1–4, 2011.

[77] L. Zhang, D. Hao, L. Zhang, G. Rothermel, and
H. Mei. Bridging the gap between the total and
additional test-case prioritization strategies. In Proc.
ICSE, pages 192–201. IEEE, 2013.

[78] L. Zhang, D. Marinov, L. Zhang, and S. Khurshid.
Regression mutation testing. In Proc. ISSTA, pages
331–341, 2012.

[79] L. Zhang, G. Yang, N. Rungta, S. Person, and
S. Khurshid. Feedback-driven dynamic invariant
discovery. In Proc. ISSTA, pages 362–372, 2014.

[80] J. Zhao, C. Han, and B. Wei. Binary particle swarm
optimization with multiple evolutionary strategies.
Science China Information Sciences,
55(11):2485–2494, 2012.

[81] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei.
MAPO: Mining and recommending API usage
patterns. In Proc. of ECOOP, pages 318–343, 2009.

[82] H. Zhong, L. Zhang, T. Xie, and H. Mei. Inferring
resource specifications from natural language API
documentation. In Proc. of ASE, pages 307–318, 2009.

[83] Z. Q. Zhou, D. H. Huang, T. H. Tse, Z. Yang,
H. Huang, and T. Y. Chen. Metamorphic testing and
its applications. In Proc. ISFST, pages 346–351, 2004.

