
Fixing Recurring Crash Bugs
via Analyzing Q&A Sites

Qing Gao, Hansheng Zhang, Jie Wang, Yingfei Xiong, Lu Zhang, Hong Mei
Key Laboratory of High Confidence Software Technologies (Peking University), MoE

Institute of Software, School of Electronics Engineering and Computer Science,
Peking University, Beijing, 100871, P. R. China

{gaoqing11, zhanghs12, wangjie14, xiongyf04, zhanglu, meih}@sei.pku.edu.cn

Abstract—Recurring bugs are common in software systems,
especially in client programs that depend on the same framework.
Existing research uses human-written templates, and is limited to
certain types of bugs. In this paper, we propose a fully automatic
approach to fixing recurring crash bugs via analyzing Q&A sites.
By extracting queries from crash traces and retrieving a list of
Q&A pages, we analyze the pages and generate edit scripts. Then
we apply these scripts to target source code and filter out the
incorrect patches. The empirical results show that our approach
is accurate in fixing real-world crash bugs, and can complement
existing bug-fixing approaches.

I. INTRODUCTION

Many bugs are recurring bugs. Recurring bugs are bugs
that occur often in different projects, and are found common,
accounting for 17%-45% of the bugs [1, 2]. One important
reason for bugs to recur is that many modern programs
depend on a certain framework, e.g., Android, Spring, and
Hadoop. Problems may occur when certain constraints in
these frameworks are violated. For example, one framework
may require calling a specific method to initialize an object
before using it, otherwise a crash may occur. Programmers of
different applications may all forget to call the specific method,
leading to recurring crash bugs.

The recurrence of bugs gives us opportunities to fix them
automatically. Recently, different approaches are proposed to
fix bugs automatically by exploiting the recurrence. One of
the most influential approaches is GenProg [3], which copies
code pieces from other parts of the software project to fix the
current bug. However, this approach does not work if a correct
fix cannot be formed from the current project. PAR [4] uses
ten manually defined fix templates to fix bugs, and thus is not
confined by the code in the current project. However, since the
templates are extracted manually, only limited types of bugs
can be fixed. In real-world programs, bug-fixing patterns can
be numerous, and can vary from one framework to another. It
is impractical to write every such template manually.

To overcome the problem of manual fix-pattern extraction,
in this paper we aim to infer fixes automatically via analyzing
Q&A sites. We observe that, many recurring bugs have already
been discussed over the Q&A sites such as Stack Overflow,
and we can directly obtain the fixes from the Q&A sites.
Furthermore, it is common for programmers to search the
Q&A sites when they encounter a bug with respect to a certain

Yingfei Xiong is the corresponding author.

framework, which indicates that Q&A sites are more or less a
reliable source for obtaining fixes for a large portion of bugs.

As the first step of fixing recurring bugs via analyzing
Q&A sites, we focus on a specific class of bugs: crash bugs.
Crash bugs are among the most severe bugs in real-world
software systems, and a lot of research efforts have been put
into handling crash bugs, including localizing the causes of
crash bugs [5], keeping the system running under the presence
of crashes [6], and checking the correctness of fixes to crash
bugs [7]. However, despite the notable progress in automatic
bug fixing [8, 9, 4, 10, 11, 12], there is no approach that is
designed to directly fix crash bugs within our knowledge.

It is not easy to automate the bug fixes via Q&A sites. First,
we need to locate a suitable Q&A web page that describes a
bug of the same type and contains a solution. It is easy for
humans to come up with a few keywords, query a web search
engine, and read through the returned pages to find the most
suitable one. However, it is not easy to do it automatically.
Second, even if we can locate a correct Q&A web page, it is
still difficult to extract a solution from a page where questions
and answers are described in a natural language.

To overcome the first problem, we utilize the fact that a
Q&A page discussing a crash bug usually has a crash trace,
which contains certain information about the bug, such as an
error message and a call stack. We could construct a query
using such information and ask a web search engine to locate
suitable pages. However, it is not feasible to directly construct
such a query from a crash trace, because texts in a crash trace
usually contain a lot of project-specific information, such as a
project method name and the name of a problematic variable.
The project-specific texts would not match the bug appearing
in the Q&A web site. To overcome this problem, we further
filter out project-specific texts.

To overcome the second problem, we utilize a fact obtained
by studying Q&A web pages: many Q&A pages contain code
snippets, and it is enough to fix many bugs by only looking
at the code snippets on the pages. In this way we can avoid
complex natural language processing and use almost only
program analysis. For example, a developer asking a question
about a bug may post his/her source code snippet, and a reply
answering the question may contain a fixed version of the code
snippet. By comparing the two code snippets, we can directly
obtain a fix.

However, even only analyzing code snippets is not easy.
Due to the fuzzy nature of Q&A pages, there may not be a
clear correspondence between the buggy and fixed versions

of the code. Furthermore, we cannot directly apply the fix
described in the web page to the target project, as the code
in the web page is usually different from the source code in
the target project. To overcome these difficulties, we system-
atically combine a set of existing techniques, including partial
parsing [13, 14], tree-based code differencing [15, 16], and
edit script generation [17]. These techniques together allow us
to deal with the fuzzy nature of the web code as well as the
gap between the project and the web page.

In summary, our contributions are as follows:

• We propose an approach to fixing recurring crash bugs
via analyzing Q&A sites. To our knowledge, this is
the first approach for automatic program repair using
Internet resources.

• We demonstrate that fixes in Q&A sites can be
obtained and applied by combining a set of fuzzy
program analysis techniques, without complex natural
language processing.

• We evaluate our approach with real-world crash bugs
from GitHub, and manually verify the correctness of
the generated patches. Our evaluation shows that our
approach is effective in fixing real-world recurring
crash bugs, and can complement existing bug-fixing
approaches.

II. APPROACH OVERVIEW

We first introduce the general structure of our approach in
Section II, and then introduce each step in Section III. Our
current approach is implemented in Java, but is not limited to
a specific programming language.

When a program crashes, it has a crash trace. Our approach
uses the source code and the crash trace as input, and consists
of four steps: Q&A page extraction, edit script extraction,
patch generation, and patch filtering. Fig. 1 shows the overview
of our approach. The number on each arrow is the step number.

The first step of our approach is Q&A page extraction.
Given a crash trace, we extract keywords, and give it to a
search engine. The search engine then returns a list of Q&A
pages. In the second step, we isolate code snippets from each
Q&A page, and combine them to buggy & fixed code pairs, in
which a fixed code snippet may contain a fix to a buggy code
snippet. After reducing code size in each code pair, we build
mappings between code snippets in each pair, and generate edit
scripts that indicate how to transform the buggy code to the
fixed code. In the third step, we extract source code snippets
by using the crash trace and buggy code snippets, and apply
each edit script to each source code snippet. In the last step,
we filter generated patches, and report the fixing result. In the
following section we will describe each step in detail.

III. APPROACH DETAIL

We now explain our approaches in detail. We use a running
example taken from a real-world crash bug1 in an Android
application, and the crash trace is shown in Fig. 2. In the
crash trace, Line 1 and Line 13 are two error messages that
describe the crash. Line 2-12 and Line 14-17 represent two call
stacks. Fig. 3 shows a source code snippet in this example, and
we use the word “location” to indicate the line number of an

1https://github.com/haku/Onosendai/issues/100

individual statement. In this example, Line 31 in Fig. 3 is the
faulty location of the source code. The root cause of the bug
is that the method OnReceive() passes context to the method
level() of BatteryHelper. The method level() makes the
parameter register a receiver. However, for context this is not
allowed. We describe Q&A page extraction in Section III-A,
edit script extraction in Section III-B, patch generation in
Section III-C, and patch filtering in Section III-D.

29 public void onReceive (final Context context, final Intent intent) {
30 final int action = intent.getExtras().getInt(KEY ACTION, -1);
31 final float bl = BatteryHelper.level(context);
32 LOG.i(”AlarmReceiver invoked: action=%s bl=%s.”, action, bl);
33 switch (action) {
... ...

51 }
52 }

Fig. 3: The source code snippet

A. Q&A Page Extraction
To fix the bug, our approach begins with Q&A page

extraction. In this step, we generate a query, and give the query
to a web search engine to obtain a list of Q&A pages. Based on
our observation, the first line of the crash trace can be used as
the query, as it usually contains (1) the exception type, and (2)
an error message about the crash. Both are information unique
to the current bug. For example, Line 1 in Fig. 2 indicates
the exception is a RuntimeException and the cause of the
problem is that “IntentReceiver components are not allowed
to register to receive intents”.

However, we cannot directly use the whole first line,
because some words in the error message are project spe-
cific, and if we include these words, the search engine
will hardly return any answer. In the example, The word
com.vaguehope.onosendai.update.AlarmReceiver is a class
name defined in the target project.

To overcome this problem, we observe that project-specific
items are usually reported in full qualified names, and thus we
can filter out such items using the root package of the project.
Basically, we filter out all words which contain a substring
equal to the name of the root package. In our example, we
generate the query java.lang.RuntimeException: Unable

to start receiver IntentReceiver components are not

allowed to register to receive intents. We give the
query to a search engine, and obtain a ranking list of Q&A
pages.

B. Edit Script Extraction
The second step of our approach is edit script extraction.

An edit script is a sequence of edit operations that describes
how to transform one code snippet to another. In our work we
use a tree-based edit script generation algorithm, in which an
edit script describes operations on the Abstract Syntax Tree
(AST). We can add, delete, update, or move a node in an AST
in one edit operation.

We extract edit scripts in three steps: buggy & fixed code
pair extraction, buggy & fixed code reduction, and edit script
generation.

bug

fix

Buggy
source code

bug

fix

bug

fixbug

fix

Fixed
source code

1

2

2 2

3 3

bug

fix

update

A

Q

A

A

Q
Q

delete

code

code

code

delete
update

bug

4

4

3

3

2

3

Exception:
at:
at:

bug

fix

Crash trace

Q&A pages
Code snippets
in source code

Patch candidates

Code snippets
in Q&A pages

Buggy&fixed
 code pairs

Reduced code pairs Edit Scripts

Fig. 1: Overview of our approach

1 java.lang.RuntimeException: Unable to start receiver com.vaguehope.onosendai.update.AlarmReceiver:
android.content.ReceiverCallNotAllowedException: IntentReceiver components are not allowed to register to receive intents

2 at android.app.ActivityThread.handleReceiver(ActivityThread.java:2126)
3 at android.app.ActivityThread.access$1500(ActivityThread.java:123)
4 at android.app.ActivityThread$H.handleMessage(ActivityThread.java:1197)
5 at android.os.Handler.dispatchMessage(Handler.java:99)
6 at android.os.Looper.loop(Looper.java:137)
7 at android.app.ActivityThread.main(ActivityThread.java:4424)
8 at java.lang.reflect.Method.invokeNative(Native Method)
9 at java.lang.reflect.Method.invoke(Method.java:511)

10 at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:784)
11 at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:551)
12 at dalvik.system.NativeStart.main(Native Method)
13 Caused by: android.content.ReceiverCallNotAllowedException: IntentReceiver components are not allowed to register to receive intents
14 at android.app.ReceiverRestrictedContext.registerReceiver(ContextImpl.java:118)
15 at android.app.ReceiverRestrictedContext.registerReceiver(ContextImpl.java:112)
16 at com.vaguehope.onosendai.update.AlarmReceiver.onReceive(AlarmReceiver.java:31)
17 at android.app.ActivityThread.handleReceiver(ActivityThread.java:2119)
18 ... 10 more

Fig. 2: An example of a crash trace

(a) Part of a question post

(b) Part of an answer post

Fig. 4: Part of a Q&A page for the crash trace in Fig. 2

1) Buggy & Fixed Code Pair Extraction: In the ranking
order of the Q&A pages, we first extract code snippets in each
page. Fig. 4 shows part of a Q&A page returned from a search
engine given the above query. In this figure, there are three
code snippets, one in the question post, and the other two in
the answer post.

To extract buggy & fixed code pairs, we first need to isolate
code snippets from natural language descriptions in each post.
We isolate code snippets by taking the snippets from inside the
HTML tag pair <code> and </code> (grey in Stack Overflow
as shown in Fig. 4). This may miss some code snippets which
are not tagged, but according to our observation most of the
code snippets are in this type of tag pairs.

Then we combine different code snippets to buggy & fixed
code pairs. A buggy & fixed code pair may be either of the
following:

1) Both buggy code and fixed code are in the same
answer post.

2) Buggy code is in the question post, and fixed code is
in the answer post.

To identify the first type of code pairs, we identify answer
posts that have more than one code snippets, and use keyword
matching to distinguish the buggy code and the fixed code.

The keywords are commonly used by humans to explain com-
parison relationship, such as “instead of” and “change...to...”.
If such keywords exist, we combine the two code snippets into
one code pair, and distinguish buggy and fixed code snippets
according to the keywords.

To identify the second type of code pairs, we take each
code snippet in the question post and each code snippet in the
answer post as a buggy & fixed code pair.

Because the first type of code pairs is more likely to be
a buggy and fixed code pair, we rank this type of code pairs
before the second type of code pairs. As a result, we obtain
three code pairs for the running example: one taken from
only the answer post, and two taken from both the question
and the answer posts. The fixed code snippet in the answer
post suggests inserting getApplicationContext() to context,
which fixes the buggy code snippet.

2) Buggy & Fixed Code Reduction: The buggy and fixed
code snippets are often not similar in size. In Fig 4, there are
more than ten lines in the buggy code snippet of the question
post, while only one line in the fixed code snippet of the
answer post. The big difference in the code will influence
the correctness of the generated edit script. Therefore, before
analyzing the code pair, we reduce the size of both buggy code
and fixed code according to their similarities.

First, we parse a buggy & fixed code pair and get two
Abstract Syntax Trees (ASTs). Each node in the AST has
a label, which indicates the type of the node (e.g., method
invocation), and for each leaf node it also has a value (e.g.,
the name of a variable). The code snippets are usually not
complete. Therefore, we use partial parsing [13] techniques to
parse the code snippets into ASTs.

Then we calculate the similarities between each statements
in the code pair, and filter out those statements that has
only low similarity scores. Here we consider two types of
similarities:

1) Text similarity. We calculate the edit distance be-
tween each line, and denote the length of buggy
code as len buggy, and the length of fixed code as
len fixed. We use the following formula:

Sim(Text) = 1 − edit distance√
len buggy ∗ len fixed

2) Structure similarity. We calculate the AST similarity
using the ratio of common AST leaf nodes among all
the leaf nodes in two ASTs. We denote the number
of common leaf nodes as num common, and the total
number of leaf nodes in two ASTs as num total. We
use the following formula:

Sim(Structure) =
num common

num total

In both cases, we only take code elements with one of the
similarity scores more than a pre-defined threshold. In this way
we can reduce the size of each code snippet in the code pair
greatly. The reduced code pairs are shown in Fig. 5. Each code
snippet above the line is a considered as a buggy code snippet,
and each code snippet under the line is considered as a fixed
code snippet.

context.registerReceiver(...);
context.getApplicationContext().registerReceiver(...);

(a) Code pair from the same answer post

Intent intent = context.registerReceiver(...);
context.registerReceiver(...);

Intent intent = context.registerReceiver(...);
context.getApplicationContext().registerReceiver(...);

(b) Code pairs from both the question and answer post

Fig. 5: Reduced code pairs from Fig. 4

3) Edit Script Generation: We leverage a state-of-art edit
script generation technique, GumTree [16], to generate edit
scripts for buggy code snippets. By applying the edit script to a
buggy code snippet, we shall get the corresponding fixed code
snippet. Given two ASTs, GumTree works in two steps. First,
it builds mappings between the nodes of the ASTs. A leaf or
inner node of one AST can be mapped to a leaf or inner node
of the other AST, and each node can only be mapped once.
There may be nodes that do not have any mapping. Second,
it generates exactly one edit script using an existing linear
optimal algorithm [17]. The edit script contains four types
of edit operations on a node (including leaf and inner) of an
AST, namely add, delete, update, and move. Here we explain
these operations using the definitions in the corresponding
paper [16]:

• add(t, tp, i, l, v): Add a new node t in the AST. If tp
is not null and i is specified then t is the ith child
of tp. Otherwise t is the new root node and has the
previous root node as its only child. Finally, l is the
label of t and v is the value of t.

• delete(t): Delete a leaf node t of the AST.
• update(t, vn): Replace the old value of a node t by

the new value vn.
• move(t, tp, i): Move a node t and make it the ith child

of tp. Note that all children of t are moved as well,
and therefore this actions moves a whole subtree.

Let us denote the AST of the buggy code snippet as
buggyAST, and the AST of the fixed code snippet as fixedAST.
We use the code pair in Fig. 5(a) for explanation. The
mappings generated by GumTree between buggyAST and
fixedAST for this code pair is shown in Fig 6. Long-dotted
and short-dotted lines indicate mappings built by GumTree in
its different steps, and are considered the same in our approach.
Suppose in buggyAST the node corresponding to context is
C, and the parent node of C is P , while in fixedAST, the
node that is mapped to C is C ′, the node corresponding to
getApplicationContext is G′, and the parent node of C ′ and
G′ is M ′, which is labeled as “MethodInvocation”, correspond-
ing to context.getApplicationContext(). The edit script is
as follows. For simplicity, we omit the last two parameters of
add operations, and use “equivalent” to indicate that the label
and value of a newly added node are the same as those of an
existing node.

1) add(M,P, 1, ...), where M is equivalent to M ′

Block

ExpressionStatement

MethodInvocation

MethodInvocation SimpleName:registerReceiver NullLiteral:null ClassInstanceCreation

SimpleName:context SimpleName:getApplicationContext SimpleType QualifiedName

SimpleName:IntentFilter SimpleName:Intent SimpleName:ACTION_BATTERY_CHANGED

Block

ExpressionStatement

MethodInvocation

SimpleName:context SimpleName:registerReceiver NullLiteral:null ClassInstanceCreation

SimpleType QualifiedName

SimpleName:IntentFilter SimpleName:Intent SimpleName:ACTION_BATTERY_CHANGED

Buggy code:
context.registerReceiver(null,
new IntentFilter(Intent.ACTION_BATTERY_CHANGED));

Fixed code:
context.getApplicationContext().
registerReceiver(null, new IntentFilter
(Intent.ACTION_BATTERY_CHANGED));

C'

M'

C

P

P'

G'

buggyAST

fixedAST

Fig. 6: The mappings between buggyAST and fixedAST built by GumTree

2) move(C,M, 1)
3) add(G,M, 2, ...), where G is equivalent to G′

The above edit script aims to reflect the changes of
two ASTs, rather than to apply the changes to new code
context. Consider a new code snippet, Line 31 in Fig. 3.
In the AST of this code snippet, the parent node of
context (denoted as P ′′) has three children, which are
BatteryHelper, level, and context. If we directly apply
the above edit script to this AST, P ′′ will have the fol-
lowing three children: context.getApplicationContext(),
BatteryHelper, and level. The corresponding source code
fails to compile.

This is a result of differences in two code snippets contain-
ing the same recurring bug, although the fix pattern is the same.
The differences are mainly in two cases: changed position and
renamed variable. Suppose we apply an add operation to the
AST of a new code snippet, denoted as newAST. In the changed
position case, as the example shows, the position of the added
node should be changed from the 1st child to the 3rd child
of the parent node. In the renamed variable case, the variable
should be renamed to match the context of newAST. If we do
not consider these cases, we may fail to generate many fixes.

To overcome this problem, our solution is to add two more
operations in edit scripts, defined as follows.

• replace(tn, tp, t): Add a new node tn equivalent to t,
to the position of tp. Then remove tp from the AST.
Note that tp is not destroyed, and keeps its children
and its mapping (if any).

• copy(tn, tp, i, t): Add a new leaf node tn equivalent
to t, to the ith child of tp. This operation requires that
t is a leaf node and already exists in the AST.

The aim of using replace and copy operations is to handle
the case of changed position and renamed variable, respective-
ly. We generate replace and copy operations along with the
generation of other operations. GumTree leverages an algo-
rithm [17] that builds edit scripts via two passes of traversal.
The first pass of traversal is on fixedAST, in which update,
add, and move operations are generated in order for each
node. The second pass of traversal is on buggyAST, in which
delete operations are generated. We check whether to generate
replace and copy operations for a node of fixedAST between
the checking for generating update and add operations. The
generated replace or copy operation shall replace the original
add or move operation on the same node, since there is at most
only one operation for each node. As soon as an operation is
generated, GumTree first apply the operation to buggyAST and
then continue to generate new operations (if any). Therefore,
we can still ensure the correctness of the generated edit script.
Suppose GumTree is visiting a non-root node n′ in the first
pass of traversal in fixedAST, and n′ is ith child of p′.

First, we check whether to generate a replace operation for
n′. The algorithm is shown in Alg. 1. We check whether n′ or
p′ is mapped to a node in buggyAST, and whether the labels
are different. If a corresponding mapping exists and the labels
are different, we generate a replace operation.

Second, we check whether to generate a copy operation
for n′. We begin with checking whether n′ is mapped to a
node in buggyAST. If so, we do not create a copy operation.
Otherwise, we scan fixedAST, and find whether there is any
leaf node f ′ that has the same value as n′, whether f ′ is
mapped to a node in buggyAST (denoted as f), and whether
p′ is mapped to a node in buggAST (denoted as p). If all the
three conditions are satisfied, we generate a copy operation:

Algorithm 1 Generating a replace operation

n′: the non-root node of fixedAST
p′: the parent node of n′
i: the index of n′ in p′
newNode: a newly added node
N.mappedNode: the mapped node of N in buggyAST

if n′.hasMapping then
if n′.label 6= n′.mappedNode.label then

return replace(newNode, n′.mappedNode, n′)
else

if p′.hasMapping then
p := p′.mappedNode
if p.childNum>i then
n := p.getChild(i)
for each e′ ← p′.children do

if e′.mappedNode == n then
return NULL

if n.label 6= n′.label then
return replace(newNode, n, n′)

return NULL

copy(newNode, p, i, f), where newNode is a newly added
node.

For the running example, we generate a replace operation.
The edit script is shown below. We use it instead of the original
edit script generated by GumTree.

1) replace(M,C,M ′)
2) move(C,M, 1)
3) add(G,M, 2, ...), where G is equivalent to G′

C. Patch Generation
We first extract source code snippets from the target

project, and combine them with buggy code snippets from
Q&A pages to obtain a list of buggy & source code pairs.
Then we apply each edit script of the buggy code snippet to
the corresponding source code snippet to obtain patches.

1) Buggy & Source Code Pair Extraction: We extract
buggy & source code pairs as follows. First, we perform file-
level fault localization. We take all files in the project that
appear in the call stacks of the crash trace from top down, and
obtain a list of candidate files. In Fig. 2, the call stacks suggests
that there is only one candidate file AlarmReceiver.java.
Second, we extract buggy & source code pairs. The buggy
code snippets come from existing buggy & fixed code pairs,
while the source code snippets come from candidate files just
extracted. If a buggy code snippet is a method, we search for a
method with the same name in the candidate files, and combine
these two methods as a buggy & source code pair. If the buggy
code snippet is a block, which is in most of the occasions, the
algorithm consists of three steps explained below.

First, we use call stacks and the buggy code snippet to
pinpoint faulty locations. A call stack already contains a list
of line numbers, and thus we take each line number of the
corresponding candidate file in the call stack from top down.
The buggy code snippet may also help us find a faulty location.
We first calculate similarity scores between each statement
in the candidate files and each statement in the buggy code
snippet using the formulae in Section III-B2. Then we filter

out statements in candidate files with similarity scores less
than the same pre-defined threshold, and sort faulty locations
indicated by the rest of the statements in descending order of
similarity scores. We rank the faulty locations obtained from
call stacks before those obtained from the buggy code snippet.

Second, according to the size of the buggy code snippet,
we expand each faulty location inside the candidate files,
and combine them to obtain a buggy & source code pair.
Specifically, we expand each faulty location forward in the
corresponding candidate file to obtain a possible block whose
size is the same as the size of the buggy code block. Now we
have a list of buggy & source code pairs.

Third, since the faulty location for a crash is not necessarily
the exact line number identified, for the source code snippet in
each buggy & source code pair, we also choose the previous
location and the next location with the same block size as
two additional source code snippets. Therefore, for each buggy
code snippet we obtain two additional buggy & source code
pairs. In the source code fragment in Fig. 3, we extract 3 buggy
& source code pairs for the buggy code snippet in Fig 5(a).
The source code snippet in these pairs are Line 31, Line 30,
and Line 32 in order.

2) Edit Script Application: We denote the AST of a source
code snippet as srcAST. Given a buggy & source code pair,
we use GumTree again to build mappings between buggyAST
and srcAST. According to the mappings, each operation in the
edit script on a node of buggyAST is now effective on the
mapped node of srcAST. If there is an unmapped node in the
edit script, we do not generate a fix. In the example, GumTree
maps C in buggyAST to context in srcAST (denoted as C ′′)
in Fig 3. The edit script is transformed to the following to
operate nodes of srcAST:

1) replace(M ′′, C ′′,M ′)
2) move(C ′′,M ′′, 1)
3) add(G′′,M ′′, 2, ...), where G′′ is equivalent to G′

For each buggy & source code pair in order, we apply
each transformed edit script to srcAST, and transform the
edited AST back to code. Finally we obtain a ranking list
of generated patches. The patches are naturally sorted as our
analysis proceeds. Therefore, it is sorted by the Q&A page
ranking, and code pairs in the same answer post is ranked
higher than those in both question and answer post. In addition,
faulty locations identified by the call stack is ranked higher
than those identified by the buggy code.

D. Patch Filtering
In previous steps, we may generate multiple patches for

one bug. However, some of them may be incorrect. We filter
out the patches using the following two rules:

1) Merging. Our approach may generate multiple patch-
es that are equivalent. We check the equivalence at
the AST level, and merge them as one patch.

2) Compiling. If there is a compilation failure, we filter
out the patch.

In the end, we report the first k patches in the list to the
programmer. If there is no patch generated, it means that our
approach fails to fix the crash bug. Our experiment shows that
we have high accuracy in generating the first patch as a correct
patch. Therefore, we set k=1.

In the running example, the project compiles successfully
and the code becomes the following.
final float bl=BatteryHelper.level(

context.getApplicationContext());

Therefore, we get one fix for this crash bug.

IV. EVALUATION

Our evaluation aims to answer two questions:
RQ1: Effectiveness. How effective is our approach in fixing

real-world recurring crash bugs?
RQ2: Usefulness. Can our approach complement state-of-

art fixing approaches?

A. Experiment Setup
We have implemented our approach in Java as an

open source tool, QACrashFix2. We used Google as the
search engine to obtain Q&A pages, and added a constraint
“site:stackoverflow.com” into the keywords to retrieve only
the web pages in Stack Overflow. We used Eclipse AST pars-
er [18] to parse code snippets to ASTs, and re-implemented
GumTree [16] to build mappings and to generate edit scripts.

Through our experiments, we set Sim(Text) to 0.8, and
Sim(Structure) to 0.3 to achieve the best results. Different
threshold may lead to different size of reduced code snippets,
or introduce different number of source code snippets. In both
cases we may have more false positives or false negatives.

To evaluate our approach, we need a set of crash bugs as
evaluation subjects. Here we focus on a specific framework,
Android, because Android is one of the most widely-used
framework, and on GitHub there are a large number of android
projects.

To collect the subjects, we looked into the Android projects
on GitHub. GitHub provides four rankings for projects: best
match, most stars, most forks, and recently updates. We obtain
the top 1000 Android projects from each ranking, and get in
total 2529 projects, containing 73868 issues. Then we filter
the issues based on three criteria: (1) the issue contains a
crash trace, which indicates that it is a crash bug, (2) the
issue has an associated patch, so that we can evaluate the
generated patches by comparing them with developers’ patch,
and (3) the exception causing the crash is thrown from Android
framework, which indicates that the crash is a recurring bug
related to Android. After filtering, we got 90 projects with 161
issues.

Next, we manually examined these issues to determine
which crash bugs can be fixed by humans via searching Stack
Overflow, i.e., we identified those bugs whose recurrences
existed at Stack Overflow. Our rule for judging this is to use
the same method as our approach to generate a query, and
manually examine top 10 Q&A pages at Stack Overflow. For
each page, we checked whether we could fix the bug using the
information on the page. In the end, we got 25 issues whose
recurrences exist on Stack Overflow. The recurrence ratio is
15.5%, which is less than but similar to the recurring bug
rate in recent research (17%-45% [1, 2]). This is because in
repositories there are sufficient resources. By only searching
in Stack Overflow we found a large number of recurring bugs,
which also indicates the effectiveness of using Q&A sites.

2available at http://sei.pku.edu.cn/%7gaoqing11/qacrashfix

For each issue, we downloaded and deployed the project
version before the patch was applied, and wrote building
scripts for automating the compilation process. Because we
cannot compile one project, we only chose the remaining 24
issues (corresponding to 24 bugs) as our final benchmark.

Finally, we used our approach to generate a patch for each
bug. Then we manually verified the correctness of the patches
by comparing each generated patch with each patch written by
developers. Note that a lot of existing research on bug-fixing
adopted “passing all tests” as a criterion for evaluating the
correctness of generated patches. However, we did not adopt
this method because recent research [19] found that although
test cases are effective in filtering out many erroneous patches,
many test suites in practice are weak and are not enough to
guarantee the correctness of patches.

All our experiments were executed on Windows 7, with a
dual-core 2.50GHz Intel Core5 processor and 8GB memory. In
the following subsections we discuss the result in detail with
respect to our research questions.

B. RQ1: Effectiveness
The details of the benchmark and the experimental results

are summarized in Table I, sorted by the number of lines
of code. Column “Project” shows the project name. Column
“Issue No.” shows the issue number in GitHub. Column “Loc”
shows the total number of lines of code in the respective
project. Column “#Edit Scripts” shows the number of edit
scripts (i.e., how many buggy & fixed code pairs) we generated
from each web page. Column “Initial” shows patches initially
generated on the target project without any filtering. Column
“Equivalent” shows the number of patches that are equivalent.
Column “Compile Error” shows the number of patches that
fail to compile. Column “Remaining” shows the number of the
remaining patches, which are the final patches of our approach.
Column “Correct” shows whether the first filtered patch can
fix the bug or not. Column “Total” shows the time used to
generate all the patches, and Column “Compilation” shows
the time used for compilation. We also recorded the time to
obtain the first filtered patch, shown in Column “First”. We
make the following observations.

First, the column of remaining fixes shows that, for 14 of
bugs, we did not generate any fixes. For the resting 10 bugs,
our tool generated at least one fix.

Second, our tool generated a relative large number of initial
fixes, which shows that there are a good number of code
snippets in Stack Overflow pages that lead to fix generation.

Third, our tool may generate equivalent patches. This is
because Stack Overflow pages may contain the same answer
several times. Since the code snippets in the page are the same,
we generate equivalent patches.

Fourth, a large number of patches can be filtered out by
compilation. For example, in TextSecure, we generated 40
initial fixes for each bug, and filtered out all of them by com-
pilation. In total we filtered out 127 patches by compilation,
accounting for 74% among all the generated patches.

Fifth, many edit scripts did not lead to a patch to the source
code. This is because no mapping was built between the buggy
code in the web page and the original source code for many
edit scripts.

http://sei.pku.edu.cn/~gaoqing11/qacrashfix

TABLE I: Details of generated fixes

Project Issue No. Loc #Edit
Scripts

#Patches Time (sec)
Initial Equivalent Compile Error Remaining Correct First Total Compilation

Calligraphy 41 406 0 0 0 0 0 – 0.001 0.001 0
screen-notifications 23 846 6 1 0 1 0 – 30.205 30.205 12.187

TuCanMobile 27 2,849 8 20 2 12 6 Y 10.619 83.447 54.866
OpenIAB 62 7,053 8 1 0 0 1 Y 37.106 53.433 35.905

Android-Universal-Image-Loader 660 11,829 8 0 0 0 0 – 12.629 12.629 0
couchbase-lite-android 292 12,004 5 9 0 9 0 – 71.361 71.361 52.914

Onosendai 100 17,821 6 12 2 3 7 Y 6.845 70.080 62.945
LNReader-Android 62 21,276 3 1 0 0 1 Y 13.136 25.987 10.496

the-blue-alliance-android 252 24,094 5 1 0 1 0 – 15.949 15.949 7.099
open-keychain 217 31,038 9 9 1 6 2 Y 9.409 106.799 65.869

Ushahidi Android 100 33,574 9 2 0 2 0 – 54.665 54.665 29.888
cgeo 457 36,963 8 11 1 3 7 N 15.500 93.372 62.235
cgeo 887 42,814 8 13 5 6 2 Y 5.729 43.697 34.343

TextSecure 1397 46,469 9 40 0 40 0 – 229.263 229.263 211.488
cgeo 2537 54,765 6 0 0 0 0 – 24.537 24.537 0

WordPress-Android 688 62,344 9 8 0 8 0 – 106.533 106.533 66.409
WordPress-Android 780 62,455 0 0 0 0 0 – 0.001 0.001 0
WordPress-Android 1320 62,895 9 5 1 3 1 Y 18.209 74.008 36.374
WordPress-Android 1484 65,307 1 0 0 0 0 – 9.133 9.133 0
WordPress-Android 1122 65,539 6 0 0 0 0 – 27.392 27.392 0

gnucash-android 221 68,158 11 0 0 0 0 – 7.146 7.146 0
cgeo 3991 68,202 12 8 0 3 5 Y 18.411 155.640 122.389

WordPress-Android 1928 71,485 8 1 0 0 1 N 14.122 35.444 12.891
calabash-android 149 93,146 10 30 0 30 0 – 161.855 161.855 143.842

Total – 963,332 164 172 12 127 33 8 899.756 1492.577 1022.140

69 - dialog.dismiss();
+ if(dialog.isShowing())
+ dialog.dismiss();

70 }
69 - dialog.dismiss();

+ if (dialog != null && dialog.isShowing()) dialog.dismiss();
70 }

Fig. 7: Patches for TuCanMobile #27

We further give some examples of generated patches3. In
each of the figures shown below, the top one represents the
original patch generated by the developers, and the bottom
one represents the first generated patch by our tool.

First, for 7 of the 10 bugs, our tool generated correct
patches. Among them, patches for 3 bugs are identical to those
written by humans, and patches for 4 bugs are not identical,
but are still correct. For example, in Fig. 7, the generated patch
has one more condition that checks dialog is not null. This
is a useful check that ensures no NullPointerException before
using dialog.

Second, for 1 of 10 bugs, our tool generated a patch using
try and catch blocks as suggested in the Stack Overflow page,
shown in Fig. 8. The human patch invokes isFinishing() and
returns when finished. In our patch, we surround finish()

with try/catch, which deals with the same root cause. How-
ever, because the patch is different from the human patch, we
consider it as a correct but not acceptable patch.

Third, for the rest 2 of the 10 bugs, our tool did not generate
correct patches. For example, we generated a patch that deals
with the same root cause as suggested by a Stack Overflow
answer. However, the patch is in a different location from the
human patch and in a different form, and we cannot verify its
correctness.

3Full analysis of the generated patches can be found on the tool web site.

552 private void notifyDataSetChanged() {
+ // This might get called asynchronically when the activity is shut down
+ if (isFinishing())
+ return;
+ try {

562 finish();
+ }
+ catch (Exception e) {
+ e.printStackTrace();
+ }

563 return;

Fig. 8: Patches for cgeo #3991

In conclusion, our approach can correctly fix 8 out of 24
bugs (where 7 can be directly accepted) with only 2 potential
false positives. Note that existing bug-fixing approaches [3, 4]
usually generate a large number of patches, and rely on the test
cases to filter out the incorrect patches. Based on the newest
result [19], since the test suites in practice are usually weak,
many incorrect patches cannot be filtered out and thus many
existing approaches generate a large number of false positives
in practice. Therefore, our approach is promising under the
circumstances where the test suites are weak.

We also did a manual analysis to evaluate the performance
of our approach in each step. The result is shown in Table II.

TABLE II: Performance of each step

Step #Bugs unable
to handle

#Total bugs
in this step Ratio

Edit script extraction 9 24 37.5%
Patch generation 3 15 20%

Patch filtering 2 12 16.7%

First, we fail to generate an edit script for 9 bugs, because
there are no appropriate code pairs. Besides, answers may
contain descriptions like “check null pointer” and “add try
catch”, which could not be processed by our approach. Second,
for 3 of the remaining bugs we fail to generate a patch because
we cannot locate the buggy code as a result of incomplete

crash trace. Sometimes a crash trace contains a very long list
of method invocations and the buggy file may be omitted in the
bug report. Third, the remaining 2 bugs cannot be fixed because
of compilation errors. For example, a buggy code snippet has
a method declaration which should return an integer, while
in the question post it is actually a void method. Developers
could do a manual transformation while our approach cannot.

The time used is shown in the last three columns of Table I.
We did not include the time to query Google because (1)
such time greatly depends on the network condition and varies
from locations to locations, and (2) the query time is very
small compared to the total time and can be neglected. In
our experiment, the time for querying Google for each bug is
around several hundred milliseconds.

As Column “Total” in Table I shows, the longest time spent
on a bug is 230s, and the time for each bug is 62.2s on average.
Compilation accounts for 68.5% of the time, and costs 6.39s
for each compiled patch on average. In addition, if we report
the result as soon as we generate the first filtered patch, we
can reduce the total time by 39.7% to 900s, about 37.5s for
each bug on average.

Although compilation time does increase with respect to
project size, project size is not the main deciding factor of the
total executing time. The main deciding factor is how many
generated patches need to be tested. This is mainly related to
the number of code snippets in Q&A pages and the number
of project files in call stacks. These factors are not directly
related to the size of the source code. Therefore, our approach
is able to scale to very large applications.

C. RQ2: Usefulness
To answer the second research question, we did a qual-

itative analysis to check whether we can complement state-
of-art automatic bug fixing approaches. We examine existing
approaches for bug fixing and identify four approaches that
apply to our case: GenProg [3], RSRepair [9], PAR [4] and
SPR [12]. Other approaches either cannot scale to the projects
in our experiment [10, 20], or have special requirements such
as contracts [11].

Existing search-based techniques such as GenProg and
RSRepair assume that patches already exist in the project
code. PAR uses human-written templates, and to instantiate
templates it also searches in the project code. SPR uses
condition synthesis to repair defects, and in other occasions
the search space is also within the project code. We did
not generate any patches that can be synthesized using only
existing templates in PAR or condition forms in SPR, and
therefore, for each bug that our approach successfully fixed, we
first used a representative substring in both the human patch
and our patch to check if there is any match in the source
code using the grep command, and then manually analyzed the
returned search list to see whether a patch can be synthesized.
The result is shown in Table III. The first column shows each
issue with at least one filtered patch generated by our approach.
The second column shows the grep command we use. The third
column shows whether a patch can be synthesized.

There is only one case where an identical patch can be
synthesized. For cgeo #3991, we got a large number of try

and catch blocks, which indicates that GenProg, RSRepair and
SPR can fix the bug by inserting the blocks. In addition, PAR

TABLE III: Keyword matching in source code

Issue Grep Command Result
TuCanMobile #27 grep ”isShowing” -R . N

OpenIAB #62 grep ”super.onDestroy” -R . N
Onosendai #100 grep ”context.getApplicationContext” -R . N

open-keychain #217 grep ”dismissAllowing” -R . N
cgeo #887 grep ”image/jpeg” -R . N
cgeo #887 grep ”image/*” -R . N

LNReader-Android #62 grep ”super.onDestroy” -R . N
Wordpress-Android #1320 grep ”commitAllowingStateLoss” -R . N

cgeo #3991 grep ”isFinishing” -R . N
cgeo #3991 grep ”\btry\b” -R . Y
cgeo #3991 grep ”\bcatch\b” -R . Y

does not contain the try/catch template, and cannot create
a patch of this form. The result indicates that our approach
can complement existing bug-fixing approaches. Note that a
bug can be fixed in many different ways, so being unable
to synthesize the patches in the above procedure does not
necessarily indicate that they cannot fix the bug. Therefore,
we are not concluding that our approach is “better” than other
approaches, but showing that our approach can complement
them. In essence, we are dealing with a defect class [21]
different from other approaches.

D. Threats to Validity
The main threat to external validity is that the benchmark

we use is small and may not be representative of real world
benchmarks. However, all bugs we use are real world bugs, are
from different projects, and throw different exceptions, which
may cover a large class of real world bugs. Note that many
existing studies [10, 22, 23] use generated bugs to evaluate
their approaches, and many [3, 10] evaluated on real world
bugs have benchmarks whose sizes are similar to or much
smaller than ours.

The main threat to internal validity is that our manual
validation of the patches may be wrong. To alleviate this threat,
three authors mutually checked the result, and any patch with
a slight doubt was not considered as correct.

V. DISCUSSION

The number of crash bugs that can be fixed by humans
via exploring Q&A sites are relatively small in GitHub. This
is due to two reasons. First, in open repositories like GitHub,
issues are not well maintained in many projects, and we only
investigate bugs that contain patches. This greatly reduces
the number of investigated bugs. Second, developers may
encounter crash bugs during development, and may fix them
immediately instead of creating an issue. While our approach
can fix crash bugs that can be found in issue repositories,
our approach can be used by developers in the development
stage, or can be deployed to automatically fix crash bugs newly
founded by testing.

Our approach is limited to situations that humans can fix
the bug via looking into Q&A sites. As a result, if there are
no correct patches in Q&A sites, we cannot generate a correct
patch. However, because recurring bugs are common and the
resources on Q&A pages continuously increase, our approach
has the potential to fix more bugs than can be fixed currently.

In our experiment we did not run the projects. However, in
the presence of test cases, our approach can be run automat-
ically to filter out more erroneous patches, which can further
increase the accuracy of our approach.

VI. RELATED WORK

1) Automatic Bug Fixing: Recently there has been much
progress on fixing general types of bugs. Existing research uses
specifications [23, 11, 24] or test cases [8, 25, 22, 9, 4, 11, 24,
12] to evaluate the correctness of patches and guide the process
of patch generation. GenProg [8, 25, 22] and RSRepair [9]
assume that patches exist in the current project, and use
search-based techniques to find the patches. PAR uses human-
written templates to generate patches. AutoFix-E [11] and
AutoFix-E2 [24] rely on contracts present in the software to
generate fixes. SemFix [10] and DirectFix [20] use component-
based program synthesis techniques to synthesize a correct
patch. SPR [12] instantiates transformation schemas to repair
program defects by using condition synthesis. Prophet [26]
uses machine learning over a large code database to learn
a probabilistic model that characterizes successful human
patches, and uses this model to prioritize the search for correct
patches. Fischer et al. [27] propose a semantics-based approach
that turns a given program into one whose evaluations under
the error-admitting semantics agree with those of the given
program under the error-compensating semantics. Gopinath
et al. [23] use behavioral specifications to generate likely
bug fixes. WAutoRepair [28] reduces patch validation time
by only recompiling the altered components of a program.
MintHint [29] is a semi-automatic approach that generates
repair hints to help developers complete a repair, and it
uses statistical correlation analysis to identify expressions that
are likely to appear in the patches. Our work is different
from these approaches in that we handle the defect class of
recurring bugs whose fixes can be found in Q&A sites, and
can complement the above approaches. Nguyen et al. [2] also
study recurring bug fixes for Object-Oriented programs, but
they do not analyze Q&A sites like us.

Automatic approaches to fixing specific types of bugs
also exist. Jin et al. [30, 31] automate the whole process of
fixing concurrency bugs. Xiong et al. [32] propose a new
language to support the fixing of MOF models. Wang et
al. [33] propose a dynamic-priority based approach to fixing
inconsistent feature models. Rangefix [34] generates range
fixes for software configuration. Caramel [35] generates non-
intrusive fixes for performance bugs. Leakfix [36] generates
safe fixes for memory leaks. Our work aims to fix crashes,
different from the existing research.

2) Fault Localization: Before fixing the bugs, it is essential
to locate where the bug occurs. A typical technique is spectra-
based fault localization [37, 38, 39, 40], which uses program
spectrum collected during execution. Because crash bugs have
crash traces which contain location information, in our work
we use this information to locate crash bugs statically.

CrashLocator [5] locates faulty functions by using crash
traces and expanding the stack in a static call graph. Similar
to spectra-based approaches, it calculates the suspiciousness
score for each function and return a ranking list. However,
this approach only ranks functions instead of statements, and
thus cannot be used in our approach.

Another main line of fault-localization research is bug-
report-oriented fault localization [41, 42, 43, 44, 45], which
aims to find a small subset of source files that is related to a
bug report among the entire code base. Because we focus on
using only call stacks instead of bug reports for file-level fault
localization, we do not leverage these approaches.

3) Q&A Site Retrieval and Analysis: Q&A sites contain
rich resources for software engineering. Regarding retrieval
from Q&A sites, SeaHawk [46] and Prompter [47] construct
queries based on the code context, and retrieve API names and
code-like words from Stack Overflow. However, for crash bugs
it is difficult to retrieve Q&A pages with code context query.
Rigby et al. [14] extract essential code elements from informal
documentation such as Stackoverflow. Because Q&A pages
related to bug fixes often contain code snippets in HTML tab
pairs, we only use heuristics to extract code snippets. Cordeiro
et al. [48] process crash traces and use it to retrieve Q&A
resources. This approach uses exceptions and references of
the crash trace as a query, and cannot distinguish the messages
from the client and the framework.

There is also much research in analyzing Q&A sites. In
artificial intelligence research, there are approaches for finding
similar questions [49, 50], or finding the most appropriate
answer [51, 52, 49, 53, 54]. In software engineering research,
Henβ et al. [55] propose an approach to extracting FAQs
from mailing lists and forums automatically. Wong et al. [56]
propose an automatic approach to generating comments by
mining Q&A sites. These approaches tackle different problems
in analyzing Q&A sites compared to ours.

4) Code Differencing: The technique we use in analyzing
Q&A sites is code differencing. ChangeDistiller [15] is a
widely-used approach that builds mappings and generates edit
scripts at AST level. GumTree [16] improves ChangeDistiller
by removing the assumption that leaf nodes contain a sig-
nificant amount of text, and it detects move actions better
than ChangeDistiller. Chawathe et al. [17] propose an optimal
and linear algorithm that generates edit scripts based on
AST mappings. We chose GumTree for edit script generation,
because it is the state-of-art work in this area.

Sydit [57] and LASE [58] generate program transforma-
tions from one or multiple examples. They generate context-
aware, abstract edit scripts and then apply the edit scripts to
new locations. Because in Q&A sites there is often no complete
code snippet and sometimes only one statement, it is difficult
to abstract the context, making the approaches not applicable
in our work.

VII. CONCLUSION AND FUTURE WORK

This paper proposes an automatic approach to fixing crash
bugs via analyzing Q&A sites. By extracting queries from the
framework and using a search engine to get a list of Q&A
pages, we analyze the code in each page, obtain and apply
edit scripts to source code. After that, we filter out redundant
and incorrect patches, and only report the first patch to the
developers. The experiments in real-world crash bugs show
that our approach is accurate and scalable in large programs.
Our approach complements existing bug fixing techniques by
handling a different defect class.

In the future, we could study empirically on a larger
dataset to investigate how many bugs could be fixed using
our approach.

ACKNOWLEDGEMENT

This work is supported by the National Basic Research
Program of China under Grant No. 2014CB347701, and the
National Natural Science Foundation of China under Grant No.
61202071, 61225007, 61432001, 61332010, 61421091.

REFERENCES

[1] S. Kim, K. Pan, and E. E. J. Whitehead, Jr., “Memories
of bug fixes,” in SIGSOFT ’06/FSE-14, 2006, pp. 35–45.

[2] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. Al-Kofahi,
and T. N. Nguyen, “Recurring bug fixes in object-oriented
programs,” in ICSE ’10, 2010, pp. 315–324.

[3] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer,
“Genprog: A generic method for automatic software
repair,” Software Engineering, IEEE Transactions on,
vol. 38, no. 1, pp. 54–72, Jan 2012.

[4] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch
generation learned from human-written patches,” in ICSE
’13, 2013, pp. 802–811.

[5] R. Wu, H. Zhang, S.-C. Cheung, and S. Kim, “Crashlo-
cator: Locating crashing faults based on crash stacks,” in
ISSTA 2014, 2014, pp. 204–214.

[6] B. Demsky and M. Rinard, “Automatic detection and
repair of errors in data structures,” in OOPSLA, 2003,
pp. 78–95.

[7] H. Seo and S. Kim, “Predicting recurring crash stacks,”
in ASE. ACM, 2012, pp. 180–189.

[8] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Au-
tomatically finding patches using genetic programming,”
in ICSE ’09, 2009, pp. 364–374.

[9] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang, “The strength
of random search on automated program repair,” in ICSE
2014, 2014, pp. 254–265.

[10] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chan-
dra, “Semfix: Program repair via semantic analysis,” in
ICSE ’13, 2013, pp. 772–781.

[11] Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buchholz,
B. Meyer, and A. Zeller, “Automated fixing of programs
with contracts,” in ISSTA 2010, 2010, pp. 61–72.

[12] F. Long and M. Rinard, “Staged program repair with
condition synthesis,” in ESEC/FSE’15, 2015.

[13] B. Dagenais and L. Hendren, “Enabling static analysis
for partial java programs,” in OOPSLA ’08, 2008, pp.
313–328.

[14] P. C. Rigby and M. P. Robillard, “Discovering essential
code elements in informal documentation,” in ICSE ’13,
2013, pp. 832–841.

[15] B. Fluri, M. Wursch, M. Pinzger, and H. Gall, “Change
distilling:tree differencing for fine-grained source code
change extraction,” Software Engineering, IEEE Trans-
actions on, vol. 33, no. 11, pp. 725–743, Nov 2007.

[16] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and
M. Montperrus, “Fine-grained and accurate source code
differencing,” in ASE ’14, 2014, pp. 313–324.

[17] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and
J. Widom, “Change detection in hierarchically structured
information,” SIGMOD Rec., vol. 25, no. 2, pp. 493–504,
Jun. 1996.

[18] “Eclipse ast parser,” http://www.eclipse.org/articles/
article.php?file=Article-JavaCodeManipulation AST/
index.html.

[19] Z. Qi, F. Long, S. Achour, and M. Rinard, “Efficient
automatic patch generation and defect identification in
kali,” in ISSTA, 2015, p. to appear.

[20] S. Mechtaev, J. Yi, and A. Roychoudhury, “Directfix:
Looking for simple program repairs,” in ICSE ’15, 2015.

[21] M. Monperrus, “A critical review of ”automatic patch
generation learned from human-written patches”: Essay

on the problem statement and the evaluation of automatic
software repair,” in ICSE 2014, 2014, pp. 234–242.

[22] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer,
“A systematic study of automated program repair: Fixing
55 out of 105 bugs for $8 each,” in ICSE ’12, 2012, pp.
3–13.

[23] D. Gopinath, M. Z. Malik, and S. Khurshid,
“Specification-based program repair using sat,” in
TACAS’11/ETAPS’11, 2011, pp. 173–188.

[24] Y. Pei, Y. Wei, C. A. Furia, M. Nordio, and B. Meyer,
“Code-based automated program fixing,” in ASE ’11,
2011, pp. 392–395.

[25] W. Weimer, Z. Fry, and S. Forrest, “Leveraging program
equivalence for adaptive program repair: Models and first
results,” in Automated Software Engineering (ASE), 2013
IEEE/ACM 28th International Conference on, 2013, pp.
356–366.

[26] F. Long and M. Rinard, “Prophet: Automatic patch gener-
ation via learning from successful human patches,” MIT,
Tech. Rep. MIT-CSAIL-TR-2015-019, 2015.

[27] B. Fischer, A. Saabas, and T. Uustalu, “Program repair as
sound optimization of broken programs,” in TASE 2009,
2009, pp. 165–173.

[28] Y. Qi, X. Mao, Y. Wen, Z. Dai, and B. Gu, “More
efficient automatic repair of large-scale programs using
weak recompilation,” Science China Information Sci-
ences, vol. 55, no. 12, pp. 2785–2799, 2012.

[29] S. Kaleeswaran, V. Tulsian, A. Kanade, and A. Orso,
“Minthint: Automated synthesis of repair hints,” in ICSE
2014, 2014, pp. 266–276.

[30] G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit, “Auto-
mated atomicity-violation fixing,” in PLDI ’11, 2011, pp.
389–400.

[31] G. Jin, W. Zhang, D. Deng, B. Liblit, and S. Lu, “Au-
tomated concurrency-bug fixing,” in OSDI’12, 2012, pp.
221–236.

[32] Y. Xiong, Z. Hu, H. Zhao, H. Song, M. Takeichi, and
H. Mei, “Supporting automatic model inconsistency fix-
ing,” in ESEC/FSE ’09, 2009, pp. 315–324.

[33] B. Wang, Y. Xiong, Z. Hu, H. Zhao, W. Zhang, and
H. Mei, “A dynamic-priority based approach to fixing in-
consistent feature models,” in Model Driven Engineering
Languages and Systems, ser. Lecture Notes in Computer
Science, 2010, vol. 6394, pp. 181–195.

[34] Y. Xiong, H. Zhang, A. Hubaux, S. She, J. Wang, and
K. Czarnecki, “Range fixes: Interactive error resolution
for software configuration,” Software Engineering, IEEE
Transactions on, vol. 41, no. 6, pp. 603–619, June 2015.

[35] A. Nistor, P.-C. Chang, C. Radoi, and S. Lu, “Caramel:
Detecting and fixing performance problems that have
non-intrusive fixes,” in ICSE ’15, 2015.

[36] Q. Gao, Y. Xiong, Y. Mi, L. Zhang, W. Yang, Z. Zhou,
B. Xie, and H. Mei, “Safe memory-leak fixing for c
programs,” in ICSE ’15, 2015.

[37] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of
test information to assist fault localization,” in Proceed-
ings of the 24th International Conference on Software
Engineering, ser. ICSE ’02, 2002, pp. 467–477.

[38] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan, “Bug
isolation via remote program sampling,” SIGPLAN Not.,
vol. 38, no. 5, pp. 141–154, May 2003.

http://www.eclipse.org/articles/article.php?file=Article-JavaCodeManipulation_AST/index.html
http://www.eclipse.org/articles/article.php?file=Article-JavaCodeManipulation_AST/index.html
http://www.eclipse.org/articles/article.php?file=Article-JavaCodeManipulation_AST/index.html

[39] R. Abreu, P. Zoeteweij, and A. J. C. v. Gemund, “An
evaluation of similarity coefficients for software fault
localization,” in Proceedings of the 12th Pacific Rim
International Symposium on Dependable Computing, ser.
PRDC ’06, 2006, pp. 39–46.

[40] D. Hao, L. Zhang, T. Xie, H. Mei, and J.-S. Sun, “Inter-
active fault localization using test information,” Journal
of Computer Science and Technology, vol. 24, no. 5, pp.
962–974, 2009.

[41] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs
be fixed? more accurate information retrieval-based bug
localization based on bug reports,” in Software Engineer-
ing (ICSE), 2012 34th International Conference on, June
2012, pp. 14–24.

[42] D. Poshyvanyk, Y.-G. Gueheneuc, A. Marcus, G. An-
toniol, and V. Rajlich, “Combining probabilistic ranking
and latent semantic indexing for feature identification,” in
Program Comprehension, 2006. ICPC 2006. 14th IEEE
International Conference on, 2006, pp. 137–148.

[43] ——, “Feature location using probabilistic ranking of
methods based on execution scenarios and information
retrieval,” IEEE Trans. Softw. Eng., vol. 33, no. 6, pp.
420–432, Jun. 2007.

[44] D. Kim, Y. Tao, S. Kim, and A. Zeller, “Where should
we fix this bug? a two-phase recommendation model,”
Software Engineering, IEEE Transactions on, vol. 39,
no. 11, pp. 1597–1610, Nov 2013.

[45] C.-P. Wong, Y. Xiong, H. Zhang, D. Hao, L. Zhang, and
H. Mei, “Boosting bug-report-oriented fault localization
with segmentation and stack-trace analysis,” in Software
Maintenance and Evolution (ICSME), 2014 IEEE Inter-
national Conference on, Sept 2014, pp. 181–190.

[46] L. Ponzanelli, A. Bacchelli, and M. Lanza, “Leveraging
crowd knowledge for software comprehension and devel-
opment,” in CSMR ’13, 2013, pp. 57–66.

[47] L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, and
M. Lanza, “Mining stackoverflow to turn the ide into
a self-confident programming prompter,” in MSR 2014,
2014, pp. 102–111.

[48] J. Cordeiro, B. Antunes, and P. Gomes, “Context-based
recommendation to support problem solving in software
development,” in RSSE ’12, 2012, pp. 85–89.

[49] V. Jijkoun and M. de Rijke, “Retrieving answers from
frequently asked questions pages on the web,” in CIKM
’05, 2005, pp. 76–83.

[50] J. Jeon, W. B. Croft, and J. H. Lee, “Finding semantically
similar questions based on their answers,” in SIGIR ’05,
2005, pp. 617–618.

[51] R. Burke, K. Hammond, V. Kulyukin, S. Lytinen, T. N.,
and S. Schoenberg, “Question answering from frequently
asked question files: Experiences with the faq finder
system,” AI magazine, vol. 18, no. 2, 1997.

[52] C. Kwok, O. Etzioni, and D. S. Weld, “Scaling question
answering to the web,” ACM Trans. Inf. Syst., vol. 19,
no. 3, pp. 242–262, Jul. 2001.

[53] S. Harabagiu and A. Hickl, “Methods for using textu-
al entailment in open-domain question answering,” in
Proceedings of the 21st International Conference on
Computational Linguistics and the 44th Annual Meeting
of the Association for Computational Linguistics, ser.
ACL-44, 2006, pp. 905–912.

[54] A. Celikyilmaz, M. Thint, and Z. Huang, “A graph-based
semi-supervised learning for question-answering,” in ACL
’09, 2009, pp. 719–727.

[55] S. Henβ, M. Monperrus, and M. Mezini, “Semi-
automatically extracting faqs to improve accessibility of
software development knowledge,” in ICSE ’12, 2012,
pp. 793–803.

[56] E. Wong, J. Yang, and L. Tan, “Autocomment: Mining
question and answer sites for automatic comment gener-
ation,” in Automated Software Engineering (ASE), 2013
IEEE/ACM 28th International Conference on, Nov 2013,
pp. 562–567.

[57] N. Meng, M. Kim, and K. S. McKinley, “Systematic
editing: Generating program transformations from an
example,” in PLDI ’11, 2011, pp. 329–342.

[58] ——, “Lase: Locating and applying systematic edits by
learning from examples,” in ICSE ’13, 2013, pp. 502–
511.

