
Combining Spectrum-Based Fault Localization and
Statistical Debugging: An Empirical Study

Jiajun Jiang†, Ran Wang†, Yingfei Xiong†, Xiangping Chen‡, Lu Zhang†
†Key Laboratory of High Confidence Software Technologies, Ministry of Education (PKU)
†Department of Computer Science and Technology, EECS, Peking University, Beijing, China
‡Guangdong Key Laboratory for Big Data Analysis and Simulation of Public Opinion
‡The School of Communication and Design, Sun Yat-sen University, Guangzhou, China
{jiajun.jiang, wangrancs, xiongyf, zhanglucs}@pku.edu.cn, Chenxp8@mail.sysu.edu.cn

Abstract—Program debugging is a time-consuming task, and
researchers have proposed different kinds of automatic fault lo-
calization techniques to mitigate the burden of manual debugging.
Among these techniques, two popular families are spectrum-
based fault localization (SBFL) and statistical debugging (SD),
both localizing faults by collecting statistical information at
runtime. Though the ideas are similar, the two families have
been developed independently and their combinations have not
been systematically explored.

In this paper we perform a systematical empirical study on
the combination of SBFL and SD. We first build a unified
model of the two techniques, and systematically explore four
types of variations, different predicates, different risk evaluation
formulas, different granularities of data collection, and different
methods of combining suspicious scores.

Our study leads to several findings. First, most of the effec-
tiveness of the combined approach contributed by a simple type
of predicates: branch conditions. Second, the risk evaluation for-
mulas of SBFL significantly outperform that of SD. Third, fine-
grained data collection significantly outperforms coarse-grained
data collection with a little extra execution overhead. Fourth, a
linear combination of SBFL and SD predicates outperforms both
individual approaches.

According to our empirical study, we propose a new fault local-
ization approach, PREDFL (Predicate-based Fault Localization),
with the best configuration for each dimension under the uni-
fied model. Then, we explore its complementarity to existing
techniques by integrating PREDFL with a state-of-the-art fault
localization framework. The experimental results show that
PREDFL can further improve the effectiveness of state-of-the-
art fault localization techniques. More concretely, integrating
PREDFL results in an up to 20.8% improvement w.r.t the
faults successfully located at Top-1, which reveals that PREDFL
complements existing techniques.

Index Terms—Software engineering, Fault localization, Pro-
gram debugging

I. INTRODUCTION

Given the cost of manual debugging, a large number of
fault localization approaches have been proposed in the past
two decades. Among all these approaches, two families of ap-
proaches have received significant attentions: spectrum-based
fault localization (SBFL) [1]–[3] and statistical debugging
(SD) [4]–[7]. Spectrum-based fault localization collects cover-
age information over different elements during test execution,
and calculates the suspiciousness of each element using a risk

∗Yingfei Xiong is the corresponding author.

evaluation formula. On the other hand, statistical debugging
seeds a set of predicates into the programs, collects whether
they are covered and whether they are evaluated to true during
test executions, and calculates the suspiciousness of each
predicate using a risk evaluation formula.

Though being similar in the sense of using runtime coverage
information to find the suspicious elements, the two families
have been developed mostly independently and researchers in
each community explored different aspects of the approaches.
In the domain of SBFL, different risk evaluation formulas
have been proposed and compared both theoretically and
empirically [8], [9]. In the domain of SD, different classes of
predicates have been designed and studied [5]–[7], [10]–[14].
Since the basic ideas behind the two families are similar, a
question naturally raises: whether is it possible to combine the
strength of the two families and how would the combination
perform?

To answer this question, we build a unified model that
captures the commonalities of the two approaches. In this
model, SBFL is treated as a kind of predicate in SD, SBFL
risk evaluation formulas are mapped to SD risk evaluation
formulas, and the suspicious scores of predicates are mapped
back to program elements. In this way, we can combine the
two approaches as a unified one and explore different variation
points. Based on this model, we perform a systematic study
to empirically explore four variation points.
Predicates In SD, a large number of predicates have been

proposed. We explore the performance of different pred-
icate groups, including three groups from SD and one
group from SBFL. We also explore the performance of
combinations of the groups.

Risk Evaluation Formulas Particularly in SBFL, a large
number of risk evaluation formulas have been proposed.
In this paper we evaluate how the different formulas
perform over SD predicates.

Granularity of Data Collection Existing studies have
seeded predicates at different granularities, e.g., at the
method level or at the statement level. In this paper we
explore the effect of seeding different predicates on the
localization performance and the execution time.

Methods for Combining Suspicious Scores When mapping
the suspicious scores from predicates to elements, we

need to combine the suspicious scores of different ele-
ments into one. Here we consider two ways of combining
the scores, the maximum of different predicates and the
weighted sum of different predicates.

Our empirical study is carried out over Defects4J [15],
a collection of real-world faults that are widely used in
recent studies [16]–[19]. The empirical study leads to several
findings, as listed below.
• Among all predicates, the predicates from branch condi-

tions contribute most to the Top-1 recall of fault local-
ization accuracy.

• Using SBFL formulas for SD predicates significantly
increases the localization accuracy, a 227.9% increase in
Top-1 compared with using original SD formula and a
52.7% increase compared with a revised SD formula.

• Collecting information at the statement level leads to
69.9% increase in localization accuracy with respect to
Top-1 and 40.0% increase in execution time compared to
the method level. However, the overall localization time
is still small, i.e, less than three minutes.

• A linear combination of the suspicious scores from SBFL
and SD predicates leads to the best results.

Inspired by the above findings, we proposed a new fault
localization technique, PREDFL, that combines the predicates
of SBFL and SD under our unified model. The evaluation
results show that PREDFL could improve the state-of-the-art
when further combined with other techniques. In summary, we
make the following contributions in this paper.
• A unified model for combining two popular families of

fault localization techniques, i.e., spectrum-based fault
localization and statistical debugging.

• A systematic analysis to explore different combinations
between SBFL and SD under the framework with respect
to four variation points, which provides insights for future
fault localization research.

• A new fault localization technique coming from the
systematic analysis, PREDFL, was evaluated via a con-
trast experiment on a state-of-the-art fault localization
framework. The results show that PREDFL complements
existing techniques and could further improve their effec-
tiveness. Especially, it achieved an up to 20.8% improve-
ment w.r.t Top-1.

II. BACKGROUND

A. Spectrum-Based Fault Localization

Spectrum-based fault localization (SBFL) technique is one
of the most popular approaches used in recent studies [20]–
[23] because of its simplicity and efficiency. More concretely,
when given a faulty program and a set of test cases in which at
least one test failed, a typical spectrum-based fault localization
approach collects coverage information for each program ele-
ment while running test cases, and then employs a predefined
risk evaluation formula to compute suspicious scores for
program elements, which represent how likely the elements
are fautly. The granularity of elements varies on demand, and

common granularities include statement and method. Different
spectrum-based fault localization approaches follow the same
paradigm but use different formulas to compute the suspicious
scores.

To make it more rigorous, we next give the general form
of spectrum-based fault localization approaches formally. A
program E is a set of elements. Given a program element
e ∈ E, we define the following notations:
• failed(e) denotes the number of failed test cases that

cover program element e.
• passed(e) denotes the number of passed test cases that

cover program element e.
• totalfailed denotes the number of all failed test cases.
• totalpassed denotes the number of all passed test cases.
A risk evaluation formula is a function mapping each ele-

ment to a suspicious score based on the above four values. For
instance, a popular formula in SBFL technique is Ochiai [24],
which is defined as below.

Ochiai(e) =
failed(e)√

totalfailed · (failed(e) + passed(e))
(1)

This formula reveals the basic idea of spectrum-based
fault localization approaches: the more frequently executed by
failed test cases, the bigger the suspicious score of an element;
the more frequently executed by passed test cases, the smaller
the suspicious score, and thus demonstrates the relationship
between test cases and program elements.

An SBFL approach assigns suspicious scores to elements
based on a risk evaluation formula. Given a risk evaluation
formula r and a program E, a simple SBFL approach directly
returns the suspicious score from r for each element, as
follows.

SBFLr
simple(E) = {(e, r(e)) | e ∈ E}.

Recent approaches also consider collecting information at
a granularity finer than the granularity of the target elements.
For example, for method-level fault localization, several recent
approaches [17], [18] first calculate the suspicious scores at
the statement level, and then take the highest suspicious score
of the inner statements as the suspicious score of the method.
To model this behavior, we introduce a granularity function
g : E → 2E that maps an element to a set of sub elements,
and then compute the suspicious score for each of them. If we
do not calculate suspicious scores at the sub element level, g
just map an element to itself. Given a risk evaluation formula r,
a granularity function g, and a program E, an SBFL approach
is defined as follows.

SBFLr,g(E) = {(e,maxei∈g(e)r(ei)) | e ∈ E}

B. Statistical Debugging

Statistical debugging (SD) was originally proposed for
remote debugging by Liblit. et al. [4], [5]. Given a faulty
program, SD dynamically instruments the program with a set
of predefined predicates. Then the program is deployed for
execution, where the values of predicates during executions

are collected. Based on the information collected from many
executions, SD identifies the important predicates that are
related to the root cause of the failure.

More formally, given a program, we use a set P to denote
the instances of predicates seeded into the program. Given a
predicate instance p ∈ P , we use the following notations to
denote the information related to the predicate instance.
• F (p) denotes the number of failed executions where p is

evaluated to true at least once.
• S(p) denotes the number of successful executions where
p is evaluated to true at least once.

• F0(p) denotes the number of failed executions where p
is covered.

• S0(p) denotes the number of successful executions where
p is covered.

Similar to SBFL, SD uses a formula to determine the suspi-
ciousness of a predicate, known as the importance score in
the SD context. An importance formula i for SD is a function
that maps an element to an importance score based on the
above values. A standard importance formula [5] is defined as
follows.

Importance(p) =
2

1
Increase(p) +

1
Sensitive(p)

(2)

where

Increase(p) =
F (p)

S(p) + F (p)
− Fo(p)

So(p) + Fo(p)

Sensitive(p) =
log(F (p))

log(totalfailed)

In Equation 2, the importance formula is the harmonic mean
of two compositions, Increase(p) and Sensitive(p), where
Increase(p) distinguishes the value distributions of predicate
p for failed executions among all executions that cover p,
while Sensitive(p) captures how often failed test cases evaluate
predicate p to true. The more frequently being true of predicate
p in failed executions, the bigger the importance score of
p. The less frequently being true of p in failed executions,
the smaller the importance score of p. Hence, the importance
formula reflects the relationship between test cases and the
value of predicates. In the rest of the paper we shall refer
the above importance formula as the SD formula. Particularly,
when totalfailed = 1, the score of predicate is 0 to avoid
“divide by zero” error according to the definition in the
paper [5].

A typical SD approach uses three groups of predefined
predicates: branches, returns and scalar-pairs [5].
• The branches group includes all conditional expressions

and their negations in the program, such as the expression
in an if statement.

• The returns group compares the method return value
(if exists) with constant 0 with respect to a set of
comparators, i.e., >, <, ≥, ≤, == and 6=.

• The scalar-pairs denotes comparing the left-value of an
Assignment with all in-scope variables or constants with
the same type.

The three groups of predicates are inserted into different
locations of the program. As described by the predicate
definitions, the branches predicates are instrumented into the
locations of conditional expressions, the returns predicates are
instrumented into the locations of return statements while the
scalar-pairs predicates are instrumented into the locations of
assignments or variable declarations.

To model the seeding of predicates, we define the concept
of seeding function. A seeding function s maps a program
element to a set of predicate instances. By using different
seeding functions, we get different sets of predicate instances.

Given an importance formula i, a seeding function s, an SD
approach is a function mapping a program (a set of elements)
to a set of predicate instances with their importance scores.

SD i,s(E) = {(p, i(p)) | p ∈ s(e), e ∈ E}

III. THE UNIFIED MODEL

As we can see from the previous section, there are many
commonalities between the two families of approaches, e.g.,
both approaches use a formula to score elements. Therefore, it
is possible to build a model that combines the two approaches.

The basic idea of our model is to treat SBFL as a kind
of predicate in SD. Since SBFL concerns about the coverage
of an element, its behavior can be captured by a predicate
“True”, which evaluates to true whenever the element is cov-
ered. Formally, given an instance of predicate True at element
e, Truee, we define its runtime information as follows.

F (Truee) = F0(True
e) = failed(e)

S(Truee) = S0(True
e) = passed(e)

Also, we would like to use the SBFL formulas for SD pred-
icates. Since SBFL relies on function failed() and passed(),
we need to make these functions work for predicate instances.
Given a predicate instance p, we define the following.

failed(p) = F (p)

passed(p) = S(p)

Please note here we use F (p) and S(p) instead of F0(p)
and S0(p), because choosing the latter two would lead to the
same suspicious score for all predicates inserted at the same
elements. In other words, we view each predicate as a sub
element that captures a subset of states at a specific program
point. Based on this unification, we shall not distinguish
risk evaluation formulas and importance formulas and address
them uniformly as risk evaluation formulas.

Furthermore, SBFL and SD have different results: while
SBFL gives a list of suspicious program elements, SD gives
a list of important predicates. To unify the results, we return
a list of suspicious elements in the unified model. We assume
the existence of a high-order function that aggregates the
importance scores of each predicate instance to produce the
suspicious score of the program element, called combining
method. A combining method c is a function that takes a
seeding function s, a risk evaluation formula r and an element
e, and produces the suspicious score of e. A basic combining

method is to take the maximum importance score of all
predicates.

c(s, e, r) = maxp∈s(e)r(p)

Putting everything together, we can define the unified ap-
proach of SBFL and SD. Given a seeding function s, a risk
evaluation formula r, a granularity function g, and a combining
method c, a unified approach is defined as follows.

UNI s,r,g,c(E) = {(e,maxei∈g(e)c(s, ei, r)) | e ∈ E} (3)

As we can see from equation 3, the unified approach
is parameterized on four components, s, r, g, and c. In
the following sections we shall systematically explore the
variations of the four components.

IV. EMPIRICAL STUDY SETUP

In this section, we systematically explore the variations of
the four components in the unified model. We first explain
the research questions, then introduce the experiment setup
including the subjects used in the experiment and the variations
for each component. Finally, we present the evaluation metrics
and experiment implementation.

A. Research Questions

1) Which kinds of predicates are most important?
After treating SBFL as a predicate in the unified model,
we have an even richer set of predicates than SD ap-
proaches. In this question, we explore the effectiveness
of different predicate groups and understand which kinds
of predicates contributed the effectiveness most.

2) How does the risk evaluation formula impact the
effectiveness of fault localization?
Existing researches have both theoretically and empir-
ically studied different risk evaluation formulas in the
SBFL scenario [8], [9]. In this research question, we also
selected a set of representative formulas to explore the
effects of different ones under our unified model.

3) How does the granularity of data collection impact
the fault localization result?
Recently proposed method-level fault localization ap-
proaches collect program coverage data from two differ-
ent granularities, which are statement level [17], [18] and
method level [25]. Intuitively, the finer the granularity, the
better localization accuracy and the longer execution time.
However, this intuitive proposition has not been evaluated
in existing studies, nor it is clear how much the increases
at localization accuracy and execution time will be.
Therefore, in this question, we aim to explore the impact
of different granularity functions to the effectiveness and
efficiency of fault localization approach via a contrast
experiment.

4) How does combining method among different predi-
cates impact the effectiveness of fault localization?
In the unified model, we need to combine the suspicious
scores of the predicates to form the scores of the program
elements. In this research question we explore two basic

ways of combination: the maximum suspicious score of
all predicates and the linear combination of all suspicious
scores (details in Section IV-C4).

B. Subject Projects

We conducted the experiments on the Defects4J [15]
(v1.0.1) benchmark, which is a commonly used dataset in
automatic fault localization [17], [25] and program repair
studies [21], [23], [26]–[33]. It contains 357 real-world
faults from five large open source projects in Java language.
JFreeChart is a framework to create chart, Google Closure
is a JavaScript compiler for optimization, Apache commons-
Lang and commons-Math are two libraries complementing
the existings in JDK, while Joda-Time is a standard time li-
brary. The subjects involve diversity applications with different
scales (from 22k to 96k LOC) of source code, which is listed
in Table I.

TABLE I: Details of the experiment benchmark.

Project #Bugs #KLoC #Tests

JFreeChart 26 96 2,205
Apache commons-Math 106 85 3,602
Apache commons-Lang 65 22 2,245
Joda-Time 27 28 4,130
Closure compiler 133 90 7,927

Total 357 321 20,109

In the table, column “#Bugs” denotes the total number of
faults in the benchmark, column “#KLoC” denotes the average
number of thousands of lines of code in a faulty program, and
column “#Tests” denotes the total number of test cases for
each project.

C. Experiment Configuration

To answer the research questions above, we first define
a set of variations for each component of our model, and
together these variations form a four-dimensional design space
of the combined approach. Since the whole space is large
and not feasible to fully traverse, we first choose a default
configuration, which was selected by a pilot study on 20
bugs randomly sampled. To ensure the representativeness of
the selected bugs, we evenly and randomly sampled 4 bugs
from each project in Defects4J benchmark shown in Table I.
Then, each time we change one component over the default
configuration in the evaluation. In the following we introduce
the variations we considered for the four components, as well
as the default variation we choose for each component.

In our study we focus on method-level fault localization.
That is, the fault localization method assigns a suspicious value
for each method. As argued by several existing studies [25],
[34], method level is more suitable for developers than other
granularities such as file level and statement level.

1) Predicates: To explore the performance of different
predicates, we follow the original classification of statistical
debugging that divides the predicates into three groups, i.e.,
branches, returns and scalar-pairs. Additionally, we consider

the predicates of SBFL as a separate group. Therefore, in total
there are four groups of predicates.

Especially, when we study a specific group of predicates,
the scores of predicates in other groups will be always 0 since
they are not seeded. However, for other explorations, we use
all the predicates (i.e., all four groups of predicates) by default.

2) Risk Evaluation Formulas: To compare the difference
of effectiveness among risk evaluation formulas, we selected
seven formulas in total, five from spectrum-based fault local-
ization and two from statistical debugging. According to the
definition in Section II-B, when totalfailed = 1, a prevalent
case in Defects4J benchmark, the score of predicate will be 0.
To mitigate this influence, besides the original SD formula, we
additionally employed a formula derived from it with minor
changes, called NewSD. Table II presents the definitions of all
formulas used in our evaluation except SD, which is defined
by Equation 2.

Particularly, we use the Ochiai, commonly used in recent
studies on fault localization [16] and program repair [21], [23],
[30], as the default risk evaluation formula in our experiments.

TABLE II: Formulas employed in the experiment.

Name Formula

Ochiai [24] r(p) = failed(p)√
totalfailed·(failed(p)+passed(p))

Tarantula [2] r(p) = failed(p)/totalfailed
failed(p)/totalfailed+passed(p)/totalpassed

Barinel [35] r(p) = 1− passed(p)
passed(p)+failed(p)

DStar† [36] r(p) = failed(p)∗

passed(p)+(totalfailed−failed(p))

Op2 [37] r(p) = failed(p)− passed(p)
totalpassed+1

NewSD‡ r(p) = 2
1/Increase(p)+log(totalfailed)/ log(F (p)+1)

† The variable ∗ in the formula is greater than 0. Here, we set its value as 2,
which is also employed by previous study [16].
‡ Function Increase(p) in NewSD is the same as it is in Equation 2.

3) Granularity of Data Collection: To localize faults in
methods, we explore two granularity functions that respec-
tively collect predicate coverage data at method level and
statement level. The granularity function at statement level
maps each method to the set of statements inside the method,
while the granularity function at method level maps each
method to a set containing itself.

The default variation for the granularity function is the one
at statement level.

4) Methods for Combining Suspicious Scores: In this paper,
we use “max” or “linear” functions to combine all predicates.
However, when using linear combination, the number of
components should be fixed, so we linearly combine SBFL
predicates with all the rest under our unified model. We call
these two combining methods as MAXPRED (i.e., MAX score
of PREDicates) and LINPRED (i.e., LINear score combination
of PREDicates), respectively. More formally, when given a
seeding function s and a risk evaluation function r, we define
the combining methods as follows.

MAXPRED Given a program element e, we compute its
suspicious score as the maximum score of all predicates
related to it, i.e., c(s, e, r) = maxp∈s(e)r(p).

LINPRED Given a program element e, we partition the pred-
icates related to it into two standalone sets: P1 and P2,
where P1 ∪P2 = s(e) and P1 contains one predicate from
SBFL while the others constitute P2. Then, the combining
method is defined as c(s, e, r) = (1−α) ·maxp∈P1r(p)+
α ·maxp∈P2r(p), where α ∈ [0, 1.0].

Particularly, we set the default variation for the combining
method in the experiments as LINPRED, and the default
coefficient is α = 0.5.

D. Evaluation Metrics

To evaluate the effectiveness of fault localization techniques,
we employed two metrics that are usually employed by
existing studies.

Recall of Top-k. This metric is used to measure how
many faults can be located within top k program elements
among all candidates. In a survey conducted by Kochhar et
al. [34], 73% practitioners think that inspecting 5 program
elements is acceptable and almost all practitioners agree that
10 elements are the upper bound for inspection within their
acceptability level. Therefore, in this paper, we consider ranks
within top k locations, where k ∈ {1, 3, 5, 10}. Moreover, we
take the mean rank of a program element to break the tie
when multiple elements have the same suspicious scores like
exiting approaches [16], [38]–[40]. Specifically, we use ceiling
function to normalize ranks to integers.

EXAM Score. This metric is used to measure the percentage
of program elements that need to be inspected by developers
among all candidates before reaching the first desired faulty
element, reflecting the relative ranks of faulty elements among
all candidates and the overall effectiveness of a fault localiza-
tion approach. As a result, many previous studies [16], [41],
[42] employed this metric as well. The smaller the EXAM
score is, the better the result is.

E. Implementation

To collect coverage information for program element at
runtime, we implemented a program instrument framework
that can statically instrument programs at both statement and
method level in the source code. This framework is built atop
the Eclipse Java Development Tool (JDT) library1, which
is a Java source code manipulation framework that provides
plentiful operations to Java code, such as source code deletion,
insertion and replacement. Besides, it also provides the ability
to parse types of variables or complex expressions, which
is helpful for generating predicates of statistical debugging
since those predefined predicates depend on the types of
variables or expressions. Moreover, the instrumented program
can preserve the semantics of the original progam and is free
from side effects. Our implementation is publicly available at
https://github.com/xgdsmileboy/StateCoverLocator.

1https://www.eclipse.org/jdt

V. RESULT AND ANALYSIS

In this section, we present our experimental results in
detail with respect to the research questions introduced in
Section IV-A.

A. Effectiveness of Individual Predicates

In this section, we explore the effectiveness of four different
groups of predicates explained in Section IV-C1, and their
results are shown in Figure 1, where x-axis denotes different
groups of predicates, while y-axis denotes the percentages of
faults that successfully located within the corresponding Top-
k recall. Additionally, we present the corresponding EXAM
score beneath the group names of predicates. For all following
figures, we employ the same notations consistently for all
figures and will not introduce them redundantly later.

0.
31
9

0.
35
6

0.
12
9

0.
26
9

0.
61
9

0.
59
9

0.
26
6

0.
40
3

0.
69
2

0.
67
5

0.
29
1

0.
44
3

0.
78
4

0.
76
8

0.
35
0

0.
49
3

0.0

0.3

0.6

0.9

SBFL branches returns scalar-pairs

Top-1
Top-3
Top-5
Top-10

Pe
rc
en
ta
ge
of
Fa
ul
ts

[0.212] [0.259] [0.547] [0.443] [Exam Score]

Fig. 1: Fault localization results when only employing indi-
vidual group of predicates.

From the figure we can see that the predicates from
branches achieved the best result with respect to Top-1 against
any other group of predicates, but the predicates from SBFL
are also effective since it achieved the best result on Top-3 and
obtained the best EXAM score. Compared with the other two
groups of predicates, i.e., returns and scalar-pairs, the results
show that the predicates of branches perform significantly
better with about 0.3-1.8 times improvements in terms of Top-
1. Besides, the EXAM scores of both SBFL and branches
are merit against the others. Then, we further analyzed the
reason for this, and found that a majority of faults are
related to existing conditional expressions, included by both
SBFL and branches, which was also observed by previous
studies [43]. Furthermore, to investigate whether different
groups of predicates complement each other, we analyzed the
fault localization results of several sampled combinations of
different group predicates, and present their results in Figure 2.

From the figure we can find that the combination of pred-
icates from SBFL and branches achieves almost the same
result with the approach using all the predicates (the first
column in the figure), and outperforms the other combinations,
where the improvements are from 8.7% to 42.4% on Top-
1. Moreover, by comparing Figure 1 and 2, the combined
approaches are superior to those with standalone group of
predicates in terms of either Top-1 or EXAM score, which
denotes that different groups of predicates complement each

0.
42
3

0.
42
3

0.
29
7 0.
38
9

0.
35
6

0.
65
8

0.
65
3

0.
55
7 0.
61
1

0.
61
1

0.
72
0

0.
71
7

0.
63
9 0.
69
7

0.
67
8

0.
79
0

0.
79
0

0.
74
2

0.
76
8

0.
77
3

0.0

0.3

0.6

0.9

SBFL+SD SBFL+br
anches SBFL+re

turns
SBFL+sc

alar-pai
rs

returns+
branche

s+scalar
-pairs

Top-1
Top-3
Top-5
Top-10

SBFL
branches

SBFL
returns

SBFL
scalar-pairs

branches
return

scalar-pairs

All
groups

[0.201] [0.202] [0.222] [0.201] [0.249] [Exam Score]

Pe
rc
en
ta
ge
of
Fa
ul
ts

Fig. 2: Fault localization results when considering the combi-
nation among different groups of predicates.

other to some extent. Furthermore, the most contributors of the
combined approach are predicates from SBFL and branches
of SD. The figure also presents that the combination of these
two groups of predicates performs as good as that using all
predicates and better than others.

Finding 1. Among all predicates, those from existing
branch conditions and the SBFL predicates are two
most important groups that contribute to the accurate
fault localization result in our experiment. Moreover,
existing conditions contribute most to our combined
approaches with respect to Top-1.

B. Different Risk Evaluation formulas

Figure 3 presents the fault localization results of LINPRED
when employing different risk evaluation formulas. This figure
shows the Top-k recall and EXAM score for each formula.
In the figure, “SD” denotes the risk evaluation formula of
original statistical debugging defined by Equation 2. The
other formulas are defined in Table II. As shown in the
figure, there is no significant difference for both Top-k and
EXAM score among the results except for those of “SD” and
“NewSD”, which is consistent with the previous studies that
different risk evaluation formulas do not produce significant
difference on fault localization results. However, we can notice
the difference between two different kinds of formulas, i.e.,
formulas of SBFL and statistical debugging, where the former
significantly outperform the latter in our experiment with an up
to 227.9% increase at Top-1 against the original SD formula.

As explained in Section II-B, the SD formula was originally
designed for remote sampling, where usually more than one
failed test case exist. However, in our evaluation scenario,
usually a bug is triggered by only one test case. The result
comparison shows that this has a great impact on the effective-
ness of SD formula since NewSD successfully located double
number (26.9% vs 12.9%) of faults at Top-1 compared with
the SD formula. However, it is still lower than the results
of SBFL formulas, which located on average 39.7% faults at
Top-1. It reveals that the formulas from SBFL are better at

0.
40
6

0.
35
9 0.
42
3

0.
40
1

0.
39
5

0.
12
9

0.
27
7

0.
63
0

0.
64
1

0.
65
8

0.
61
6

0.
61
9

0.
26
9

0.
50
1

0.
70
9

0.
70
6

0.
72
0

0.
68
6

0.
69
7

0.
34
7

0.
56
6

0.
78
4

0.
79
3

0.
79
0

0.
75
4

0.
76
8

0.
42
6

0.
63
9

0.0

0.3

0.6

0.9

Barinel DStar Ochiai Op2 Tarantula SD NewSD

Top-1
Top-3
Top-5
Top-10

[0.204] [0.206] [0.201] [0.229] [0.229] [0.580] [0.431] [Exam Score]

Pe
rc
en
ta
ge
of
Fa
ul
ts

Fig. 3: Fault localization results when using different risk
evaluation formulas.

distinguishing the difference of predicates among failed and
passed executions in our experiment.

Finding 2. The risk evaluation formulas of SBFL
significantly outperform the original SD formula in
the experiment with an up to 227.9% improvements
in terms of fault numbers located at Top-1.

C. Different Granularity of Data Collection

In this section, we explore the effectiveness of fault lo-
calization appoaches under different granularity functions of
data collection. Figure 4 presents the statistical results of our
experiment, where the x-axis denotes the granularity of data
collection, i.e., statement and method level in our evaluation.

0.
42
3

0.
24
9

0.
65
8

0.
41
2

0.
72
0

0.
49
9

0.
79
0

0.
60
8

0.0

0.3

0.6

0.9

Statement Method

Top-1
Top-3
Top-5
Top-10

[0.201] [0.266] [Exam Score]

Pe
rc
en
ta
ge
of
Fa
ul
ts

Fig. 4: Comparison of fault localization results under statement
and method level data collection.

Based on the figure, the fault localization result when
collecting predicate data at statement level is much better than
that at method level with respect to both the recall of Top-
k (k=1,3,5,10) and the EXAM score. More specifically, the
former increased up to 69.9% with respect to Top-1 against the
latter. This result reflects the fine-grained data collection has a
more powerful capability to distinguish fault-related program
elements, which is consistent with our intuition.

Finding 3. Fine-grained data collection (statement
level) contributes 69.9% better fault localization result
than the coarse-grained data collection (method level).

However, scalability is also essential to fault localization
approaches to make it practical. In the study conducted by
Kochhar et al. [34], the satisfaction rate of practitioners
increases along with the scalability of fault localization ap-
proaches. It is intuitive to us that finer granularity tend to cause
larger overhead to data collection since more predicates will
be considered and gathered, thus we analyzed the execution
overhead under different data collection functions as well. We
found that on average the predicates collected at statement
level is much more than those collected at method level (about
4.1 times), while the test execution time is only 1.4 times.
Moreover, the execution time of either statement or method
level data collection is still less than three minutes on average
(usually hours for mutation-based fault localization), which is
relatively small and denotes the increase of predicates does not
heavily damage the efficiency of fault localization approaches.

Finding 4. Statement-level data collection results in
4.1 times as many predicates as method-level, while
uses 1.4 times as much as execution time. The overall
execution time is still less than 3 minutes.

D. Different Combining Methods

In this section, we compare the effectiveness of fault
localization approaches using different combining methods
under our unified model, which are MAXPRED (using “max”
function) and LINPRED (using “linear” function) as introduced
in Section IV-C4. We present our experimental results in
Figure 5. In order to understand the improvement on effec-
tiveness of the combined approaches against individuals, we
also redundantly show the results of traditional SBFL and SD
approaches in the figure.

0.
12
9

0.
31
9

0.
32
5

0.
42
3

0.
26
9

0.
61
9

0.
60
8 0.
65
8

0.
34
7

0.
69
2

0.
70
3

0.
72
0

0.
42
6

0.
78
4

0.
78
7

0.
79
0

0.0

0.3

0.6

0.9

SD SBFL MaxPred LinPred

Top-1
Top-3
Top-5
Top-10

[0.580] [0.212] [0.208] [0.201] [Exam Score]

Pe
rc
en
ta
ge
of
Fa
ul
ts

Fig. 5: Result comparison among traditional SBFL and SD
approaches with the combined methods.

From the figure, the combined approaches can improve both
the original SD and SBFL techniques with respect to Top-
1. However, we can notice that the improvements are quite
different, where the result of MAXPRED is almost the same

with SBFL while the result of LINPRED is much better than all
the others with respectively 227.9% and 32.6% improvements
against traditional SD and SBFL. In fact the reason is simple,
on the one hand, both groups of predicates from SBFL and SD
contain existing conditions, which contribute the most to Top-
1 as concluded in the previous evaluation. On the other hand,
both predicates from these two groups potentially contain
predicates that will damage the fault localization accuracy, i.e.,
predicates with high suspicious scores at non-faulty locations,
we call these predicates noises.

Take the fault Math-72 as an example, when only employing
individual predicates (either from SBFL or SD), two candidate
faulty methods (m1 and m2 for SBFL, m1 and m3 for SD)
share the highest rank with the same suspicious score as
1.0, respectively, resulting in the faulty method ranked 2nd.
Therefore, after taking the linear combination, LINPRED suc-
cessfully ranked the faulty method m1 at top 1 with mitigating
the noises from individual sources, which cannot be overcome
by MAXPRED. As a result, the improvement of LINPRED is
significant but not that of MAXPRED. Moreover, the result
indicates that these two sources of predicates, predicates from
SBFL and SD, complement each other only if we take the
proper combination of them.

As a matter of fact, in theory (see Section II-A and
Section II-B) both SBFL and SD predicates have limitations.
For SBFL, since all the predicates related to different program
elements are constant True, they cannot distinguish program
elements in the same execution path though the program
states [44] at these program elements can be different. On
the other hand, for SD, since the predicates only exist at some
selective locations, e.g., the location of conditional expression,
they will fail to identify those faulty elements that do not
contain them. However, by combining the predicates from
these two source, the predicates from SBFL can alleviate the
predicate absence of SD in some program elements while the
more concrete predicates from SD can assist SBFL in better
distinguishing program elements in a same path.

For example, the following code snippet comes from the
Math project.

1 public double getSumSquaredErrors() {
2 - return sumYY-sumXY*sumXY/sumXX;
3 + return Math.max(0d,sumYY-sumXY*sumXY/sumXX);
4 }

Listing 1: Faulty code snippet of Math-105 in Defects4J.

In the code snippet, the return statement in line 2 is faulty,
whose repair code is shown in line 3. Individually based on
the predicates from SBFL, the faulty location was ranked
8th among all the candidate locations. However, after in-
volving the SD predicates, the ranking of the faulty lo-
cation ranked 1st. The key contributor is the predicate of
sumYY-sumXY*sumXY/sumXX<0 defined by returns in SD,
which exactly captures the root cause of the fault. Similarly, as
another example, for the fault Math-53, the faulty method does
not contain any predicates of SD, causing it ranked relatively

low (rank 6th). However, the combined approach successfully
ranked the faulty method at Top-1.

0.
31
9 0.
38
7

0.
42
3

0.
43
1

0.
42
3

0.
35
6

0.
61
9

0.
62
7

0.
65
0

0.
64
7

0.
64
4

0.
61
10.
69
2

0.
71
7

0.
71
7

0.
71
7

0.
70
6

0.
67
8

0.
78
4

0.
79
0

0.
79
6

0.
79
0

0.
78
7

0.
77
3

0.0

0.3

0.6

0.9

0 0.2 0.4 0.6 0.8 1

Top-1
Top-3
Top-5
Top-10

(𝛼)
[0.212] [0.204] [0.201] [0.203] [0.209] [0.249] [Exam Score]

Pe
rc
en
ta
ge
of
Fa
ul
ts

Fig. 6: The result comparison of LINPRED with different
coefficients.

From the above explanation, both the complementarity and
the individual limitations should be deliberated to design a
relatively good combining method. Therefore, we further ex-
plored different coefficient values (α) of the linear combination
and presented the results in Figure 6.

From this figure, LINPRED is always superior to the original
SBFL approach (when α=0) with respect to the recall of Top-
1 though the improvements varies along with the value of
α. Particularly, when α falls into the interval of [0.4-0.8],
LINPRED performs best. All in all, the combining approaches
are relatively merit. However, we only explored several simple
combinations in this paper, i.e., MAXPRED and LINPRED,
more thorough investigations of potential combinations will
be studied in future work.

Finding 5. The linear combination of SBFL and
SD predicates (LINPRED) performs 23.2% better w.r.t
Top-1 compared to the combination with “max” func-
tion (MAXPRED). Especially, when the coefficient falls
into [0.4, 0.8], LINPRED achieves the best result.

VI. PREDFL AND ITS PERFORMANCE

According to the previous analysis, we could find that
the combined approach under the unified model is effective
and better than each standalone technique. Additionally, from
the experimental results, we can conclude that the combined
approach with the default configurations for all variations is
relatively merit in contrast with others. Therefore, we propose
a new fault localization approach via instantiating the unified
model with all default configurations, i.e., collecting all groups
of predicates at statement level and linearly combining pred-
icate scores computed with Ochiai formula. For convenient
reference, we call this approach as PREDFL.

Although standalone fault localization approaches have
gained a big success [24], [44]–[46] in the last decade,
recently researchers have noticed the benefit of combining
different data sources or existing fault localization techniques
to improve state-of-the-art techniques. Based on the previous
investigation, each standalone approach has advantages and

limitations. Therefore, by combining different kinds of tech-
niques, it potentially could exert their strength while mitigating
limitations. As a result, such combining techniques already
benefit state-of-the-art fault localization approaches [17]–
[19], [38]. Since different information have been utilized
by these combining techniques, hence a question naturally
raises, whether our approach (PREDFL) is already implicitly
covered by existing techniques. In other words, is PREDFL
complementary to existing techniques?

Therefore, in this section we explore the potential of
PREDFL to improve state-of-the-art fault localization tech-
niques, for which we integrated PREDFL with a state-of-
the-art fault localization framework developed by Zou et
al. [19], COMBINEFL for short. It has achieved better fault
localization results compared with other state-of-the-art ap-
proaches, including MULTRIC [17], Savant [25], TraPT [17]
and FLUCCS [18].

As a result, to check whether our approach is complemen-
tary to existing approaches, we combine our approach with
this framework and check whether the combination brings any
improvements. More concretely, the current implementation of
COMBINEFL consists of spectrum-, mutation-, history- and
IR-based fault localization techniques [24], [36], [45], [47]–
[49], stacktrace analysis [50], dynamic slicing [51]–[53] and
predicate switching technique [44]. Different techniques can
be freely assembled. Especially, based on the time used to per-
form fault localization (including data collection) of different
techniques, they are further classified into four levels and listed
in Table III. For example, if we would like to locate the faulty
elements within minutes, we can use all the techniques in
Level 1 and Level 2 together. According to our empirical study
results in Section V, the execution time of PREDFL is less than
three minutes. Therefore, in this contrast experiment, we also
selected the same execution time configuration, i.e., integrating
PREDFL with those techniques in Level 2 (techniques in Level
1 were included). Additionally, we employed Level 4 as well
since it contains almost all existing techniques, where we fed
the results of PREDFL together with those of other techniques
into the framework. Also, we performed method-level fault
localization on Defects4J benchmark.

TABLE III: Different integration levels of COMBINEFL
framework according to execution time.

Time Level Family Technique

Level 1
(Seconds)

history-based Bugspots
stack trace stack trace
IR-based BugLocator

Level 2
(Minutes)

slicing union, intersection
and frequency

spectrum-based Ochiai and DStar
Level 3

(∼ Ten minutes) predicate switching predicate switching

Level 4
(Hours) mutation-based Metallaxis and MUSE

Table IV presents the results in detail. From the table, we
can see that after integrating our approach, all the results are

improved from 4.8% (75.9% vs 79.6%) to 20.8% (48.7%
vs 40.3%). Furthermore, PREDFL even improves the fault
localization effectiveness on each individual project w.r.t Top-
1. Especially, after integrating PREDFL, the fault localization
results at Level 2 are even better than those at Level 4 without
PREDFL. Please note, since the current implementation of
COMBINEFL is already superior to all existing techniques as
evaluated in their paper, we do not redundantly compare those
techniques here because the integrated approach is already
more effective than the original one.

Finding 6. Our combined approach, PREDFL that
linearly combines predicates from SBFL and SD, can
further improve existing techniques, and the improve-
ment can be up to 20.8% in terms of Top-1, which de-
notes our approach complements existing techniques.

VII. IMPLICATIONS FOR FUTURE STUDY

A. Predicate Selection

From the experimental results we can see that the selection
of predicates play an important role in the performance of
the fault localization. On the one hand, not all predicates
play an equal role in identifying the faulty locations. As our
experiment results, predicate group branches contributes most
to the accuracy of fault localization, while some predicates
may even play negative roles, the performance of all predicates
is sometimes lower than using the predicates from one group.
On the other hand, the performance of a predicate group
may vary depending on where the predicates are seeded. For
example, the following code snippet in Listing 2 shows a patch
for bug Chart-9 in Defects4J benchmark.

1 if(start == null) {
2 throw new IllegalArgumentException();
3 }
4 ...
5 - if(endIndex<0){
6 + if((endIndex<0)||(endIndex<startIndex)){

Listing 2: Patch of Chart-9 in Defects4J benchmark.

From the patch we can see that the root cause is the
condition of the second if statement in line 5, where an addi-
tional condition expression endIndex<startIndex should
be inserted as shown in line 6. However, after calculating
the suspiciousness scores of predicates from the branches
group, we will notice that the predicate !(start==null)

taken from line 1 has higher suspiciousness than the predicate
endIndex<0 from line 5, leading to an incorrect localization
of line 1. That is, while generally the branches group plays
positive role, it may also lead to negative effects.

Based on the observation, one potential direction to improve
this kind of situation is developing a more effective approach
for selecting predicates. Since the performance of predicates
vary from location to location, the selection should also be
conditional over the context of the predicates. Techniques such
as machine learning or invariant generation may be used.

TABLE IV: Integration fault localization results with existing techniques on Defects4J benchmark.

Level 2 Level 4
Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10

- + - + - + - + - + - + - + - +
Chart 11 13 19 18 21 18 23 25 13 14 19 18 21 18 24 20
Math 49 58 78 81 84 87 90 94 63 67 83 86 85 91 93 95
Lang 42 45 55 55 57 56 60 60 47 51 59 57 61 61 61 61
Time 12 12 15 16 17 19 18 20 10 12 12 17 16 19 19 20

Closure 30 46 47 64 52 68 59 81 35 41 57 64 64 76 74 88
Total 144 174 214 234 231 248 250 280 168 185 230 242 247 265 271 284

Percent 40.3% 48.7% 59.9% 65.5% 64.7% 69.5% 70.0% 78.4% 47.1% 51.8% 64.4% 67.8% 69.2% 74.2% 75.9% 79.6%
In the table, the columns leading by “-” denote the original result of the fault localization framework COMBINEFL, while the columns leading by “+”
denote the result after integrating PREDFL.

B. Better Formulas

In our study, we found that applying SBFL formulas to
SD predicates could achieve significantly better performance.
However, SBFL formulas are designed for program elements,
and thus may not be the best choice for SD predicates. For
instance, SBFL formulas do not utilize the two values F0

and S0. Future studies could explore the design space of risk
evaluation formulas, and check if better formulas could be
discovered.

VIII. DISCUSSION

Threats to internal validity is related to errors and selection
bias in the experiment. To mitigate this risk, two authors of the
paper with at least five-year developing experience carefully
checked the implementation of our experiment with code
review. Moreover, we have also run our approach multiple
times to further guarantee the correctness of implementation.
Besides, the selection of metrics in our experiment may also
affect the evaluation results and corresponding conclusions.
To tackle this problem, we selected two distinct metrics in
our study, i.e., Top-k recall and EXAM score, both of which
are prevalently employed by previous research.

Threats to external validity is related to the generalizability
of our approach. In our experiment, we selected a commonly
used benchmark, Defects4J, as our experimental dataset, which
contains faults from real-world projects related to diverse
software projects. Moreover, we presented and discussed the
final results against existing approaches to show the effec-
tiveness of our combined approach. As studied by Just et
al. [54] that developer-provided triggering test cases could
potentially overestimate the performance of fault localization
techniques. This paper inherits this threat from the dataset as
well. However, the results of our study are still informative
with multiple-dimension comparisons. Moreover, the unified
model and the implications learned from the study are free
from this threat.

IX. RELATED WORK

In this section, we discuss related work with respect to four
aspects. First, we explain spectrum-based fault localization and
statistical debugging techniques explored in this paper. Then
we discuss recent fault localization approaches that combine

different techniques to improve state-of-the-art. Finally, we
discuss existing empirical analysis on fault localization.

Spectrum-based fault localization is one of the most
prevalent fault localization techniques, which is broadly uti-
lized in program debugging, such as automatic program re-
pair [21], [23]. In the past decade, many SBFL approaches
have been proposed. For example, Tarantula [2] is a rep-
resentative approach early proposed by Jones and Harrold,
then Abreu and colleagues did a more thorough study on it
and proposed a superior formula, Ochiai [24], which is often
used to measure similarity in the molecular biology domain.
Recently, some other formulas were proposed [55]. Though
many approaches exist, as introduced in Section II-A, different
SBFL approaches follow the same paradigm that leverages
program syntax coverage to compute suspicious scores for
candidate program elements with a predefined formula. Re-
cently, SBFL has been employed in different domains, such
as in SQL predicates [56], model transformations [57], logic-
based reasoning [58], compiler bug isolation [59], and software
product line [60], where it performs effective. Besides, existing
studies try to improve SBFL technique with other optimized
information such as suspicious variables [61] and reduced test
cases by delta-debugging [62], or incorporating techniques like
data-augmented diagnosis [63] and Feedback-based Goodness
Estimate [64]. In contrast, in this paper, we further explore the
effectiveness of SBFL predicates and formulas by combining
statistical debugging under a unified model. Like existing
studies [16], we selected a set of representative formulas in
our evaluation to mitigate the selection bias. We leave a more
thorough comparison among different formulas to future work.

Statistical debugging was proposed for remote program
sampling by Liblit et al. [4], [5]. In the past years, many ap-
proaches have been proposed devoting to improving statistical
debugging. Arumuga Nainar et al. [10] proposed to combine
simple predicates to complex ones in order to improve the
distinguishing ability of them. Zheng et al. [12] proposed
to use a machine learning model to isolate predicates to
clusters, each of which ideally can capture one single fault in
a program that contains multiple faults. Similarly, Jiang and
Su [65] proposed to cluster selected predicates to reconstruct
candidate paths that are most likely to be faulty. Liu et al. [7],
[13] proposed a new formula to compute the scores of predi-

cates, which distinguishes the predicate coverage distributions
among failed and passed tests. Arumuga Nainar and Liblit [6]
proposed to reduce the performance overhead of statistical
debugging with adaptive binary instrumentation along a set
of heuristics, and Zuo et. al [66] improved the performance
of statistical debugging with abstraction refinement. Recently,
Chilimbi and colleagues [11] proposed to improve traditional
statistical debugging with path profiling, while Yu et al. [67]
utilize predicates to reduce test cases. In this paper, we further
explore the effectiveness of different predicates of SBFL and
statistical debugging and investigate their different combina-
tions aiming to boost current fault localization techniques,
which is orthogonal to existing studies.

Fault localization combination denotes exploring different
combination methods among fault localization techniques.
Recently, many approaches have been proposed and improved
the state-of-the-art. Santelices et al. [68] explored three kinds
of coverage information, statement, branch and define-use pair
coverage, where they found that the combination of three kinds
of coverage can improve individual techniques. Recently, Tu
et al. [69] proposed to combine SBFL with slicing-hitting-set-
computation, which improves the effectiveness of SBFL. Xuan
and Monperrus [38] proposed to leverage a learning-to-rank
method to combine dozens of SBFL formulas, which obtained
significant improvement against single formula. Similarly,
Lucia et al. [70] proposed to fuse the diversity of existing
spectrum-based fault localization techniques with considering
dozens of variants of their combinations. Wang et al. [71]
proposed to employ genetic algorithm and simulated annealing
to look for optimal solutions for the combination of different
spectrum-based fault localization techniques. Both of them
were evaluated to outperform individual approaches. Recently
several approaches have been proposed to leverage a learning-
to-rank model to combine SBFL and supplementary infor-
mation, such as invariants mined from executions [25], bug
reports [72], code changes [18] and mutant coverage [17],
[19], and improved existing techniques. Additionally, Li et
al. [73] leveraged deep learning models to combine various
features from the fault localization, defect prediction and
information retrieval areas to further improve the state-of-the-
art techniques. In this paper, we proposed a unified model
of SBFL and statistical debugging, based on which we first
systematically explored four different variations under the
model. As a result, we found the effective configuration for
each individual variation and proposed a simple combining
method that incorporates their merits, which is evaluated to be
effective and efficient. Moreover, our approach is orthogonal
to existing techniques and evaluated to have the potential to
further improve the state-of-the-art.

Empirical analysis on the performance of fault local-
ization mainly focuses on analyzing existing fault localiza-
tion techniques and investigating the essence of effectiveness.
Harrold et al. [74] studied the relationships between program
spectra and faults, which established the foundation of SBFL.
Recently. Xie et al. [8] and Chen et al. [75] have theoretically
revisited different formulas of SBFL approaches and found

that there dose not exist the “best” formula that significantly
outperforms the others. Pearson et al. [16] systematically
explored the effectiveness of SBFL approaches and mutation
based fault localization on both real-word faults and artificial
faults, where they found the artificial faults are not signifi-
cantly useful for predicting which fault localization techniques
perform best on real faults. In this paper, we explored four
variations that contributed to the improvement of combining
different predicates, based on which we proposed a simple
and effective fault localization approach. Moreover, our anal-
ysis provide several implications for future fault localization
studies.

Empirical analysis on the usefulness of fault localization
investigates the usability of automated fault localization tech-
niques in practice. Recently, Parnin and Orso [76] and Xie et
al. [77] studied the usefulness of automated fault localization
techniques and observed that improvements in fault localiza-
tion accuracy may not translate to improved manual debug-
ging directly and even weaken programmers abilities in fault
detection. However, a more rigorous study on larger-scale,
real-world bugs performed by Xia et al. [78] reported that
automated fault localization can positively impact debugging
success and efficiency. Moreover, they found that the more
accurate the fault localization results are, the more efficient the
debugging process will be, demonstrating the practicability of
automated fault localization techniques in practice. Similarly,
Debroy and Wong [79] empirically evaluated that better fault
localization can potentially improve the effectiveness of fault-
fixing processes as well. As a consequence, in this paper, we
target to improve the accuracy of current fault localization
techniques and explore the combination of spectrum-based
fault localization and statistical debugging.

X. CONCLUSION

In this paper, we empirically investigated different com-
binations of spectrum-based fault localization and statistical
debugging techniques, for which we proposed a unified model.
In addition, we systematically explored four variations under
the model, which leads to several findings: (1) among all
predicates, those from existing conditions contribute most to
the Top-1 fault localization accuracy; (2) fine-grained data
collection contributes more effective fault localization with
little more execution overhead; (3) a linear combination of
suspicious scores from SBFL and SD predicates leads to the
best result. Based on our findings, we proposed a new fault
localization technique, PREDFL, which is evaluated to be com-
plementary to existing techniques as it could further improve
state-of-the-art by combining with existing techniques.

ACKNOWLEDGMENT

This work was partially supported by the National Key
Research and Development Program of China under Grant
No.2017YFB1001803, and National Natural Science Foun-
dation of China under Grant Nos. 61672045, 61529201 and
6167254.

REFERENCES

[1] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test infor-
mation to assist fault localization,” in ICSE, 2002.

[2] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula
automatic fault-localization technique,” in ASE. New York, NY, USA:
ACM, 2005, pp. 273–282.

[3] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “On the accuracy of
spectrum-based fault localization,” in TAICPART-MUTATION, 2007, pp.
89–98.

[4] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan, “Bug isolation via
remote program sampling,” in PLDI. New York, NY, USA: ACM,
2003, pp. 141–154.

[5] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan, “Scalable
statistical bug isolation,” in PLDI. New York, NY, USA: ACM, 2005,
pp. 15–26.

[6] P. Arumuga Nainar and B. Liblit, “Adaptive bug isolation,” ser. ICSE,
New York, NY, USA, 2010, pp. 255–264.

[7] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff, “Sober: Statistical
model-based bug localization,” ser. ESEC/FSE-13. New York, NY,
USA: ACM, 2005, pp. 286–295.

[8] X. Xie, T. Y. Chen, F.-C. Kuo, and B. Xu, “A theoretical analysis of
the risk evaluation formulas for spectrum-based fault localization,” ACM
Trans. Softw. Eng. Methodol., vol. 22, no. 4, pp. 31:1–31:40, 2013.

[9] T. D. B. Le, F. Thung, and D. Lo, “Theory and practice, do they match? a
case with spectrum-based fault localization,” in 2013 IEEE International
Conference on Software Maintenance, 2013, pp. 380–383.

[10] P. Arumuga Nainar, T. Chen, J. Rosin, and B. Liblit, “Statistical
debugging using compound boolean predicates,” ser. ISSTA, New York,
NY, USA, 2007, pp. 5–15.

[11] T. M. Chilimbi, B. Liblit, K. Mehra, A. V. Nori, and K. Vaswani,
“Holmes: Effective statistical debugging via efficient path profiling,” ser.
ICSE, Washington, DC, USA, 2009, pp. 34–44.

[12] A. X. Zheng, M. I. Jordan, B. Liblit, M. Naik, and A. Aiken, “Statistical
debugging: Simultaneous identification of multiple bugs,” ser. ICML,
New York, NY, USA, 2006, pp. 1105–1112.

[13] C. Liu, L. Fei, X. Yan, J. Han, and S. P. Midkiff, “Statistical debugging:
A hypothesis testing-based approach,” TSE, vol. 32, no. 10, pp. 831–848,
Oct 2006.

[14] L. Jiang and Z. Su, “Context-aware statistical debugging: From bug
predictors to faulty control flow paths,” ser. ASE, New York, NY, USA,
2007, pp. 184–193.

[15] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in ISSTA,
2014, pp. 437–440.

[16] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M. D. Ernst,
D. Pang, and B. Keller, “Evaluating and improving fault localization,”
ser. ICSE ’17, 2017, pp. 609–620.

[17] X. Li and L. Zhang, “Transforming programs and tests in tandem for
fault localization,” pp. 92:1–92:30, 2017.

[18] J. Sohn and S. Yoo, “Fluccs: Using code and change metrics to improve
fault localization,” ser. ISSTA, New York, NY, USA, 2017, pp. 273–283.

[19] D. Zou, J. Liang, Y. Xiong, M. D. Ernst, and L. Zhang, “An empirical
study of fault localization families and their combinations,” IEEE
Transactions on Software Engineering, 2019.

[20] J. Xuan, M. Martinez, F. Demarco, M. Clément, S. Lamelas, T. Durieux,
D. Le Berre, and M. Monperrus, “Nopol: Automatic repair of conditional
statement bugs in java programs,” TSE, 2017.

[21] Y. Xiong, J. Wang, R. Yan, J. Zhang, S. Han, G. Huang, and L. Zhang,
“Precise condition synthesis for program repair,” in ICSE, 2017.

[22] X.-B. D. Le, D. Lo, and C. Le Goues, “History driven program repair,”
in SANER, 2016, pp. 213–224.

[23] Q. Xin and S. P. Reiss, “Leveraging syntax-related code for
automated program repair,” ser. ASE, 2017. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3155562.3155644

[24] R. Abreu, P. Zoeteweij, and A. J. C. v. Gemund, “An evaluation
of similarity coefficients for software fault localization,” ser. PRDC.
Washington, DC, USA: IEEE Computer Society, 2006, pp. 39–46.

[25] T.-D. B. Le, D. Lo, C. Le Goues, and L. Grunske, “A learning-to-rank
based fault localization approach using likely invariants,” in ISSTA, 2016,
pp. 177–188.

[26] M. Martinez, T. Durieux, R. Sommerard, J. Xuan, and M. Monperrus,
“Automatic repair of real bugs in java: A large-scale experiment on the
Defects4J dataset,” Empirical Software Engineering, pp. 1–29, 2016.

[27] L. Chen, Y. Pei, and C. A. Furia, “Contract-based program repair without
the contracts,” in ASE, 2017.

[28] R. K. Saha, Y. Lyu, H. Yoshida, and M. R. Prasad, “Elixir: Effective
object oriented program repair,” in ASE. IEEE Press, 2017. [Online].
Available: http://dl.acm.org/citation.cfm?id=3155562.3155643

[29] M. Wen, J. Chen, R. Wu, D. Hao, and S.-C. Cheung, “Context-aware
patch generation for better automated program repair,” in ICSE, 2018.

[30] J. Jiang, Y. Xiong, H. Zhang, Q. Gao, and X. Chen, “Shaping program
repair space with existing patches and similar code,” in ISSTA, 2018.

[31] J. Hua, M. Zhang, K. Wang, and S. Khurshid, “Towards practical
program repair with on-demand candidate generation,” in ICSE, 2018.

[32] A. Ghanbari, S. Benton, and L. Zhang, “Practical program repair via
bytecode mutation,” in ISSTA. New York, NY, USA: ACM, 2019, pp.
19–30.

[33] J. Jiang, Y. Xiong, and X. Xia, “A manual inspection of defects4j
bugs and its implications for automatic program repair,” Science China
Information Sciences, vol. 62, p. 200102, Sep 2019.

[34] P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ expectations on
automated fault localization,” ser. ISSTA, New York, NY, USA, 2016,
pp. 165–176.

[35] R. Abreu, P. Zoeteweij, and A. J. C. v. Gemund, “Spectrum-based
multiple fault localization,” in ASE. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 88–99.

[36] W. E. Wong, V. Debroy, R. Gao, and Y. Li, “The dstar method for
effective software fault localization,” IEEE Transactions on Reliability,
no. 1, pp. 290–308, March 2014.

[37] L. Naish, H. J. Lee, and K. Ramamohanarao, “A model for spectra-
based software diagnosis,” ACM Trans. Softw. Eng. Methodol., no. 3,
pp. 11:1–11:32, 2011.

[38] J. Xuan and M. Monperrus, “Learning to combine multiple ranking
metrics for fault localization,” in ICSME, 2014, pp. 191–200.

[39] F. Steimann, M. Frenkel, and R. Abreu, “Threats to the validity and
value of empirical assessments of the accuracy of coverage-based fault
locators,” in ISSTA, 2013, pp. 314–324.

[40] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” TSE, pp. 707–740, 2016.

[41] W. E. Wong, V. Debroy, R. Golden, X. Xu, and B. Thuraisingham,
“Effective software fault localization using an rbf neural network,” IEEE
Transactions on Reliability, pp. 149–169, 2012.

[42] E. Wong, T. Wei, Y. Qi, and L. Zhao, “A crosstab-based statistical
method for effective fault localization,” in 2008 1st International Confer-
ence on Software Testing, Verification, and Validation, 2008, pp. 42–51.

[43] M. Soto, F. Thung, C.-P. Wong, C. Le Goues, and D. Lo, “A deeper
look into bug fixes: Patterns, replacements, deletions, and additions,” in
MSR. New York, NY, USA: ACM, 2016, pp. 512–515.

[44] X. Zhang, N. Gupta, and R. Gupta, “Locating faults through automated
predicate switching,” in ICSE, 2006, pp. 272–281.

[45] S. Moon, Y. Kim, M. Kim, and S. Yoo, “Ask the mutants: Mutating
faulty programs for fault localization,” in ICST, March 2014, pp. 153–
162.

[46] X. Zhang, N. Gupta, and R. Gupta, “Pruning dynamic slices with
confidence,” ser. PLDI, New York, NY, USA, 2006, pp. 169–180.

[47] M. Papadakis and Y. Le Traon, “Metallaxis-fl: Mutation-based fault
localization,” Softw. Test. Verif. Reliab., pp. 605–628, Aug. 2015.

[48] F. Rahman, D. Posnett, A. Hindle, E. Barr, and P. Devanbu, “Bugcache
for inspections: Hit or miss?” ser. ESEC/FSE ’11, New York, NY, USA,
2011, pp. 322–331.

[49] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed?
more accurate information retrieval-based bug localization based on bug
reports,” in ICSE, June 2012, pp. 14–24.

[50] A. Schroter, A. Schrter, N. Bettenburg, and R. Premraj, “Do stack traces
help developers fix bugs?” in MSR 2010, May 2010, pp. 118–121.

[51] C. Hammacher, “Design and implementation of an efficient dynamic
slicer for Java,” Bachelor’s Thesis, Nov. 2008.

[52] T. Wang and A. Roychoudhury, “Using compressed bytecode traces for
slicing java programs,” in ICSE, May 2004, pp. 512–521.

[53] H. Pan and E. H. Spafford, “Heuristics for automatic localization of
software faults,” World Wide Web, 1992.

[54] R. Just, C. Parnin, I. Drosos, and M. D. Ernst, “Comparing developer-
provided to user-provided tests for fault localization and automated
program repair,” in ISSTA, 2018, pp. 287–297.

[55] L. Naish, H. J. Lee, and K. Ramamohanarao, “A model for spectra-
based software diagnosis,” ACM Trans. Softw. Eng. Methodol., vol. 20,
pp. 11:1–11:32, 2011.

[56] Y. Guo, N. Li, J. Offutt, and A. Motro, “Exoneration-based fault
localization for sql predicates,” Journal of Systems and Software, vol.
147, pp. 230 – 245, 2019.

[57] J. Troya, S. Segura, J. A. Parejo, and A. Ruiz-Cortés, “Spectrum-based
fault localization in model transformations,” ACM Trans. Softw.
Eng. Methodol., pp. 13:1–13:50, Sep. 2018. [Online]. Available:
http://doi.acm.org/10.1145/3241744

[58] I. Pill and F. Wotawa, “Spectrum-based fault localization for logic-
based reasoning,” in 2018 IEEE International Symposium on Software
Reliability Engineering Workshops (ISSREW), Oct 2018, pp. 192–199.

[59] J. Chen, J. Han, P. Sun, L. Zhang, D. Hao, and L. Zhang, “Compiler bug
isolation via effective witness test program generation,” in ESEC/FSE.
New York, NY, USA: ACM, 2019, pp. 223–234.

[60] A. Arrieta, S. Segura, U. Markiegi, G. Sagardui, and L. Etxeberria,
“Spectrum-based fault localization in software product lines,” Informa-
tion and Software Technology, vol. 100, pp. 18 – 31, 2018.

[61] J. Kim, J. Kim, and E. Lee, “Vfl: Variable-based fault localization,”
Information and Software Technology, vol. 107, pp. 179 – 191, 2019.

[62] A. Christi, M. L. Olson, M. A. Alipour, and A. Groce, “Reduce before
you localize: Delta-debugging and spectrum-based fault localization,” in
2018 IEEE International Symposium on Software Reliability Engineer-
ing Workshops (ISSREW), Oct 2018, pp. 184–191.

[63] A. Elmishali, R. Stern, and M. Kalech, “Data-augmented software
diagnosis,” in Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence, ser. AAAI’16. AAAI Press, 2016, pp. 4003–4009.
[Online]. Available: http://dl.acm.org/citation.cfm?id=3016387.3016470

[64] N. Cardoso and R. Abreu, “A kernel density estimate-based
approach to component goodness modeling,” in Proceedings of
the Twenty-Seventh AAAI Conference on Artificial Intelligence, ser.
AAAI’13. AAAI Press, 2013, pp. 152–158. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2891460.2891482

[65] L. Jiang and Z. Su, “Context-aware statistical debugging: From bug
predictors to faulty control flow paths,” ser. ASE, New York, NY, USA,
2007, pp. 184–193.

[66] Z. Zuo, L. Fang, S.-C. Khoo, G. Xu, and S. Lu, “Low-overhead and
fully automated statistical debugging with abstraction refinement,” ser.
OOPSLA. New York, NY, USA: ACM, 2016, pp. 881–896. [Online].
Available: http://doi.acm.org/10.1145/2983990.2984005

[67] Y. Yu, J. Jones, and M. J. Harrold, “An empirical study of the effects of
test-suite reduction on fault localization,” in ICSE, 2008, pp. 201–210.

[68] R. Santelices, J. A. Jones, Y. Yu, and M. J. Harrold, “Lightweight fault-

localization using multiple coverage types,” ser. ICSE. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 56–66.

[69] J. Tu, X. Xie, T. Y. Chen, and B. Xu, “On the analysis of
spectrum based fault localization using hitting sets,” Journal of Systems
and Software, vol. 147, pp. 106 – 123, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121218302231

[70] Lucia, D. Lo, and X. Xia, “Fusion fault localizers,” in ASE. New
York, NY, USA: ACM, 2014, pp. 127–138. [Online]. Available:
http://doi.acm.org/10.1145/2642937.2642983

[71] Shaowei Wang, D. Lo, L. Jiang, Lucia, and H. C. Lau, “Search-based
fault localization,” in ASE 2011, Nov 2011, pp. 556–559.

[72] T.-D. B. Le, R. J. Oentaryo, and D. Lo, “Information retrieval and
spectrum based bug localization: Better together,” in ESEC/FSE. New
York, NY, USA: ACM, 2015, pp. 579–590.

[73] X. Li, W. Li, Y. Zhang, and L. Zhang, “Deepfl: Integrating multiple
fault diagnosis dimensions for deep fault localization,” in ISSTA. New
York, NY, USA: ACM, 2019, pp. 169–180.

[74] M. J. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi, “An
empirical investigation of the relationship between spectra differences
and regression faults,” Software Testing, Verification and Reliability, pp.
171–194.

[75] T. Y. Chen, X. Xie, F. C. Kuo, and B. Xu, “A revisit of a theoretical
analysis on spectrum-based fault localization,” in 2015 IEEE 39th
Annual Computer Software and Applications Conference, July 2015, pp.
17–22.

[76] C. Parnin and A. Orso, “Are automated debugging techniques actually
helping programmers?” in ISSTA, 2011, pp. 199–209.

[77] X. Xie, Z. Liu, S. Song, Z. Chen, J. Xuan, and B. Xu, “Revisit
of automatic debugging via human focus-tracking analysis,” in ICSE.
ACM, 2016, pp. 808–819.

[78] X. Xia, L. Bao, D. Lo, and S. Li, “automated debugging considered
harmful considered harmful: A user study revisiting the usefulness
of spectra-based fault localization techniques with professionals using
real bugs from large systems,” 2016 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pp. 267–278, 2016.

[79] V. Debroy and W. E. Wong, “Combining mutation and fault
localization for automated program debugging,” Journal of Systems
and Software, vol. 90, pp. 45 – 60, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121213002616

