
ExpressAPR: Efficient Patch Validation for Java
Automated Program Repair Systems

Yuan-An Xiao†‡, Chenyang Yang†‡, Bo Wang§ and Yingfei Xiong∗†‡
† Key Laboratory of High Confidence Software Technologies (Peking University), MoE, Beijing, China

‡ School of Computer Science, Peking University, Beijing, China
§ School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
{xiaoyuanan,chenyangy,xiongyf}@pku.edu.cn, wangbo_cs@bjtu.edu.cn

Abstract—Automated program repair (APR) approaches suffer
from long patch validation time, which limits their practical
application and receives relatively low attention. The patch
validation process repeatedly executes tests to filter patches,
and has been recognized as the dual of mutation analysis. We
systematically investigate existing mutation testing techniques
and recognize five families of acceleration techniques that are
suitable for patch validation, two of which are never adapted to a
general-purpose patch validator. We implement and demonstrate
ExpressAPR, the first framework that combines five families of
acceleration techniques for patch validation as the complete set.
In our evaluation on 30 random Defects4J bugs and four APR
systems, ExpressAPR accelerates patch validation for two order-
of-magnitudes over plain validation or one order-of-magnitude
over the state-of-the-art approach, benefiting APR researchers
and users with a much shorter patch validation time.

Demo video available at https://youtu.be/7AB-4VvBuuM
Tool repo (source code + Docker image + evaluation dataset)

available at https://github.com/ExpressAPR/ExpressAPR
Index Terms—Automated Program Repair, Patch Validation,

Mutation Analysis, Test Execution

I. INTRODUCTION

Fixing software bugs is a tedious and costly procedure.
Automated Program Repair (APR) aims to fix bugs without
human intervention. APR has attracted much academic atten-
tion and is already deployed in large companies [1].

This paper focuses on APR efficiency, which is a rela-
tively neglected aspect. The effectiveness of APR has been
the main target of researchers: the ability to generate more
correct patches is significantly improving. The most recent
APR system is able to correctly fix 109 out of 391 real-
world bugs [2]. In comparison, the efficiency of APR systems
receives relatively low attention, but it is a vital factor affecting
the practical usability of APR systems. In fact, state-of-the-art
approaches still need up to several hours to fix a bug. For
example, recent studies [3]–[5] set a 5-hour timeout for each
bug, which is unaffordable for many users.

Existing APR approaches mostly follow the generate-and-
validate fashion, i.e., they generate many patches and then
validate the correctness of each patch against test cases. The
efficiency problem is mainly caused by the patch validation
step [6], which repeatedly executes tests. This scenario is
similar to mutation analysis, to which APR has been rec-
ognized as the dual [7]. Accelerating mutation analysis has
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been deeply studied and some APR approaches already adapt
accelerating techniques for patch validation. However, they
only employ one or a few techniques and usually rely on
ad-hoc implementation [8]. So far, there exist no systematic
approaches that reveal the full acceleration potential.

We demonstrate ExpressAPR, the first tool that systemati-
cally combines five families of acceleration techniques as the
complete set into a general-purpose patch validation frame-
work. The five families are mutant schemata [9], mutant dedu-
plication [10], test virtualization [11], test prioritization [12],
and, parallelization. Users can configure them through options.
The adaption is non-trivial due to the differences between
mutation analysis and patch validation. In fact, the first two
techniques have never been adapted to a general-purpose patch
validator before ExpressAPR. We use a novel interception-
based execution scheduling algorithm to enable the adaption,
which is described in detail in our full paper [13].

The envisioned users of ExpressAPR are the researchers
and users of Java APR systems. ExpressAPR provides out-
of-the-box support for the Defects4J [14] benchmark and
the Maven build tool. Therefore, researchers can easily use
ExpressAPR to evaluate their approaches. ExpressAPR can
also be customized to run on other Java projects, which
benefits APR systems already deployed in the industry.

We evaluate ExpressAPR on 30 random Defects4J bugs
with four APR approaches. It shows that ExpressAPR achieves
an average acceleration of 108.9x over plain validation and
outperforms the state-of-the-art approach by 10.3x, with nearly
no impact on the precision of APR.

II. BACKGROUND AND RELATED WORK

A. Acceleration Techniques for Mutation Analysis

Scalability is a key issue of mutation analysis [15] and
researchers endeavor to propose accelerating approaches. We
survey such existing techniques, from which we figure out
five families of approaches that are suitable for APR patch
validation and we also discuss the unsuitable ones.

Mutant Schemata: Standard mutation analysis compiles
each mutant to an executable file separately, which introduces
a huge compiling cost. Mutant schemata [9] alleviate the
cost by replacing the mutated code location with a sketch
form program. The sketch is implemented by a switch-case
statement to select the mutant code snippet based on a runtime



argument. In this way, we compile once to get a single
executable file representing all mutants, reducing compiling
costs.

Mutant Deduplication: Mutants are independently seeded
at every possible location, and redundant mutants are com-
mon. A redundant mutant is semantically equivalent to either
another mutant or the original program, or it produces the
same output as them given a certain test input (test-equivalent).
Equivalent mutants cannot be accurately detected for most pro-
gramming languages. Researchers propose several lightweight
filters, such as using compiler optimization to remove mu-
tants leading to the same bytecode [16]. In comparison, test-
equivalent mutants are more common for mutant deduplication
approaches. For example, Major [17] identifies test-equivalent
mutants by a pre-pass that records the values of mutants’
operands and analyzes each mutant’s state.

Test Virtualization: Java programs are executed on a
Virtual Machine (VM), which suffers from a high initialization
cost. Given the same test input and the same environmental
settings, all mutants share the same initialization processes.
Test virtualization techniques speed up execution by reducing
initialization redundancies. VMVM [11] reuses a booted JVM
across tests by resetting its modified states.

Test Case Prioritization: In the scenario of mutation
analysis, killing a mutant (i.e., a test fails on a mutant)
earlier can avoid executing the remaining tests. Researchers
propose to prioritize test cases by their coverage [12], so
as to enlarge the probability of killing mutants. The patch
validation procedure of APR meets the same requirement,
and APR systems commonly use heuristic prioritizing policies,
e.g., executing the original failed test cases first.

Parallelization: Because tests and mutants are naturally
independent of each other, it is intuitive to parallelize testing
by separating tests or mutants into multiple parallel processes.

Other unsuitable techniques: Some accelerating tech-
niques need mechanisms that are unable to access from Java
programs. For example, fork-based mutation analysis [18]–
[20] needs the fork mechanism, which is missing in Java.

B. Accelerating Patch Validation

There exists a few studies to accelerate patch validation,
which is essentially adapting corresponding techniques from
mutation analysis. UniAPR [8] is the state-of-the-art patch
validation acceleration framework based on test virtualization.
Similarly, Guo et al. [21] propose to accelerate by dynamic
software updating. PraPR [22] directly modifies Java bytecode
to avoid compilation costs. Mechtaev et al. [23] propose two
test-equivalence relations to filter patches. They only adapt one
certain technique, and some studies depend on a specific APR
approach while ExpressAPR supports arbitrary patches.

III. EXPRESSAPR OVERVIEW

A. The Methodology

The core of ExpressAPR is an automated process of source-
code level instrumentation that realizes the discussed accelera-
tion. This core process runs under JDK 1.8+ and works for all
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Fig. 1. Workflow of ExpressAPR

Java projects with JUnit tests under the source level of 1.5+.
We further provide a command-line interface as a high-level
interface, which handles periphery details such as classpaths
and error recovery.

Figure 1 demonstrates the workflow of using ExpressAPR.
The input is the patch sets to be validated, and some con-
figuration flags describing the project under validation and
used acceleration techniques. The command-line interface then
prepares the environment and starts multiple worker processes
in parallel, each process automatically calling the ExpressAPR
Core to validate a set of patches in below three steps:

1) Preparation, where it instruments the codebase to weave
all patches into it, forming mutant schemata. The runtime
procedure for test execution is also instrumented into the
codebase. 2) Patch Compilation, where the instrumented
codebase is compiled into an executable program. In this
way, all patches are compiled at once, saving compilation
time. Should there be compile errors, ExpressAPR parses
the error message to remove all patches leading to errors
from the codebase (reporting them as uncompilable) and
compile the codebase again, which should be successful. 3)
Test Execution, where the instrumented runtime procedure
is executed to run the test suite. Mutant deduplication, test
virtualization, and test case prioritization are all included in the
runtime procedure. Finally, ExpressAPR collects the validation
result into a validation report file.

Note that adapting accelerating approaches for mutation
analysis can be non-trivial due to the differences between
mutation analysis and patch validation. In mutation analysis,
all mutants are generated from pre-defined mutation operators,
whereas in patch validation, patches are arbitrary changes
to statements that are not under our control. We propose an
interception-based execution scheduling algorithm in Expres-
sAPR Core to enable acceleration of arbitrary statement-level
patches. Interested readers could refer to our full paper [13].

B. Input and Output Format

As a general-purpose patch validator, ExpressAPR does not
depend on a specific APR approach. Instead, it interfaces with
any APR approach with patch set files. A patch set file is a
JSON manifest that describes all patches modifying the same
part in the program to be validated. For example, below is a
manifest file containing three patches:
{ "manifest_version": 3,
"interface": "defects4j", "bug": "Math-65",



"filename": "src/main/java/Modified.java",
"context_above": "public class Modified {

void foo() { int x =",
"unpatched": "Integer.MAX_VALUE",
"context_below": "; int y = x + 1; } }",

"patches": [
"-100", "-100; x++", "Integer.MAX_VALUE; return"

] }

The first three fields, manifest_version, interface,
and bug, describe the format of this file (currently v3) and the
Bug ID of the project under repair (Math-65 in the Defects4J
benchmark). These fields are for error-proof purposes, so that
ExpressAPR will issue a warning for possible inconsistency.
The middle four fields describe the location of patches, such
that the original content of filename is context_above +

unpatched + context_below, where the unpatched part
will be replaced by each patched version described in the
patches field. We do not require patches to be aligned
to a statement boundary. ExpressAPR works fine even if
the unpatched part is a part of the statement or multiple
statements, as long as it does not span multiple methods.

The output of ExpressAPR is a validation report file contain-
ing the test result of each validated patch. The file is in JSONL
format, where each line is encoded as JSON and corresponds
to an input patch set. Here is an example (prettified) line:
{ "patches_path": "/path/to/patch_set.json",

"succlist": "FFs",
"technique": "expapr",
"extra": {...} }

The patches_path field is the filename of the input
patch set. The succlist field is a string, the i-th character
describing the validation result of the i-th patch in this patch
set, which can be one of the following characters:

• C (“compile error”): the patch does not compile;
• F (“failed”): the patch compiles, but a test case fails or

does not terminate within the timeout1.
• s (“success”): the patch successfully compiles and passes

all test cases in the project;
The technique field can be either "expapr", indicating

that this patch set is successfully accelerated by ExpressAPR,
or "fallback", indicating that it is beyond our capability
(e.g., the patch location spans multiple methods) and Expres-
sAPR falls back to plain validation for this patch set. The
extra field contains extra diagnosis information, such as the
reason when technique is "fallback".

C. The Command-Line Usage

While the user can directly use the low-level ExpressAPR
Core to carry out the patch validation step, the command-
line interface (CLI) is the desired way to use ExpressAPR. It
provides out-of-the-box support for the Defects4J [14] bench-
mark, so that APR researchers can switch to ExpressAPR with
two simple commands. Here we demonstrate its usage.

The user first initializes the project under test into an empty
working directory with this command:

1The timeout is customizable. Its default value is 5 seconds plus 1.5 times
the original test execution time, following an existing study [6].

> expapr-cli init -i defects4j -b Math-65
-w /tmp/workdir -j 4 -d trivial

• -i defects4j and -b Math-65 specify the project to
validate;

• -w /tmp/workdir specifies the working directory to
initialize;

• -j 4 enables parallel patch validation with 4 processes;
• -d trivial turns on basic mutant deduplication2.
The initialization step checkouts the project and executes

the test suite to collect test case prioritization information and
calculate test timeout. This step only happens once per project
and can be performed before repair.

The user then runs an APR tool that generates candidate
patches in the patch set format described above. Most APR
approaches generate patches by iterating the locations returned
by a fault localization approach. In this case, candidate patches
naturally form patch sets based on their locations.

Finally, the user runs this command to validate the patches:
> expapr-cli run -w /tmp/workdir

"/tmp/patches/*.json"

• -w /tmp/workdir specifies the working directory, as
initialized by the init command;

• "/tmp/patches/*.json" specifies the glob pattern to
find the patch sets to be validated;

• for diagnosis purposes, test case prioritization can be
disabled with --no-prio; mutant deduplication can be
disabled with --no-dedup; runtime acceleration tech-
niques can be totally disabled with -t fallback.

The validation report will be stored in the working directory
with filename result.jsonl. Because the report file is line-
based, the patch validation process can be interrupted at any
time (e.g., when the first correct patch is found), leaving the
file incomplete. Re-running the expapr-cli run command
will continue this process.

D. Supporting Other Projects

ExpressAPR is compatible with various Java projects
through an interface for checking out the project, get-
ting the classpath for compiling it, and running the
plain test validation process (as a fallback). While the
CLI script provides out-of-the-box support for Defects4J
(-i defects4j -b Math-65) and Maven (-i maven -b

/path/to/project), it can also run on other projects by
implementing the methods in the Python class Interface

defined in interface/__init__.py.
We plan to add built-in support for other well-known

benchmarks and build systems in the future.

IV. EMPIRICAL EVALUATION

We conducted an empirical evaluation to understand Expres-
sAPR’s performance over UniAPR [8], the state-of-the-art Java
patch validator, and the plain patch validation command from
Defects4J (defects4j compile && defects4j test).

2Mutant deduplication relies on an external database of methods that are
known to be side-effect free. -d trivial picks the built-in database of
well-known pure methods such as toString.
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We chose four representative APR tools to be studied in our
evaluation, namely Recoder [3], TBar [24], SimFix [5], and
Hanabi [25]. We run each tool against 30 randomly chosen
bugs in Defects4J v1.2, with slight modifications so that the
tool will store candidate patches onto the disk under the format
required by ExpressAPR. Then, we used ExpressAPR and the
two baseline approaches to validate collected patches. Please
refer to our full paper [13] for additional experiment settings.

RQ1: Effectiveness. Figure 2 shows the total patch vali-
dation time per bug with different approaches3. We can see
that for all four APR tools and all 30 bugs, ExpressAPR is
the fastest approach. ExpressAPR is averagely 108.9x faster
over plain validation or 10.3x faster over UniAPR for these
bugs. With ExpressAPR, the patch validation generally takes
no more than one or a few minutes per bug on a mainstream
computer, which is no longer the time bottleneck of APR.

RQ2: Feasibility. We compare the validation report of
ExpressAPR with the ground truth from the plain baseline.
It shows that ExpressAPR successfully validates 98.782%
of patches with the correct result. 1.217% of patches are
beyond the capability of ExpressAPR so the command-line
script automatically falls back to the plain approach. Only
the remaining 0.001% of patches show an incorrect result
(reported as “s” where it should be “C” or “F”, or vice versa).
Therefore, the feasibility of ExpressAPR is high, and it has
minimal impact on the precision of APR.

V. CONCLUSION

We have presented ExpressAPR, a framework for acceler-
ating the patch validation of Java APR systems. ExpressAPR
systematically adapts five families of accelerating techniques
as the complete set. The tool contains a user-friendly in-
terface and can be customized. The evaluation results show
that ExpressAPR significantly accelerates the patch validation
procedure compared with the state-of-the-art technique.
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