
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

From Bidirectional Model Transformation to

Model Synchronization

Yingfei Xiong1

Department of Mathematical Informatics
The University of Tokyo, Tokyo, Japan

Song Hui2

Key Laboratory of High Confidence Software Technologies (Peking University)
Ministry of Education, Beijing, China

Zhenjiang Hu3

GRACE Center
National Institute of Informatics, Tokyo, Japan

Masato Takeichi4

Department of Mathematical Informatics
The University of Tokyo, Tokyo, Japan

Abstract

In model-driven engineering, it is common that there are several related models co-existing. When one
model is updated or several models are updated at the same time, we need to propagate the updates
across all models to make them consistent. This process is called synchronization. Bidirectional model
transformation partially supports the synchronization of two models by updating one model according to
the other models. However, it does not work when the two models are modified at the same time.
In this work we propose a new algorithm that wraps any bidirectional transformation into a synchronizer, and
this synchronizer allows simultaneous updates on the two models. We propose a general algebraic framework
for model synchronization, and prove that our algorithm can ensure the synchronization properties if the
bidirectional transformation satisfies the correctness property and the hippocraticness property [7].

Keywords: bidirectional transformation, model synchronization, model transformation

1 Email: xiong@ipl.t.u-tokyo.ac.jp
2 Email: songhui06@sei.pku.edu.cn
3 Email: hu@nii.ac.jp
4 Email: takeichi@mist.i.u-tokyo.ac.jp

c©2009 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs
mailto:xiong@ipl.t.u-tokyo.ac.jp
mailto:songhui06@sei.pku.edu.cn
mailto:hu@nii.ac.jp
mailto:takeichi@mist.i.u-tokyo.ac.jp

Xiong, Song, Hu and Takeichi

1 Introduction

One central activity of model-driven software development is to transform high-level

models into low-level models through model transformations. In an ideal situation,

the target model is always obtained from the source model and never need to be

modified. However, in reality, developers often need to modify the target model

directly. In such cases, we need to reflect the updates on the target models back to

the source models.

Bidirectional model transformation solves this maintenance problem by pro-

viding bidirectional model transformation languages, which describe the relation

between two models symmetrically. Programs in these languages are able to not

only transform models from one format into the other, but also update the other

model automatically when one model is updated by users. Typical bidirectional

model transformation languages include QVT [5] and TGG [4].

Perdita Stevens [7] formalizes bidirectional model transformation as two func-

tions. If M and N are meta-models and R ⊆M×N is the consistency relation to be

established on the models. A bidirectional transformation consists of the following

two functions:
−→
R : M ×N → N
←−
R : M ×N →M

Given a pair of models (m, n) ∈M ×N , the function
−→
R changes n to be consistent

to m. Similarly,
←−
R changes m in accordance with n.

However, in some cases the the model m and n may both be updated before

bidirectional transformation can be applied. For example, a designer is working on

the design model and a programmer is working on the implementation model at the

same time. Applying the transformation of any direction will result in the loss of

updates on the target side.

To solve this problem, we need a synchronizer to propagate the updates on each

model to the other model at the same time. In this paper we consider such a

synchronizer as a partial function

sync : R× (M ×N)→ R

that takes two original models in the consistency relation R, two updated models and

produces two synchronized models. The output model should be close to the original

models, and also contains the updates in the updated models and the updates

propagated from the other sides. The function is partial because sometimes the

updates on the two models may conflict and cannot be synchronized.

Given the large number of available bidirectional model transformation lan-

guages, there are relative few ready-to-use synchronization languages. So one nat-

ural idea is to use bidirectional model transformation to support model synchro-

nization. In this paper we carry out theoretical studies of how bidirectional model

transformation can be used to support model synchronization. The main contribu-

tions of this paper can be summarized as follows:

• We extend our previous algebraic framework for model synchronization [8] to

general cases. We consider the symmetrical cases where no model is necessarily

2

Xiong, Song, Hu and Takeichi

an abstraction of the other model and open door to free choice of updates.

• We propose an algorithm that wraps any bidirectional model transformation into

a synchronizer, with the help of a three-way merger. We also discuss basic conflict-

resolving support in the synchronizer.

• We prove that, for any bidirectional transformation satisfying the correctness and

hippocraticness properties [7], the synchronizer satisfies the stability, preservation

and consistency properties [8], ensuring a correct and predictable synchronization

behavior.

This paper is organized as follows. Section 2 introduces our algebraic framework

of model synchronization, including three properties to characterize the behavior

of synchronization. Section 3 introduces the bidirectional model transformation

properties introduced by Stevens [7]. Based on these properties, Section 4 introduces

our algorithm and prove that bidirectional model transformation properties lead to

model synchronization properties. Section 5 introduces our basic conflict-resolving

strategy. Finally, Section 6 discusses two pieces of related work.

2 Properties of Model Synchronization

We have seen the basic definition of a synchronizer: it takes two original models, two

updated models and produces two synchronized models. However, this definition

only characterize the input and output types of the synchronizer, and does not

say much about the synchronization behavior. In this section we propose several

properties to characterize the behavior of the synchronizer.

As the first step of charactering the behavior, let us define the updates on the

models. In our definition, the synchronizer only takes models and produces new

models, and one may ask: why do we need to consider updates? This is because we

need to detect updates and merge simultaneous updates in synchronization. If we

consider different sets of updates, the synchronization may lead to different results.

For example, let us consider the meta model M as a power set of some alphabet

set Σ. Suppose two users made two different updates on one model, respectively,

and their updated results are as follows.

the original model M0 : {a, b, c}

the first updated result M1 : {a, d, c}

the second updated result M2 : {a, e, c}

If we consider M1 is created by replacing b by d, and M2 is created by replacing b by

e, the two updates will conflict. However, if we consider M1 is created by deleting

b and adding d, while M1 is created by deleting b and adding e, this two updates

are compatible and we can merge them as one model: {a, d, e, c}.

From these different results we can see that the synchronization behavior de-

pends on what updates we choose. To clear characterize the behavior, we need to

first be clear about which set of updates we will consider during the synchronization.

First we give the definition of update: An update u defined on some meta-model M

is an idempotent function u ∈M →M . We consider only the idempotent function

because idempotence allows us to tell whether the update has been preserved in

3

Xiong, Song, Hu and Takeichi

a model. If we apply an update to a model and the model remain constant, the

update has been preserved in the model.

Example 2.1 The meta model M is a power set of some alphabet set Σ. Suppose

we have the following functions:

• addJaK(A) = A ∪ {a}

• removeJaK(A) = A\{a}

• replaceJa, bK(A) =

A\{a} ∪ {b} a ∈ A

A otherwise

Then for any a, b ∈ Σ, we have addJaK, removeJaK and replaceJa, bK are updates.

After we define updates as functions, the relationship between updates can be

defined through function composition. Two updates u1, u2 conflict iff u1 ◦ u2 6=

u2 ◦ u1. We write u1 ⊖ u2 if u1 and u2 do not conflict.

Corollary 2.2 ⊖ is commutative.

Proof. By the definition. 2

Corollary 2.3 If a⊖ b, we have that a ◦ b is an update.

Proof. Because a ◦ b = b ◦ a, we have (a ◦ b) ◦ (a ◦ b) = (a ◦ a) ◦ (b ◦ b) = a ◦ b. 2

Corollary 2.4 If b ◦ c is an update and a⊖ b, a⊖ c, we have a⊖ (b ◦ c).

Proof. Because a ⊖ b, we have a ◦ b = b ◦ a. Putting together a ⊖ c, we have

a ◦ (b ◦ c) = b ◦ a ◦ c = b ◦ (a ◦ c) = b ◦ c ◦ a. 2

Another relation we consider is whether an update is included in another update.

An update u1 is a sub update of another update u2 iff u1◦u2 = u2◦u1 = u2, denoted

as u1 ⊑ u2.

Corollary 2.5 ⊑ is a partial order over any set of updates.

Proof. By definitions. 2

Proof. We need to show ⊑ is reflexive, antisymmetric and transitive.

Reflexive a ◦ a = a

Antisymmetry If a ⊑ b and b ⊑ a, we have a ◦ b = a and a ◦ b = b, and then we

have a = b.

Transitivity If a ⊑ b and b ⊑ c, we have a ◦ b = b ◦a = b and b ◦ c = c ◦ b = c, then

we have a ◦ c = a ◦ (b ◦ c) = (a ◦ b) ◦ c = b ◦ c = c. Similarly ,we can have c ◦ a = c.

2

Corollary 2.6

∀a, b ∈ Σ : a 6= b⇒ addJaK⊖ addJbK

∀a, b ∈ Σ : a 6= b⇒ removeJaK⊖ removeJbK

4

Xiong, Song, Hu and Takeichi

∀a, b ∈ Σ : a 6= b⇒ addJaK⊖ removeJbK

As we have discussed, to clearly characterize the synchronization behavior of a

synchronizer, we need to know what kinds of updates can be applied to a model.

We define the updates that can be applied to models in M through a proper update

set UM . A proper update set UM defined on a meta model M is a set of updates

that satisfies:

• UM is closed on composition,

• the identity function id ∈ UM , and

• for any m, n ∈M , the set {u ∈ UM |u(m) = n} has a least element.

The first condition requires the property update set to be complete, so that we

can freely apply a sequence of updates in the set without worrying whether we are

applying a “proper update”. The second condition allows us to keep the model

unmodified. The third condition implies two things: 1) any model can be applied

to any other model, and 2) given two models, we can always find a unique update

that is least among all updates.

If u is the least element in the set {u ∈ UM |u(m) = n} for any m, n ∈ M , we

say u is the least update from m to m′.

To give an example of proper update set, let us define a function which con-

struct a set of functions by composing another set of function with a predefined set:

composeJF K(H) = {f ◦ h | ∀f ∈ F, h ∈ H}

Lemma 2.7

∀a ∈ Σ : addJaK ◦ removeJaK = addJaK

∀a ∈ Σ : removeJaK ◦ addJaK = removeJaK

Example 2.8 Let

B1 = {addJaK | ∀a ∈ Σ} ∪ {removeJaK | ∀a ∈ Σ},

M1 =
⋃∞

n=0(composeJB1K)
n({id}),

we have M1 is a proper update set.

Proof. First, every element in M1 is an update. Every element in M1 can be written

as a sequence of composition operJa0K ◦ operJa1K . . . operJanK where oper = add or

remove and ai 6= aj for any i 6= j. This can be proved by mathematical induction.

Furhter because of Corollary 2.7, Corollary 2.3 and Corollary 2.4, every element is

an update.

Second, similarly, we have M1 is closed on composition.

Third, by definition, id is in M1.

Forth, consider two element m0 and m1 in M . Let set1 = {addJaK | a ∈ m0∧a /∈

m1} and set2 = {removeJaK | a ∈ m1 ∧ a /∈ m0}. The least update from m0 to m1

is a composition of all element in set1 and set2. We can easily prove this is a sub

update of any other updates. 2

Example 2.9 Let

B2 = B1 ∪ {replaceJa, bK | ∀a, b ∈ Σ},

5

Xiong, Song, Hu and Takeichi

M2 =
⋃∞

n=0(composeJB2K)
n({id}),

we have M2 is not a proper update set.

Proof. Given two sets m1 = {a, b} and m2 = {a, c}, both addJcK ◦ removeJbK and

replaceJb, cK can update m1 to m2, but none is a sub update of the other. 2

With updates clearly defined, we are ready to move to define the properties.

We consider stability, preservation and consistency defined in [8] and leave the

composability property, which is arguably too strong. The three properties are

previously defined in the case where the target model is an abstraction of the source

model, here we adapt the definitions to symmetrical cases.

Stability says that if no model is updated, the synchronizer should update no

model.

Property 1 (Stability)

R(m, n)⇒ sync(m, n, m, n) = (m, n)

Preservation requires user updates should be preserved during synchronization.

In other words, when users modify a data item to some specific valuess, the syn-

chronizer should not modify the data item to any other value.

Property 2 (Preservation)

If sync(m, n, m′, n′) = (m′′, n′′), um is the least update from m to m′, we have

um(m′′) = m′′

If sync(m, n, m′, n′) = (m′′, n′′), un is the least update from n to n′, we have

un(n′′) = n′′

Consistency requires the synchronizer to produce consistent result.

Property 3 (Consistency)

sync(m, n, m′, n′) is defined ⇒ R(sync(m, n, m′, n′))

3 Properties of Bidirectional Model Transformation

Perdita Stevens [7] also proposes three properties to ensure a predictable behavior

of bidirectional model transformations. Two of the properties are correctness and

hippocraticness. The third property, undoability, is also arguably too strong, and

we do not consider it here.

Property 4 (Correctness)

∀m ∈M, n ∈ N R(m,
−→
R (m, n))

∀m ∈M, n ∈ N R(
←−
R (m, n), n)

Property 5 (Hippocraticness)

R(m, n)⇒
−→
R (m, n) = n

R(m, n)⇒
←−
R (m, n) = m

4 Algorithm

The basic idea of the algorithm is to first convert the model in one side to the other

side using bidirectional transformation, then use a three-way merger [3] to reconcile

6

Xiong, Song, Hu and Takeichi

morig

mupdt

mtemp

msync

norig

nupdt

ntemp

nsync

1.
←−
R

2. merge 3.
−→
R

4. merge

5. test equality

Fig. 1. The Synchronization Algorithm

the updates, and transform back using the opposite transformation. The detailed

algorithm is shown in Figure 1.

Initially, we have the original models morig, norig and the updated models mupdt,

nupdt. First we use
←−
R to propagate the updates on nupdt to morig and we get mtemp.

Then we invoke a three-way merger to merge morig, mupdt and mtemp.

A three-way merger is a partial function merge ∈M ×M ×M →M that takes

a reference model mo and two updated models ma and mb diverged from mo, and

produced a new model m′
o where the updates in ma and mb are reconciled. Suppose

ua is the least update from mo to ma and ub is the least update from mo to mb, the

merge function will ensure the following:

• merge(mo, ma, mb) is not defined iff ua and ub conflict.

• merge(mo, ma, mb) = m′
o ⇒ (ua ◦ ub)(mo) = m′

o.

Back to our algorithm, here mupdt contains the update on morig and mtemp

contains the update transformed from norig. After we merge them using morig as a

reference model, we can get msync that contains updates from both sides.

When we have a synchronized model msync on M side, we can perform
−→
R to get

a synchronized model nsync on N side, and the nsync should contains updates from

both side.

Now we have two synchronized models where the updates are propagated. It

looks that we have performed enough steps to finish the algorithm. However, the

above steps is not always able to detect all conflicts, and may lead to violation of

preservation due to the heterogeneousness of the two models

To see how this can happen, let us consider the following example. Suppose M

contains two constants {a, b} and N contains two constants {x, y}. The consistency

relation between them is

(a, x)

(a, y)

(b, x)

,

7

Xiong, Song, Hu and Takeichi

a

b

a

b

x

y

x

1.
←−
R

2. merge 3.
−→
R

Fig. 2. An Example Violating Preservation

That is, a is related to x and y while x is also related to b. Suppose initially the

two models are morig = a and norig = x, and then morig is updated to b while norig

is updated to y.

The process of this computation is shown in Figure 2. After computation, the

algorithm produces b on the M side and x on the N side. However, if we check the

update on the N side, we will find that x is updated to y and this updated is not

preserved in the synchronized model. The property of preservation is violated.

The violation is caused by the asymmetry of M and N . Both x and y in N are

related to the same element a in M . When nupdt is transformed to the M side, the

update is not recognizable by the state-based three-way merger.

To capture such conflict, we add an additional preservation check at the end

of the synchronization. As shown in the 4th and the 5th steps in Figure1. We

first merge nupdt and nsync with norig as a reference, and then compare whether

the merged model ntemp is equal to nsync. If the preserve property is satisfied, the

two model should be equal, otherwise the algorithm will report an error message

indicating there are conflicts.

Theorem 4.1 If the bidirectional transformation (
−→
R,
←−
R) satisfies correctness and

hippocraticness, we can ensure that the synchronization algorithm satisfy stability,

consistency and preservation.

Proof. Stability If we have morig = mupdt and norig = nupdt, then we have

R(morig, nupdt). Because of hippocraticness, mtemp =
←−
R (morig, nupdt) = morig.

Because the least update from morig to mupdt and to mtemp are both id, merge will

produce the same model, that is msync = morig. Similarly, nsync = norig and the

preservation check always passes successfully.

Preservation On the M side, suppose um is the least update from morig

to mupdt, because merge(morig, mupdt, mtemp) = msync, we have um(msync) =

msync. Similarly, suppose un is the least update from norig to nupdt, because

merge(norig, nupdt, nsync) = ntemp = nsync, we have un(nsync) = nsync.

Consistency Because
−→
R (msync, nupdt) = nsync, we have R(msync, nsync). 2

8

Xiong, Song, Hu and Takeichi

morig

mupdt

mtemp

msync

morig

mupdt

msync

1.
←−
R

2. merge′ 3.
−→
R

Fig. 3. The Synchronization Algorithm for Conflict Resolving

5 Conflict Resolving

One important issue in synchronization is how to resolve conflicts in the two updated

models, automatically or with user intervention. A full discuss of conflict resolving

relates to conflict presentation and interaction, which is beyond the scope of the

paper. In this section we consider a simple automatic resolving strategy: overwriting

all conflicting updates on one model with the updates on the other model.

Let us first consider the case where the updates in M take priority. Because

bidirectional transformation describe the transformation symmetrically, we can just

swap M and N when we need N to take priority.

Because of the updates in N may be overwritten by the updates in M , we need

to loosen the preservation property to allow loss of updates on the N side. The

loose preservation property only requires to preserve updates on the M side, as the

following.

Property 6 (Loose Preservation for Conflict Resolving)

If um is the least update from m to m′ and sync(m, n, m′, n′) = (m′′, n′′), we

have um(m′′) = m′′

Furthermore, we need an extended merge function merge′ which deals with

conflicting updates and gives priority to the first model.

• merge′ : M ×M ×M →M is a total function.

• merge′(mo, ma, mb) = m′
o ⇒ (ua ◦ ub)(mo) = m′

o.

The algorithm for the updated model is shown in Figure 3. This algorithm is

similar to the original one, except that we use merge′ instead of merge and we

do not post-check preservation. We can similarly prove that the algorithm ensure

stability, consistency and the loose preservation if the bidirectional transformation

satisfies correctness and hippocraticness.

9

Xiong, Song, Hu and Takeichi

6 Related Work

Pierce and et al. [6] propose the Harmony framework, which also addresses the

issue of supporting synchronization from bidirectional transformations. Compare

to our work, Harmony emphasizes on totality, but requires users to design middle

model and two transformation which relates the middle model to the original two

models respectively. In this way Harmony can achieve totality, but it requires more

programming work to design the middle model and code the two transformations.

Antkiewicz and Czarnecki discuss various design decisions of synchronizers in

their work[1]. Their work classifies synchronizers into different types using differ-

ent design decisions. Use their classification, our synchronization algorithm can be

classified as “bidirectional, non-incremental, and many-to-many synchronizer us-

ing artifact translation, homogeneous artifact comparison and reconciliation with

choice”.

7 Conclusion

In this paper we propose an approach that wraps a bidirectional transformation

program into a synchronizer for simultaneous updates. Our approach is general, in

the sense that it allows any bidirectional transformation, and predictable, satisfying

the model synchronization properties: consistency, stability and preservation.

Our approach is built upon idempotent updates. However, in the real world

many updates cannot easily be presented as idempotent functions. For example,

“inserting the item a into a list at index 2” is not an idempotent function. In our

future work we plan to adopt more general definitions of updates (e.g., considering

updates as arrows in a graph [2]), and extend our synchronization framework to

more general cases.

References

[1] Antkiewicz, M. and K. Czarnecki, Design space of heterogeneous synchronization, in: Proc. 2nd GTTSE,
2007, pp. 3–46.

[2] Diskin, Z., Algebraic models for bidirectional model synchronization, in: Proc. 11th MoDELS, 2008, pp.
21–36.

[3] Khanna, S., K. Kunal and B. C. Pierce, A formal investigation of diff3, in: Arvind and Prasad, editors,
Foundations of Software Technology and Theoretical Computer Science (FSTTCS), 2007.

[4] Kindler, E. and R. Wagner, Triple graph grammars: Concepts, extensions, implementations, and
application scenarios, Technical Report tr-ri-07-284, University of Paderborn (2007).

[5] Object Management Group, MOF QVT final adopted specification,
http://www.omg.org/docs/ptc/05-11-01.pdf (2005).

[6] Pierce, B. C., A. Schmitt and M. B. Greenwald, Bringing Harmony to optimism: A synchronization
framework for heterogeneous tree-structured data, Technical Report MS-CIS-03-42, University of
Pennsylvania (2003).

[7] Stevens, P., Bidirectional model transformations in QVT: Semantic issues and open questions, in: Proc.
10th MoDELS, 2007, pp. 1–15.

[8] Xiong, Y., D. Liu, Z. Hu, H. Zhao, M. Takeichi and H. Mei, Towards automatic model synchronization
from model transformations, in: Proc. 22nd ASE, 2007, pp. 164–173.

10

http://www.omg.org/docs/ptc/05-11-01.pdf

	Introduction
	Properties of Model Synchronization
	Properties of Bidirectional Model Transformation
	Algorithm
	Conflict Resolving
	Related Work
	Conclusion
	References

