
Inner Oracles: Input-Specific Assertions on Internal States

Yingfei Xiong, Dan Hao, Lu Zhang, Tao Zhu, Muyao Zhu, Tian Lan
Key Laboratory of High Confidence Software Technologies (Peking University), MoE, China

School of EECS, Peking University, China
{xiongyf04,haod,zhanglu,zhutao10,zhumy12,lantian12}@sei.pku.edu.cn

ABSTRACT
Traditional test oracles are defined on the outputs of test
executions, and cannot assert internal states of executions.
Traditional assertions are common to all test execution, and
are usually more difficult to construct than on oracle for
one test input. In this paper we propose the concept of in-
ner oracles, which are assertions on internal states that are
specific to one test input. We first motivate the necessity of
inner oracles, and then show that it can be implemented eas-
ily using the available programming mechanisms. Next, we
report two initial empirical studies on inner oracles, show-
ing that inner oracles have a significant impact on both the
fault-detection capability of tests and the performance of
test suite reduction. Finally, we highlight the implications
of inner oracles on several research and practical problems.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

Keywords
Testing, Test oracles, Assertions

1. INTRODUCTION
The capability of a test suite to detect faults is decided by

two factors: 1) how well the test inputs trigger faults, and 2)
how well the oracles catch the triggered faults. Traditional
research efforts, such as test generation [10, 6] and test cov-
erage criteria [19, 4], focus on test inputs. Recently, Staats
et al. [14] show test oracles are as important as test inputs
in deciding the capability of a test suite to detect faults.

Traditionally, test oracles [1] are defined on the outputs
of test executions [15]. However, there are cases where the
faults are triggered but not propagated to the outputs, and
in these cases we cannot capture the faults using traditional
test oracles. For example, a fault may result in an erroneous
value in a temporary variable, but the later execution may
happen to produce the correct result with this wrong value.

Recently, Staats et al. [14] demonstrate that test oracles de-
fined on internal states of the software under test can further
improve the power of testing systems. However, the main
existing mechanism for checking the internal states is to use
the assert statement within production code, which is usu-
ally defined to check properties common to all inputs. Such
an assertion is not always easy to construct because we need
to consider all possible inputs.

In this paper, we propose a novel concept, inner oracle,
which is an assertion declared on the internal state and is
specific to one test input. We show that this concept can
be conveniently implemented using existing programming
mechanisms, is easier to construct than traditional asser-
tions, and is useful in many aspects of testing.

We also report two initial empirical studies on inner or-
acles. First, we performed the first quantitative study on
how much inner oracles can improve the fault-detection ca-
pability of existing tests, and analyzed the reasons why inner
oracles outperformed traditional oracles on output. These
results give a direct empirical evidence that supplements the
theory of testing [14]. Second, we also evaluated how inner
oracles help reduce the size of a test suite. The result indi-
cates potential usefulness of inner oracles in practice.

2. MOTIVATION
We motivate inner oracles with an example. The following

portion of code defines a method of determining whether the
number of positive elements in a list is larger than that of
negative elements. In particular, the method returns 1 if
the number of positive elements is larger, -1 if the number
of negative elements is larger, and 0 if the list contains equal
numbers of positive and negative elements. However, Line
6 is incorrect because it wrongly treats zeros as negatives.

1: public static int count(List<Integer> a) {
2: int positive = 0, negative = 0;
3: Iterator<Integer> i = a.iterator()
4: while (i.hasNext()) {
5: if (i.next() > 0) positive++;
6: else negative++; } //incorrect
7: if (positive > negative) return 1;
8: else if (positive == negative) return 0;
9: else return -1;
10:}

This error is obvious, but many tests may fail to reveal
this error if only the actual output is checked. The reason
is that an incorrect value of negative may not always re-
sult in an incorrect output. For example, if the input list
is {−2,−1, 0, 1, 2, 3, 4}, the preceding code would calculate
an incorrect value of negative before executing Line 7 but

still can correctly output 1. It is not convenient to check
the value of negative using an input-unspecific assertion,
because, at least before Java 81, another round of iteration
over the input list may be unavoidable to obtain the correct
number of negative elements in the list. On the other hand,
checking with inner oracles is relatively easy: given the in-
put {−2,−1, 0, 1, 2, 3, 4}, it is quite convenient to have the
assertion assert(negative==2) before executing Line 7.

3. APPROACH
Given that inner oracles can sometimes be more conve-

nient to define, in this paper we argue that inner oracles
should be taken into consideration in both real-world test-
ing and research in test generation. More concretely, given a
test input and a point of execution with the input, an inner
oracle asserts whether the actual internal state at that par-
ticular point of execution satisfies certain properties related
to the given test input.

We first demonstrate that an inner oracle can be easily
defined using the existing mechanisms. To declare an inner
oracle in our running example, we can introduce a guard
variable when we declare an assertion. In the running ex-
ample, instead of directly declaring assert(negative==2), we
can insert the statement as shown in Line 6a below:

6: else negative++; } //incorrect
6a: assert(!CountTest.testGuard1 || negative == 2);
7: if (positive > negative) return 1;

The variable testGuard1 is a Boolean variable declared in
the test class CountTest. Initially this variable is assigned
false, so that this assertion is disabled in all tests. To en-
able this test for a specific test input, we assign true to
testGuard1, as shown in the following code.

1: class CountTest {
2: public static boolean testGuard1 = false;
3:
4: @Test
5: public void test1() {
6: List<Integer> a = ...;

// construct list {-2, -1, 0, 1, 2, 3, 4}
7: testGuard1 = true;
8: count(a);
9: testGuard1 = false;
10: }
11:}

Variable testGuard1 is assigned true only within the con-
text of the specific test, and thus the guarded assertion is
only enabled for the specific test input, while asserting on
an internal state of the test execution.

If there is a large number of tests, this direct implementa-
tion may introduce a lot of guarded assertions into the pro-
duction code, breaking the understandability of the code and
causing extra runtime overhead. To overcome this problem,
we have built a specialized supporting mechanism for in-
ner oracles, borrowing the idea of aspect-oriented program-
ming [9]. In our supporting mechanism, inner oracles are de-
clared within test code, and are woven into production code
at compilation time. This supporting mechanism is imple-
mented as an open source tool. More information about this
mechanism and the tool can be found at the tool website2.

1In Java 8, it is possible to get the value of negative by
the high-level method filter, but this requires advanced
knowledge of the language.
2http://ayzk.github.io/InnerTest/

4. ENHANCING FAULT-DETECTION CA-
PABILITY

Based on the theory of testing [14], adding inner oracles
to existing tests should improve fault-detection capability.
In this section we try to empirically understand the upper
bound of this improvement in practice. In particular, we
focus on how much extra improvement can be obtained by
adding inner oracles on top of traditional oracles.

In our evaluation, we used four Java programs as subjects:
jodatime v1.5.23, timeandmoney v0.24, barbecue v1.5.05,
and xmlsec v1.2.16, which have been widely used in the
literature of software testing and analysis [3, 11, 7]. We ran
Javalanche [13] to generate mutants as injected faults. Since
the generated mutants are more than 45,000 , we randomly
selected 0.3% of mutants as our subjects. We also manually
reviewed the mutants to remove the equivalent mutants. As
a result, we got 139 mutants on the programs. Each test and
each mutant form a test-fault pair, and thus we got 97,582
test-fault pairs. Table 1 lists the statistics about the subject
programs and the generated faults.

Next, we classify the test-fault pairs by whether the test
triggers the fault or not. The untriggered pairs can be iden-
tified by examining two causes: (1) the test does not cover
the mutation; (2) the test covers the mutation, but the mu-
tation does not change the runtime state. An example of the
second case is mutating a*2 to a+2, but a is 2 when evaluat-
ing the expression. The “Untriggered” part in Table 2 shows
the number of untriggered pairs based on the two causes.

The more interesting category is the triggered pairs. We
further classify these test-fault pairs into four categories: (1)
the original test detects the fault; (2) if not, adding more
traditional oracles on the output can detect the fault; (3) if
not, adding inner oracles can detect the fault; (4) none of the
above. The first category is easy to identity. To identify the
other three categories, we try to manually add assert state-
ments to the test code and to the production code as inner
oracles. We constrain that within an assert statement we
can only invoke observer methods, which do not change the
state of the software, such as get methods. We avoid non-
observer methods because, in theory, we actually changed
the test input by calling them.

The classification result is shown as Detectedo, Detecteda,
Detectedi, Undetected in Table 2. From the result we can
see that, there are 30.72%-69.65% pairs where the fault is
triggered but cannot be detected by traditional oracles on
output, and these pairs can all be detected by inner ora-
cles. That is, inner oracles may significantly boost the fault-
detection capability of tests.

To further understand why traditional oracles cannot de-
tect the faults, we manually investigated the code and found
two main reasons. The first one is that the fault results an
error in an intermediate state, but this error is not propa-
gated to the final state. In total, 294 of the 1369 pairs are
caused by this reason. Our running example is also caused
by this reason. The second one is that the fault results an
error in the final state, but this error is not visible to the test
code due to the accessibility rules, e.g., a private member of
an object may contain an erroneous value, but this value is

3https://github.com/JodaOrg/joda-time
4http://timeandmoney.sourceforge.net
5https://github.com/cloudsoft/barbecue
6https://www.aleksey.com/xmlsec/

Table 1: Statistics of subjects
Subject KLOC #Method #Class #Test #Mutant Pairs

jodatime 25.8 3276 198 3417 26 88842
timeandmoney 1.1 262 30 104 39 4056

barbecue 8.0 283 55 51 50 2550
xmlsec 16.2 1213 181 97 22 2134

Table 2: Fault-Triggering Capability and Fault-Detection Capability of Tests
Subject #Total #Untriggered #Triggered

#Total #Uncovered #Equiv #Total #Detectedo #Detecteda #Detectedi #Undetected
jodatime 88842 86947 86811 136 1895 445 760 690 0

timeandmoney 4056 3519 3488 31 537 120 43 374 0
barbecue 2550 2398 2360 38 152 29 27 96 0
xmlsec 2134 1828 1767 61 306 207 5 94 0

not accessible by the test code. On the other hand, inner
oracles can access such members as they can be declared
within the target class. In total, 1075 out of 1369 pairs are
caused by the second reason.

5. REDUCING TEST SUITES
Since adding inner oracles enhances the fault-detection

capability of tests, it would be interesting to see whether
inner oracles help further reduce the size of test suites. By
performing Study I (in Section 4), we had two test suites for
each subject project, one augmented with traditional oracles
and the other one augmented with inner oracles. Then we
perform test suite reduction on the two suites to cover the
mutants we used in the subjects. Since the test suites with
traditional oracles are not able to kill all mutants, we only
consider the subset of mutants that can be killed by the test
suite with traditional oracles. In particular, for jodatime we
had 15 mutants, for timeandmoney we had 27 mutants, for
barbecue we had 7 mutants, and for xmlsecurity we had 20
mutants. The test suite reduction algorithm we used is the
greedy algorithm by Zhang et al. [17].

Table 3 presents the reduced test suites with and without
inner oracles. Row “#With traditional oracles” shows the
number of tests in the reduced test suite with added tra-
ditional oracles, and Row “#With inner oracles” shows the
number of tests in the reduced test suite with added inner
oracles. Since we used a small set of mutants due to the
limitation of manual investigation in previous study, the re-
duced test suites are very small. This result is consistent
with existing studies [17, 18] where the size of the test suite
shrinks dramatically after reduction.

From the table the test suites with inner oracles are fur-
ther reduced by 14.3%-50.0%. That is, when inner oracles
are used, test suites may be significantly further reduced.

6. DISCUSSION
Versus Test Inputs. In the running example, besides
adding an inner oracle, we can also add a new test with a
different test input to capture the fault. This observation
leads to the question whether inner oracles are necessary at
all. Here we list a few scenarios that inner oracles are more
useful than new tests. First, some type of bugs do not affect
the final state, such as the optimization bug discussed later
in this section. Adding more test inputs and traditional
oracles cannot help catch these bugs. Second, additional
test inputs lead to longer execution time of the test suite,
which is one of the main problems in testing large software

systems. Third, test inputs may not be easily constructible.
In a complicated case, a method may depend on a non-
trivial global state, which requires creating a set of objects,
and mock objects in case the state of the objects are not
easily manipulatable.

Versus Code Refactoring. Another point of view is
that, when it is difficult to test some part of software, it is a
smell of bad code and we should refactor the code to enhance
testability, rather than writing complex testing code or seek-
ing new test mechanisms. This view is often advocated in
text books [2] by practitioners. For example, we can extract
two methods from the running example, one counting the
number of positives and one counting the number of neg-
atives, and then we can test the two methods individually
without using inner oracles.

However, testability is just one quality attribute of the
code, and there are many other quality attributes that are
often contradict with testability. The above method ex-
tractions require to traverse the list twice rather than once,
which may lead to performance penalty unacceptable in crit-
ical code. A further optimization is that, when the number
of positives or the number of negatives is larger than half of
the list, we can directly return the result without looking at
the rest of the elements, and this optimization is impossible
to apply when the methods are extracted. In those cases,
inner oracles help maintain the desirable fault-detection ca-
pability without sacrificing performance.

Test Optimization. A common task in programming is
optimization. Since optimization does not change the out-
put of the program, it would be difficult for a test to check
whether the optimization is effective or not. On the other
hand, an inner oracle can easily assert on the internal state
to check the existence of an optimization. For example, the
following code shows a typical optimization, where shift is
used instead of multiplication when the parameter b is two.

1: int times(int a, int b) {
2: if (b == 2)
3: return a << 1;
4: else
5: return a * b;
6: }

It is difficult to test the existence of the optimization using
traditional oracles. To test the program using inner oracles,
we can easily add an assertion "false" right before Line 5
for an input where b = 2.

Debugging. During debugging, inner oracles usually pro-
vide more information for localizing a fault than traditional

Table 3: Reduced Test Suites With and Without Inner Oracles
Subject jodatime timeandmoney barbecue xmlsec

#With traditional oracles 10 9 4 7
#With inner oracles 8 5 2 6

oracles on the output: only the statements executed before
the inner oracle may contain the fault, rather than all state-
ments executed. Note the information for fault localization
is available for tools the same as for human developers, so
inner oracles also provide opportunities for improving auto-
mated debugging techniques.

Mutation Testing. Our methodology may also have
implications on mutation testing [5]. The long execution
time is one of the biggest weakness of mutation testing.
An existing study [8] has found out using weak mutation,
in which whether a test detects a mutant is decided by
whether the mutant results in an incorrect internal state,
can significantly shorten the execution time by sacrificing
precision. With inner oracles, the sacrificed precision may
be much smaller, and research efforts on mutation can put
more weight on weak mutation testing.

Regression Test Generation. A lot of research efforts
have been devoted into the automatic generation of regres-
sion tests, and in particular, the generation of test oracles
in regression testing [16]. In the generation of test oracles,
a major challenge is to know what part of the final state
is affected by the current test execution and how to access
the part of the state using the public members. With inner
oracles considered, we can directly generate oracles at the
places where internal states are changed, without the need to
analyze its effects on the final state. Furthermore, we do not
need to construct the access path using the public members,
because we can directly obtain the path from the statement
changing the internal state. As a result, regression test gen-
eration can be greatly simplified, and the generated tests are
probably stronger based on our empirical results.

Maintainability. Since inner oracles are declared within
the implementation of components but not their interfaces,
inner oracles are likely to be more fragile than traditional
oracles on output during the evolution of source code. As a
result, further investigation is needed to clarify the maintain-
ability of inner oracles. However, this problem is probably
not serious in practice. First, traditional assertions share the
same fragility of inner oracles, and no maintenance problem
is reported for them. Second, Pinto et al. [12] demonstrated
changing test oracles accounts for only a small portion of
test evolution. Although inner oracles is more fragile than
traditional oracles on the output, the increased maintenance
cost on oracles may still be small compared to the overall
maintenance cost.

7. ACKNOWLEDGMENTS
This work is supported in part by the High-Tech Re-

search and Development Program of China under Grant
No.2015AA01A203, the National Natural Science Founda-
tion of China under Grant Nos.61421091, 61332010, and
61272157.

8. REFERENCES

[1] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and
S. Yoo. The oracle problem in software testing: A
survey. IEEE TSE, 41(5):507–525, 2014.

[2] K. Beck. Test-driven development: by example.
Addison-Wesley Professional, 2003.

[3] H. Do, S. Elbaum, and G. Rothermel. Supporting
controlled experimentation with testing techniques:
An infrastructure and its potential impact. ESE,
10(4):405–435, 2005.

[4] C. Fang, Z. Chen, and B. Xu. Comparing logic
coverage criteria on test case prioritization. SCIENCE
CHINA Information Sciences, 55(12):2826–2840, 2012.

[5] R. G. Hamlet. Testing programs with the aid of a
compiler. IEEE TSE, 3(4):279–290, 1977.

[6] D. Hao, L. Zhang, M. Liu, H. Li, and J. Sun.
Test-data generation guided by static defect detection.
JCST, 24(2):284–293, 2009.

[7] D. Hao, L. Zhang, L. Zhang, G. Rothermel, and
H. Mei. A unified test-case prioritization approach.
ACM TOSEM, 24(2):1–31, 2014.

[8] W. E. Howden. Weak mutation testing and
completeness of test sets. IEEE TSE, 8(4):371–379,
1982.

[9] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. Springer, 1997.

[10] P. McMinn. Search-based software test data
generation: A survey. STVR, 14(2):105–156, 2004.

[11] H. Mei, D. Hao, L. Zhang, L. Zhang, J. Zhou, and
G. Rothermel. A static approach to prioritizing JUnit
test cases. IEEE TSE, 38(6):1258–1275, 2012.

[12] L. Pinto, S. Sinha, and A. Orso. Understanding myths
and realities of test-suite evolution. In Proc. FSE,
pages 1–11, 2012.

[13] D. Schuler and A. Zeller. Javalanche: Efficient
mutation testing for Java. In Proc. FSE, pages
297–298, 2009.

[14] M. Staats, M. W. Whalen, and M. P. Heimdahl.
Programs, tests, and oracles: The foundations of
testing revisited. In Proc. ICSE, pages 391–400, 2011.

[15] J. M. Voas. PIE: A dynamic failure-based technique.
IEEE TSE, 18(8):717–727, 1992.

[16] T. Xie. Augmenting automatically generated unit-test
suites with regression oracle checking. In Proc.
ECOOP, pages 380–403. Springer, 2006.

[17] L. Zhang, D. Marinov, L. Zhang, and S. Khurshid. An
empirical study of junit test-suite reduction. In Proc.
ISSRE, pages 170–179, 2011.

[18] H. Zhong, L. Zhang, and H. Mei. An experimental
study of four typical test suite reduction techniques.
IST, 50(6):534–546, 2008.

[19] H. Zhu. A formal analysis of the subsume relation
between software test adequacy criteria. IEEE TSE,
22(4):248–255, 1996.

