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Abstract. Proving equivalence between functional programs is a fun-
damental problem in program verification, which often amounts to rea-
soning about algebraic data types (ADTs) and compositions of structural
recursions. Modern theorem provers provide structural induction for such
reasoning, but a structural induction on the original theorem is often in-
sufficient for many equivalence theorems. In such cases, one has to invent
a set of lemmas, prove these lemmas by additional induction, and use
these lemmas to prove the original theorem. There is, however, a lack of
systematic understanding of what lemmas are needed for inductive proofs
and how these lemmas can be synthesized automatically. This paper
presents directed lemma synthesis, an effective approach to automating
equivalence proofs by discovering critical lemmas using program synthe-
sis techniques. We first identify two induction-friendly forms of proposi-
tions that give formal guarantees to the progress of the proof. We then
propose two tactics that synthesize and apply lemmas, thereby trans-
forming the proof goal into induction-friendly forms. Both tactics reduce
lemma synthesis to a set of independent and typically small program
synthesis problems that can be efficiently solved. Experimental results
demonstrate the effectiveness of our approach: Compared to state-of-the-
art equivalence checkers employing heuristic-based lemma enumeration,
directed lemma synthesis saves 95.47% runtime on average and solves 38
more tasks over an extended version of the standard benchmark set.

Keywords: Program equivalence checking · Functional programs ·
Lemma synthesis

1 Introduction

Automatically proving the equivalence between functional programs is a funda-
mental problem in program verification. On the one hand, it is the basic way
to certify the correctness of optimizing functional programs. On the other hand,
since modern theorem provers such as Isabelle [27], Coq [1], and Lean [22] are
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based on functional programming languages, many other verification problems
reduce to reasoning about equivalence between functional programs.

The core of functional programming languages is built upon algebraic data
types (ADTs). An ADT describes composite data structures by combining sim-
pler types; it can be recursive when referring to itself in its own definition. ADTs
are often processed by structural recursions, where recursive calls are invoked
over the recursive substructures of the input value. As a result, the crux of veri-
fying functional program equivalence is to reason about the equivalence between
composed structural recursions, as demonstrated by the following example.

Inductive List = nil | cons Int List;

Let rev (l:List) =
match l with
| nil → nil
| cons h t → snoc h (rev t)
end;

Let sort (l:List) =
match l with
| nil → nil
| cons h t → ins h (sort t)
end;

Let sum (l:List) =
match y with
| nil → 0
| cons h t → h + (sum t)
end;

Let snoc (x:Int) (l:List) =
match l with
| nil → cons x nil
| cons h t → cons h (snoc x t)
end;

Let ins (x:Int) (l:List) =
match l with
| nil → cons x nil
| cons h t →

i f x ≤ h then cons x l
else cons h (ins x t)

end;

Fig. 1. An algebraic data type and structurally recursive functions.

Example 1. Fig. 1 depicts a common ADT List with two constructors, nil and
cons, and standard structurally recursive functions, rev that reverses a list, sort
that applies insertion sort, and sum that calculates the sum of a list. Functions
snoc and ins are for implementing these functions. We are interested in proving
that summing a list after reverse is the equivalent of summing a list after sorting:

∀ xs : List. sum (rev xs) = sum (sort xs) . (†)

To prove the equivalence, it is natural to apply structural induction, which has
been integrated into modern theorem provers. A structural induction certifies
that proposition P (x) holds for every instance x of some ADT by showing that
P (x) holds for each possible constructor of x, assuming the induction hypothesis
that P (x′) holds for the substructure x′ of x. For example, a structural induction
for (†) requires to prove two subgoals, each corresponds to a constructor of
List. The first subgoal is to show (†) holds when xs = nil. The second subgoal
induces the following inductive hypothesis.

sum (rev t) = sum (sort t) . (IH)

Proposition (†) holds for the cons case if: (†) is true, assuming xs = cons h t
and (IH). ◁
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Challenge: Lemma Finding. Nonetheless, many theorems cannot be proved
by only induction over the original theorem [12]. Example 1 is such a case: Its
proof requires induction, but induction over (†) is insufficient since we cannot
apply the inductive hypothesis (IH); see the full version [34] for a formal proof.
To apply (IH), we have to transform (†) until there is a subterm matching either
the left-hand-side (LHS) or right-hand-side (RHS) of (IH), such that we can
apply (IH) to rewrite the transformed formula. However, such a subterm can
never be derived through a deductive transformation (Details in Sect. 2)

In such cases, it is necessary to invent a set of lemmas, prove these lemmas
by additional induction, and use these lemmas to prove the original proposition.
Accordingly, the proof process boils down to (i) lemma finding, and (ii) deduc-
tive reasoning with the aid of lemmas. Whereas decision procedures for deductive
reasoning have been extensively studied [3,21,25], there is still a lack of system-
atic understanding of what lemmas are needed for inductive proofs and how these
lemmas can be synthesized automatically.

Due to the lack of theoretical understanding, many existing automatic proof
approaches resort to heuristic-based lemma enumeration [4, 7, 11, 20, 26, 29–32].
These approaches typically work as follows: (i) use heuristics to rank all possible
lemma candidates in a syntactic space (the heuristics are commonly based on
certain machine-learning models or the textual similarity to the original propo-
sition), (ii) enumerate the candidates by rank and (iii) try to prove each lemma
candidate and certify the original proposition using the lemma. Since there is
no guarantee that the lemma candidates are helpful in advancing the proof,
such solvers may waste time trying useless candidates, thus leading to inef-
ficiency. For Example 1, the enumeration-based solver HipSpec [4] produces
lemma ∀xs. rev (rev xs) = xs, which provides little help to the proof.

Approach. We present directed lemma synthesis to avoid enumerating useless
lemmas. From Example 1, we can see that the key to the inductive proof lies in
the effective application of the inductive hypothesis. Based on this observation,
we identify two syntactic forms of propositions that guarantee the effective ap-
plication of the inductive hypothesis, termed induction-friendly forms. Next, we
propose two tactics that synthesize and apply lemmas. The lemmas synthesized
by our tactics take the form of an equation, with one of its sides matching a term
in the original proposition, and can be used to transform the original proposition
by rewriting the matched term into the other side of the lemma. Consequently,
the current proof goal splits into two subgoals – one for proving the transformed
proposition and the other for proving the synthesized lemma itself. Our tactics
have the following properties:
• Progress: The new proof goals after applying our tactics eventually fall into one

of the induction-friendly forms. That is, compared with existing directionless
lemma enumeration, our synthesis procedure is directed: it eventually produces
subgoals that admit effective applications of the inductive hypothesis.

• Efficiency: The lemma synthesis problem in our tactics can be reduced to a
set of independent and typically small program synthesis problems, thereby
allowing an off-the-shelf program synthesizer to efficiently solve the problems.
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Based on the two tactics, we propose AutoProof, an automated approach
to proving the equivalence between functional programs by combining any ex-
isting decision procedure with our two tactics for directed lemma synthesis.

For Example 1, AutoProof synthesizes the lemma

∀ xs : List. sum (rev xs) = sum xs ,

where the LHS matches the LHS of the original proposition (†). Therefore, we
can use this lemma to rewrite (†) into

∀ xs : List. sum xs = sum (sort xs) .

As will be shown later, both equations above fall into the first induction-friendly
form, thus ensuring the application of the inductive hypothesis.
Evaluation. We have implemented AutoProof on top of Cvc4Ind [30] – the
available state-of-the-art equivalence checker with heuristic-based lemma enu-
meration. We conduct experiments on the program equivalence subset of an
extended version of the standard benchmark in automated inductive reasoning.
The results show that, compared with the original Cvc4Ind, our directed lemma
synthesis saves 95.47% runtime on average and help solve 38 more tasks.
Contributions. The main contributions of this paper include the follows.
• The idea of directed lemma synthesis, i.e., synthesizing lemmas to transform

the proof goal into desired forms.
• Two induction-friendly forms that guarantee the effective application of the

inductive hypothesis, as well as two tactics that synthesize and apply lemmas
to transform the proof goal into these forms. The lemma synthesis in our
tactics can be reduced to a set of independent and typically small synthesis
problems, ensuring the efficiency of the lemma synthesis.

• The implementation and evaluation of our approach, demonstrating the effec-
tiveness of our approach in synthesizing lemmas to improve the state-of-the-art
decision procedures.
Due to space limitations, we relegate the details to the full version [34].

2 Motivation and Approach Overview

In this section, we illustrate AutoProof over examples. For simplicity, we con-
sider only structurally recursive functions with one parameter in this section.
A Warm-up Example. To begin with, let us first consider an equation where
the direct structural induction yields an effective application of the inductive
hypothesis.

∀xs : List. sum (rev xs) = sum xs (†W )

To prove this equation, we conduct a structural induction on xs, the ADT ar-
gument that the structural recursion traverses, resulting in two cases xs = nil
and xs = cons h t. The first case is trivial, and in the second case, we have an
inductive hypothesis over the tail list t.

sum (rev t) = sum t (IHW )
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We first use the equation xs = cons h t to rewrite the original proposition (†W ),
and obtain the following equation.

sum (rev (cons h t)) = sum (cons h t)

Here sum and rev are both structural recursions, which use pattern matching
to choose different branches based on the constructor of xs. With xs replaced
as cons h t, we can now proceed with the pattern matching and obtain the
following equation.

sum (snoc h (rev t)) = h + (sum t) (1)

Now the equation contains a subterm sum t that matches the RHS of the in-
ductive hypothesis (IHW ), which allows us to rewrite this equation with (IHW ),
resulting in the following equation.

sum (snoc h (rev t)) = h + (sum (rev t)) (2)

There is a common “rev t” term on both sides of the equation above, and we
can apply the standard generalization technique to replace it with a new fresh
variable r, obtaining the following equation.

sum (snoc h r) = h + (sum r) (3)

This equation is simpler than the original one as snoc does not involve calls to
other structurally recursive functions. By further applying induction on r, we
can prove this equation.

We can see that the above proof contains two key steps: (i) using the inductive
hypothesis to rewrite the equation, and (ii) using generalization to eliminate a
common non-leaf subprogram. We call such two steps an effective application
of the inductive hypothesis. Note that an effective application is guaranteed
because the RHS of the original equation is a single structural recursion call,
sum xs. Since a structural recursion applies itself to the substructure of the input,
sum t is guaranteed to appear after reduction. Then, we can use the inductive
hypothesis to rewrite, and the rewritten RHS contains rev t. Similarly, the
inner-most function call, rev xs, is guaranteed to reduce to rev t. Therefore, a
generalization is guaranteed.
Induction-friendly forms. In general, we identify induction-friendly forms,
where for every equation in this form, there exists a variable such that performing
induction on it yields an effective application of the inductive hypothesis for the
cases involving a recursive substructure. From the discussion above, we have the
simplified version of the first induction-friendly form.
(F0) (Simplified (F1)). One side of the equation is a single call to a structurally

recursive function.
A Harder Example. Now let us consider the example equation (†) we have
seen in Sect. 1. Recall this equation as follows.

∀ xs : List. sum (rev xs) = sum (sort xs)

Since neither side of (†) is a single call to a structurally recursive function, this
equation does not fall into (F0), and indeed, the induction over it will get stuck.
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To see this point, let us still consider the x = cons h t case, where the inductive
hypothesis (IH) is as follows, which we have seen in Sect. 1.

sum (rev t) = sum (sort t)

By rewriting and reducing the original proposition with x = cons h t, we get
the following equation.

sum (snoc h (rev t)) = sum (ins h (sort t))

Unfortunately, neither side of (IH) appears, disabling the application of the
inductive hypothesis. In fact, we can formally prove that this proposition cannot
be proved by only induction over the original proposition [34].

If we can transform the original proposition (†) into (F0), we can ensure to
effectively apply the inductive hypothesis. One way to perform this transforma-
tion is to find an equation where one side of the equation is the same as one side
of the original proposition, and the other side is a single call to a structurally
recursive function. This leads to the lemma (L1), which we have seen in the
introduction.

∀ xs : List. sum (rev xs) = sum xs (L1)

Rewriting (†) with (L1), we obtain (L2) we have seen.

∀ xs : List. sum xs = sum (sort xs) (L2)

Now the original proof goal (†) splits into (L1) and (L2), both conforming to
(F0). Now we have the guarantee that the inductive hypothesis can be applied
in the inductive proofs of both (L1) and (L2).
Automation. Most steps of the above transformation process can be easily
automated, and the only difficult step is to find a suitable lemma. Based on the
form of the lemma, the key is finding the structurally recursive function sum to be
used on the RHS, equivalent to a known term sum ◦ rev on the LHS. In general,
synthesizing a function from scratch may be difficult. However, synthesizing a
structural recursion is significantly easier for the following two reasons. First, the
template fixes a large fraction of codes in a structural recursion. In this example,
the structural recursion over xs with the following template.

Let f xs =
match xs with
| nil → base

| cons h t → Let r = f t in comb h r
end;

where the only unknown parts are base and comb. Second, we can separate the
expression for each constructor as an independent synthesis task. In this example,
we have the following two independent synthesis tasks for the constructors nil
and cons, respectively.

sum (rev nil) = base

∀ h t. sum (rev (cons h t)) = comb h (sum (rev t))
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Existing program synthesizers (e.g., AutoLifter [13] in our implementation)
can easily solve both tasks. We get base = 0 and comb h r = h + r. Thus, f
coincides with sum. An additional benefit is that a typical synthesizer requires a
verifier to verify the synthesis result. Here, we can omit the verifier and rely on
tests to validate the result. This does not affect the soundness of our approach
since the synthesized lemma is proved recursively.
Tactic. Summarizing the above process, we obtain the first tactic. Given a proof
goal that does not conform to (F0), this tactic splits it into two proof goals, both
conforming to (F0). This tactic has two variants, which rewrite the LHS and the
RHS, respectively. We give only the RHS version here. In more detail, given an
equation ∀x̄.p1(x̄) = p2(x̄) that does not satisfy (F0), our first tactic proceeds
as follows.
Step 1. Derive a lemma template in the form of ∀x̄, p2(x̄) = f(x̄), where f is a

structurally recursive function to be synthesized.
Step 2. Generate a set of synthesis problems and solve them to obtain f .
Step 3. Generate two proof goals, ∀x̄.p1(x̄) = f(x̄) and ∀x̄.f(x̄) = p2(x̄).
Overall Process. Our approach AutoProof combines any deductive solver
with the two tactics to prove equivalence between functional programs. Given an
equation, our approach first invokes the deductive solver to prove the equation.
If the deductive solver fails to prove, we check if the equation is in an induction-
friendly form and apply induction to generate new proof goals. Otherwise, we
check if any tactic can be applied, and apply the tactic to generate new proof
goals. Finally, we recursively invoke our approach to the new proof goals. The
workflow of solving our harder example (†) is illustrated in Fig. 2.

Fig. 2. Workflow of AutoProof

Towards the Full Approach. The tactic we present here attempts to trans-
form a complex term into a single structural recursion, but it may not be possible
in general. Thus, the full tactic transforms only a composition of two structural
recursions into a single one each time, to significantly increase the chance of
synthesis success.

Through out the section we consider only structurally recursive functions
taking only one parameter, but there may be multiple ADT variables in general
(e.g., proving the commutativity of natural number multiplications). Our second
tactic deals with an issue caused by inconsistent recursions, that is, different
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recursions that traverse different ADT variables. Examples and details on this
tactic can be found in Sect. 4.5.

3 Preliminary

This section presents the background of program equivalence checking. We first
articulate the range of equivalence checking tasks. Throughout this paper, we
use p(v1, . . . , vk) to denote a functional program p whose free variables range
from {v1, . . . , vk}.
Types. The family of types in AutoProof consists of two disjoint parts: (1)
the algebraic data types, and (ADTs) [28], and (2) the built-in types such as
Int or Bool. For ease of presentation, we assume that there is only one built-in
type Int for integers, and only one ADT for lists with integer elements. List
has two constructors, nil: List for the empty list, and cons: Int → List →
List that appends an integer at the head of a list. AutoProof can be easily
extended to handle all ADTs and more built-in types.
Syntax. As illustrated in Fig. 3, the specification for an equivalence checking
task is generated by SPEC, where each task consists of two parts.

First, a specification defines a sequence of canonical structural recursions
(CSRs), each generated by CSRDef. A CSR f is a function whose last argu-
ment is of an ADT. It applies pattern matching to the last argument vk, which
we call the recursive argument, and considers all top-level constructors of vk. If
vk = nil, i.e., an empty list, it invokes base(v1, . . . , vk−1) generated by PROG.
Otherwise, vk = cons h t. It recursively invokes itself over t with all other argu-
ments unchanged, stores the result of the recursive call in r, and then combines
the result via the program comb(v1 . . . vk−1, h, r) generated by PROG. The non-
terminal PROG generates either a variable var, a numerical constant constant,
or an application by (1) a built-in operator op for a built-in type (e.g., +, −, ×
for Int), (2) a constructor ctr of an ADT, and (3) a CSR f , followed with k
programs, where k is the number of arguments required by this application.

Having defined all CSRs, a specification gives the equation ∀x̄.p1(x̄) = p2(x̄),
where p1 and p2 are generated by PROG.
Semantics. We adapt standard evaluation rules [1] to the syntax (Fig. 3). We
defer these details to the full version [34]. We use term reduction to refer to a
single-step evaluation.
Abstraction. An abstraction is a syntactic transformation from a program p
to another program p′ performed in steps. In each step, given a program p, it
introduces a fresh variable and replaces a subprogram of p with the fresh variable.
For example, we can abstract the program p of sum (snoc (h + h) (rev t))
to p′ of sum (snoc a b), which replaces (h + h) to a, and (rev t) to b.

Note that if p′ is an abstraction of p, any transformation on p′ yields another
transformation on p by simply replacing each introduced fresh variable back with
the corresponding subprogram. For example, the transformation from p′ to a +
(sum b) yields the transformation from p to (h + h) + sum (rev t).
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SPEC ::= CSRDef∗ ∀x̄.p1 = p2
where p1, p2 ∈ PROG

CSRDef ::= Let f v1 v2 . . . vk =
match vk with
| nil → base
| cons h t → Let r = f v1 . . . vk−1 t in comb
end;

where base, comb ∈ PROG
PROG ::= f PROG∗ | ctr PROG∗ | op PROG∗ | var | const

where f is a CSR, ctr is a constructor of ADT,
const is a constant with the built-in type,
op is a primitive operator, and var is a free variable.

Fig. 3. Syntax of the surface language of AutoProof.

1 class lemma_tactic :
2 # to be instantiated
3 def precond (eq ): pass
4 def extract (eq ): pass
5
6 def t_apply (eq ):
7 p′

s ,v = extract (eq)
8 lem = syn_lem (p′

s ,v)
9 eq′ = apply_lem (eq , lem)

10 return eq′ , lem

11 # tactics : set of built -in
12 tactics
13 def Prove (pr ,eq ):
14 if try_deductive (pr ,eq) succeeds :
15 return
16 else :
17 if induction - friendly (eq) then :
18 subgoals = split (pr ,eq)
19 for sg in subgoals : Prove (sg)
20 return
21 for t in tactics :
22 if t. precond (eq) then :
23 eq′ ,lem = t. t_apply (eq)
24 Prove (pr ,lem)
25 Prove (pr. append (lem),eq′ )
26 return

Fig. 4. Pseudocode of AutoProof

Expressivity. Compared with widely-considered structural recursions [1], CSR
has two additional restrictions. First, it applies pattern-matching to only one
argument. Second, it keeps other parameters unchanged in recursive calls. How-
ever, we can transform any structural recursion into a composition of CSRs by
refining defunctionalization [8]. Thus, restricting SRs to CSRs does not affect
the expressivity of functional programs, see the full version [34] for details.

4 AutoProof in Detail

4.1 The Overall Approach

The pseudo-code of AutoProof is shown in Fig. 4. The main procedure is
Prove (Lines 11–24). The input of this procedure is a pair (pr, eq), termed as
a goal, where pr is short for premises, which is a set of equations including all
lemmas and inductive hypotheses, and eq is an equation denoting the current
proposition to be proved. The target of a goal is to prove pr ⊢ eq.
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Prove wraps an underlying deductive solver responsible for performing stan-
dard deductive reasoning, such as reduction or applying a premise. Prove first
invokes the deductive solver to prove the input goal (Line 12). If the deductive
solver succeeds, the proof procedure finishes (Lines 13–14). AutoProof is com-
patible with any deductive solver. We choose the deductive reasoning module of
the state-of-the-art solver Cvc4Ind [30] in our implementation.

Otherwise, the goal is too complex for the deductive solver to handle, which
often requires finding a lemma. In this case, AutoProof first invokes induction
-friendly(e) to check if the input equation eq satisfies one of the two identi-
fied forms (F1) and (F2) (defined in Sect. 4.2). If so, then by the properties of
induction-friendly forms, the original goal can be split into a set of subgoals (Line
18) by induction with effective applications of the inductive hypotheses.

If not, AutoProof applies a built-in set of tactics to transform an input
equation into an induction-friendly form gradually. We will discuss tactics in de-
tail in Sect. 4.3. A tactic generally has a precondition, i.e., precond(·) indicating
the set of applicable equations. If the tactic is applicable (Line 21), AutoProof
invokes another procedure t_apply that synthesizes a lemma lem and applies
this lemma to transform the input equation eq into another equation eq′. (Line
22). Then, Prove is recursively called to prove the lemma lem and the equation
eq′ with the aid of lem (Lines 24–25).

In this algorithm, induction is applied only when the proof goal is in the
induction-friendly form, hence we need a progress property that, starting from
any goal, if all lemmas are successfully synthesized, the initial goal can be even-
tually transformed into an induction-friendly form. This property is formally
proved in Theorem 3.

4.2 Induction-friendly Forms in AutoProof

AutoProof identifies two induction-friendly forms (defined at Sect. 2). Both
forms guarantee the effective application of the inductive hypothesis.
(F1) The first induction-friendly form is f v1 . . . vk = p(v1, . . . , vk), where

(F1.1) One side of the equation is in the form f v1 . . . vk, where f is a CSR and
v1 . . . vk are different. From the definition of CSR, f applies pattern-
matching on vk.

(F1.2) The other side of the equation is a program p(v1 . . . vk) satisfies the
condition as follows. If vk appears in p, then there exists an occurrence
of vk, such that (1) vk appears as the recursive argument of the CSR
it is passed to, and (2) all other arguments in this CSR invocation do
not contain vk.

Let app x y =
match y with
| nil → nil
| cons h t →

cons h (app x t)
end;

Let sapp x y z =
match z with
| nil → (sum x) + (sum y)
| cons h t → h + (sapp x y z)
end;

Fig. 5. More CSRs for This Section
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Intuitively, (F1.1) guarantees the applicability of the inductive hypothesis,
and (F1.2) guarantees that there is a common term for generalization. To be
more concrete, consider proving ∀x, y, z. sapp x y z = sum (app (app y z)
x), where app and sapp are defined in Fig. 5, app is the list concatenation
function, and sapp calucates the sum of three concatenated lists. Note that this
equation fulfills (F1). Induction over z and consider the cons case where z =
cons h t, the LHS can be reduced to:

h + (sapp x y t) = sum (app (cons h (app y t)) x)

Due to (F1.1), the LHS contains a single call, and due to the definition of the CSR,
the recursive call must take t as the recursive argument and keep the other argument
unchanged. Therefore, the LHS must contain sapp x y t as a subprogram, making the
induction hypothesis applicable. Applying the induction hypothesis, we get

h + (sum (app (app y t) x)) = (app (cons h (app y t)) x)

Due to (F1.2), either z do not appear in RHS, leading to exactly the same RHS as
the inductive hypothesis, or we can find an occurrence of z in the RHS (app y z in
this example), such that z is the recursive argument and all other arguments do not
contain z. In this case, the reduction produces the recursive call app y t, a common
subprogram on both sides. In both cases, we can generalize this subprogram to a fresh
variable, yielding an effective application.

The second form is dedicated to our tactics. We propose this form to capture the
lemmas proposed by our second tactic (Sect. 4.5).
(F2) The second form is f v1 . . . vk = f ′ v′

1 . . . v′
k, where vi ̸= vj ∧ v′

i ̸= v′
j for all

1 ≤ i < j ≤ k, i.e., each side is a single CSR call whose arguments are distinct
variables.

When the equation fulfills (F2), we can guarantee an effective application of the induc-
tion hypothesis by a nested induction over vk and v′

k. For example, consider proving
∀x, y, z. sapp x y z = sapp x z y. We first perform induction over z and consider the
cons case where z = cons h1 t1, the goal reduces to the following equation with the
hypothesis sapp x y t1 = sapp x t1 y.

h1 + sapp x y t1 = sapp x (cons h1 t1) y

Applying the hypothesis on LHS, we obtain the following subgoal:

h1 + sapp x t1 y = sapp x (cons h1 t1) y

Note that this subgoal falls into (F1), where the RHS is a single call and y is only used
as a recursive argument, and thus an effective application of inductive hypothesis is
guaranteed when we perform induction over y. We can see that this conformance to
(F1) is guaranteed because the single call on the LHS guarantees the application of the
inductive hypothesis, which will make the recursive arguments on both sides the same.

The following theorem establishes that both (F1) and (F2) are induction-friendly.

Theorem 1. Both (F1) and (F2) are induction-friendly.
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4.3 General Routine of Tactics
In this part, we demonstrate the general routine of how tactics are applied to transform
the input goal, i.e., the t.t_apply(·) function in Line 6 of Fig. 4. Let us start with the
notation of abstraction.
Tactics. Informally, our tactics focus on lemmas that transform a fragment of the input
equation into a single CSR invocation. Thus, it requires a subroutine extract(·), which
needs to be instantiated per tactic, to extract the specification of a lemma synthesis
problem from the equation to be proved. The output of extract(·) is a tuple (p′

s, v),
where p′

s is an abstraction of the subprogram to be transformed, and v is a free variable
in p′

s (Line 7 in Fig. 4). The output (p′
s, v) indicates the following lemma synthesis

problem.
∀ṽ.∀v.f∗ ṽ v = p′

s(ṽ, v) (eq1)
where ṽ is the set of all free variables other than v.

The approach to finding f∗ has been fully presented in Sect. 2 and thus is omitted
here. As long as the program synthesis succeeds in finding f∗, we propose the lemma
(eq1) above. Since p′

s is an abstraction of some subprogram in the input equation, we
can easily apply the lemma (eq1) to transform the input equation and obtain a new
equation eq2 to be proved (Lines 8–9 in Fig. 4).

4.4 Tactic 1: Removing Compositions
Our first tactic is used to guarantee (F1.1). Thus, the precondition t.precond(eq)
returns true if eq does not satisfy (F1.1). Below, we demonstrate the extract function
in detail.

The extract function picks a non-leaf subprogram c p1 p2 . . . pk of some side of the
input equation eq, where c is a primitive operator, a constructor, or a CSR, p1 . . . pk

are the arguments of c, and at least one of pi is not a variable. Then, we abstract all
arguments passed to each pi with a fresh variable, obtaining the abstracted subprogram
p′

s. We define the cost of this extraction as the number of fresh variables introduced.
The extraction returns the extraction with the minimum cost. If there are several
choices with the same minimum cost, we pick an arbitrary one.

For example, consider proving the equation app (rev a) (rev (rev b)) = rev
(rev (app (rev a) b)), where app is the list concatenation function presented in
Fig. 5. Then, we may choose the subprogram rev (rev (app (rev a) b)) and ab-
stract the argument app (rev a) b of the inner rev with a fresh variable x, obtaining
p′

s = rev (rev x). Since this extraction only introduces one variable, the cost is one,
which is the minimum cost.

Having fixed p′
s, we then select a variable v in p′

s to be the recursive argument of
the synthesized CSR f∗. We choose the variable whose corresponding lemma fulfills
the maximum number of forms in (F1.1), (F1.2), and (F2). If there is a tie, we choose
an arbitrary variable that reaches the maximum. Note that the lemma generated by
this tactic satisfies at least (F1.1), which guarantees the applicability of the inductive
hypothesis.

4.5 Tactic 2: Switching Recursive Arguments
Our second tactic is used to guarantee (F1.2), and synthesizes a lemma such as f x y
= f′ y x to switch the recursive argument of a function (recall that the recursive argu-
ment is always the last one). This tactic is only invoked when the first tactic (Sect. 4.4)
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cannot apply. Thus, the precondition precond(eq) returns true if eq satisfies (F1.1) but
not (F1.2). Without loss of generality, we assume the LHS is a single CSR invocation
with the recursive argument x.

The extraction algorithm picks the occurrence of x with the maximum depth in the
AST, where x is passed to a CSR f . Then, each pi is either the variable x or a program
that does not contain x (otherwise, we find an occurrence of x with a larger depth). We
introduce fresh variables v1 . . . vk to abstract p1 . . . pk. For some 1 ≤ i < k such that
pi = x (such i always exists since the equation violates (F1.2)), the extract outputs
p′

s = f v1 . . . vk and x = vi. Since all arguments of f are abstracted, the lemma
proposed by this tactic must satisfy (F2). As a result, the lemma is induction-friendly.

For example, consider proving ∀x, y, z. plus3 y z x = plus (plus x y) z. Note
that this equation satisfies (F1.1) but not (F1.2). We choose the subprogram plus x
y and abstract it into p′

s = plus a b. Note that x appears as the first argument, thus
the algorithm outputs (p′

s, a), which requires to synthesize a lemma ∀a, b. plus a b
= plus’ b a. As long as the lemma is synthesized, we can replace plus x y to plus’
y x, making the equation satisfying (F1.2).

4.6 Properties

First, we show the soundness of AutoProof, which is straightforward.

Theorem 2 (Soundness). If AutoProof proves an input goal, then the goal is true.

Proof. The proof of the input equation searched by AutoProof is a sequence of
induction, reduction, and application of lemmas. Thus, the soundness of AutoProof
follows from the soundness of these standard tactics.

Progress. As mentioned in Sect. 4.1, the effectiveness of AutoProof comes from the
following progress theorem.

Theorem 3 (Progress). Starting from any goal, if all lemmas are successfully syn-
thesized, the initial goal can be eventually transformed into an induction-friendly form.

5 Evaluation
We implement AutoProof on top of Cvc4Ind [30], an extension of Cvc4 with induc-
tion and the available4 state-of-the-art prover for proving equivalence between func-
tional programs. We choose AutoLifter [13] as the underlying synthesizer, which can
solve the synthesis tasks in Sect. 4.3 over randomly generated tests. Cvc4Ind comes
with a lemma enumeration module, our implementation invokes only the deductive rea-
soning module of Cvc4Ind. To compare the lemma enumeration with directed lemma
synthesis, we evaluate AutoProof against Cvc4Ind.
Dataset. We collect 248 standard benchmarks from the equivalence checking subset
of CLAM [12], Isaplaaner [14], and “Tons of Inductive problems” (TIP) [5], which
have been widely employed in previous works [7, 12, 14, 30, 38]. We observe that these
benchmarks do not consider the mix of ADTs and other theories (e.g., LIA for integer
4 Pirate [37] is reported to have better performance than Cvc4Ind on standard bench-

marks in our evaluation, but its code and its experimental data are not publicly
accessible. Thus, we do not compare our approach against Pirate. Note that Au-
toProof can be combined with any deductive solver, including Pirate.
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Table 1. Experimental results on the number of the solved benchmarks.

#Solved
(Standard)

#Solved
(Extension)

#Solved
(Total)

#Fails
(Timeout)

AutoProof 140
(↑ 16.67%)

21
(↑ 600%)

161
(↑ 30.89%) 109

Cvc4Ind 120 3 123 147

Table 2. Experimental results on the average runtime.

AvgTime(s)
(Standard)

AvgTime(s)
(Extension)

AvgTime(s)
(Total)

AutoProof 1.31
(↑ 97.16%)

3.99
(↑ 98.71%)

3.64
(↑ 95.47%)

Cvc4Ind 46.13 308.58 80.36

manipulation), which is also an important fragment in practice [6,10,17–19]. Thus, we
created 22 additional benchmarks combining the theory of ADTs and LIA by converting
ADTs to primitive types in existing benchmarks, such as converting Nat to Int. Our
test suite thus consists of 270 benchmarks in total.
Procedure. We use our implementation and the baseline to prove the problems in the
benchmarks. We set the time limit as 360 seconds for solving an individual benchmark,
the default timeout of Cvc4Ind and is aligned with previous work [7, 29, 30, 38]. We
obtain all results on the server with the Intel(R) Xeon(R) Platinum 8369HC CPU,
8GB RAM, and the Ubuntu 22.04.2 system.
Results. The comparison results are summarized in Tables 1–2. Overall, AutoProof
solves 161 benchmarks, while the baseline Cvc4Ind solves 123, showing that directed
lemma synthesis can make an enhancement with a ratio of 30.89%. On the solved
benchmarks, AutoProof takes 3.64s on average, while Cvc4Ind takes 80.36s, in-
dicating that directed lemma synthesis can save 95.47% runtime. The results justify
our motivation: compared with the directionless lemma enumeration, directed lemma
synthesis can avoid wasting time on useless lemmas. Note that AutoProof shows
significant strength on additional benchmarks with a mixed theory. This is because the
tactics and induction-friendly forms in our approach are purely syntactic, making Au-
toProof theory-agnostic. In contrast, Cvc4Ind is theory-dependent. Thus, it is hard
for Cvc4Ind to tackle benchmarks with mixed theories.
Discussion. We observe that in the failed cases, the failure to synthesize a lemma is a
common cause, and this in turn is due to two reasons. The first one is that the program
synthesizer fails to produce a solution for a solvable synthesis problem. For example,
one equation involves an exponential function, whose implementation is extremely slow
on ADT types, and the synthesizer timed out on executing the randomly generated
tests. The second one is that the potential lemma requires a structural recursion that
is not canonical. Though in theory such a structural recursion can be converted into
compositions of CSRs, our current algorithm only supports the synthesis of CSRs, and
thus cannot synthesize such lemmas. This observation shows that, if we can further
improve program synthesis in future, our approach may prove more theorems.
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6 Related Work

Lemma Finding in Inductive Reasoning. Due to the necessity, the lemma find-
ing algorithm has been integrated into various architectures of inductive reasoning,
including theory exploration [4, 31], superposition-based provers [7, 11, 26, 29], SMT
solvers [23,30,36,38], and other customized approaches [20,32]. These approaches can
be divided into two categories.

First, most of these approaches [4,7,11,20,26,29–32,38] apply lemma enumeration
based on heuristics or user-provided templates, which often produce lemmas with little
help to the proof, leading to inefficiency, as we have discussed in Sect. 1. Compared with
these approaches, AutoProof considers the directed lemma synthesis and application,
eventually producing subgoals in induction-friendly forms.

Second, there are approaches [23,36] considering the lemma synthesis over a decision
procedure based on bounded quantification and pre-fixed point computation. These
approaches are restricted to structural recursions without nested function invocations
or constructors, which cover only 19/248 (7%) benchmarks in our test suite (Sect. 5).
Other Approaches in Functional Program Verification. There are other ap-
proaches [2,16,24,35] verifying the properties of functional programs without induction.
These tools require the user to manually provide an induction hypothesis. Thus, these
approaches cannot prove any benchmark in our test suite (Sect. 5).
Invariant Synthesis. Lemma synthesis has also been applied to verifying the prop-
erties of imperative programs [9,15], where the lemma synthesis is often recognized as
invariant synthesis. Since the core of imperative programs is the mutable atomic vari-
ables and arrays instead of ADTs, previous approaches for invariant synthesis [9, 15]
cannot be applied to our problem. It is future work to understand whether we can
extend AutoProof for verifying imperative programs.

7 Conclusion
We have presented AutoProof, a prover for verifying the equivalence between func-
tional programs, with a novel directed lemma synthesis engine. The conceptual novelty
of our approach is the induction-friendly forms, which are propositions that give for-
mal guarantees to the progress of the proof. We identified two forms and proposed two
tactics that synthesize and apply lemmas, transforming the proof goal into induction-
friendly forms. Both tactics reduce lemma synthesis to a specialized class of program
synthesis problems with efficient algorithms. We conducted experiments, showing the
strength of our approach. In detail, compared to state-of-the-art equivalence checkers
employing heuristic-based lemma enumeration, directed lemma synthesis saves 95.47%
runtime on average and solves 38 more tasks over a standard benchmark set.
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