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ABSTRACT

Modern development environments often involve models with
complex consistency relations. Some of the relations can
be automatically established through “fixing procedures”.
When users update some parts of the model and cause in-
consistency, a fixing procedure dynamically propagates the
update to other parts to fix the inconsistency. Existing fix-
ing procedures are manually implemented, which requires a
lot of efforts and the correctness of a fixing procedure is not
guaranteed.

In this paper we propose a new language, Beanbag, to
support the development of fixing procedures. A Beanbag
program defines and checks a consistency relation similarly
to OCL, but the program can also be executed in a fixing
mode, taking user updates on the model and producing new
updates to make the model satisfy the consistency relation.
In this way Beanbag significantly eases the development of
fixing procedures. In addition, a Beanbag program is also
guaranteed to be correct with respect to the three correct-
ness properties we define. We evaluate Beanbag over a set of
MOF and UML consistency relations and the result shows
that Beanbag is useful in practice.
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Figure 1: Model of a Video-On-Demand System
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1. INTRODUCTION

Modern software development environments often involve
models with complex consistency relations. Figure 1 shows
an example adapted from [4]. The UML model in Figure 1
describes a client component of a video-on-demand (VOD)
system and consists of a class diagram and a sequence di-
agram. The class diagram describes the static structure of
the system and the sequence diagram shows how objects
interact with each other through message.

Many consistency relations need to be established over the
two diagrams to ensure the correctness of the model. As an
example, we give two consistency relations written in the
Object Constraint Language (OCL) [12] as follows.

Cl: context Message

inv let rec = self.receiver in
let ops = rec.base.operations in
ops->exists(oper | oper.name = self.name)

C2: context Message
inv self.sender <> null and self.receiver <> null

C1 requires every message in a sequence diagram to be de-
clared as an operation in the receiver’s class. The context
keyword states that it will be applied to every Message ob-
ject. The concrete relation definition starts from a message
(self), finds the receiver object (rec), finds the operation
set in the class of the receiver object (ops) and check if there



exists an operation having the same name of the message.
C2 requires every message to have a sender object and a
receiver object by disallowing related features to be null.

These consistency relations would be violated if some parts
of the model are modified, and we need tool support to fix
the inconsistency [11]. Although it has been recognized that
not all consistency relations need to be always established [2]
and not all inconsistencies are suitable to be automatically
fixed [3], many useful consistency rules can be them always
established by propagating the update to other parts when
users update part of the model. For example, IBM Ratio-
nal Software Architect (RSA), a commercial UML modeling
tool, deletes all connected messages when a class instance
in a sequence diagram is deleted, and thus keeps C2 always
established.

Existing automatic fixing approaches [8] require tool de-
velopers to manually implement “fixing procedures” speci-
fying actions to take when a change happens. Such a pro-
cedure takes user updates as input, and takes actions to
propagate the updates to other parts to fix inconsistencies
on the model. However, as usually many types of changes
may violate a consistency relation, fixing procedures may be
very large and thus are very difficult to implement in prac-
tice. For example, although IBM RSA implements a fixing
procedure for Cl1, it fails to provide an action for changing
the receiver of a message. When a user makes such a change,
the tool will report an error. Furthermore, it is difficult to
verify that the actions taken by a fixing procedure lead the
data to a consistent state.

As a matter of fact, if we examine the definitions of con-
sistency relations, we would find that some relations have
already implicitly included the fixing procedure. Consider a
simple relation that two primitive values a and b are equal:
a=b. If a user changes a, the only reasonable action to take is
to change b accordingly. The same strategy also works when
b is changed. If we can automatically derive fixing proce-
dures from the consistency relation, we can avoid the prob-
lems of manual implementation. However, it is not easy to
automatically derive fixing procedures beyond the simplest
relations. First, many consistency relations, like C1, have
multiple, even infinite numbers of actions to take for some
updates. If users change a message name to a new name
and cause an inconsistency, a modeling tool can take several
actions to fix the inconsistency: creating a new operation
in the class diagram, renaming an existing operation in the
class diagram, or even changing the receiver of the message
to a new class instance containing the new operation. How
to choose one among them is unknown. Second, consistency
relations may be composed by operators like and, or and
quantifiers. It is unclear how to compose the fixing proce-
dures accordingly while ensuring a correct fixing behavior.

In this paper we suggest a compromising approach. In-
stead of deriving fixing procedures purely from consistency
relations, we add extra semantics to the relation language,
so that when a user describes a consistency relation, he also
uniquely describes a fixing procedure. Concretely, our con-
tributions can be summarized as follows.

e We design a language, Beanbag, for users to write a con-
sistency relation and a fixing behavior at the same time.
The Beanbag language defines consistency relations in
OCL-like syntax, but every relation in Beanbag also has
a fixing semantics describing when some parts of the data
are changed by users, how to change the other parts to

ensure consistency. For relations with multiple fixing be-
havior, Beanbag provides users with more than one way
to construct one relation, where a different way indicates
a different fixing behavior.

e We propose three properties to characterize the correct-
ness of a fixing procedure. The three properties are STA-
BILITY, PRESERVATION and CONSISTENCY, and are mainly
based on the study of bidirectional transformation proper-
ties [19] and our previous work on model synchronization
[23]. Any Beanbag program satisfies the three properties.

e We have implemented Beanbag and evaluated its expres-
siveness and usability by developing Beanbag programs
for consistency relations in the models of MetaObject Fa-
cility (MOF) [15] and UML [3, 4] models. The evaluation
shows that Beanbag greatly eases the development and
can support many useful scenarios in practice. In addi-
tion, a preliminary version of Beanbag [22] has already
been used by several research groups developing applica-
tions like domain-based UML synchronizer [16] and soft-
ware product line.

To have a concrete idea of Beanbag, let us write a Beanbag
program for relation C1. A Beanbag relation describing C1
can be defined as follows.
def C1l(msg, model) =

let rec = model.(msg."receiver") in
let opRefs = model.(rec."base")."operations" in
opRefs->exists (opRef | model.opRef."name"=msg."name")

We can see that the Beanbag program is very similar to
the OCL expression. One small difference is that we need to
write model. (msg. "receiver") instead of msg."receiver".
This is because of the data structures used in Beanbag, and
is not important for now.

To apply this relation to all instances of Message, we fur-
ther write the following code:
def ClonAll(model, meta) =

model->forall(obj |

isTypeOf (obj, "Message", meta) and Ci(obj, model)

or not isTypeOf (obj, "Message", meta)
)

The ClonAll relation works in two modes. In the check-
ing mode, it runs as a normal OCL expression, taking the
current model and the meta model as input and producing
a boolean value to indicate whether the relation is satis-
fied. In the fixing mode, it takes as input the current model,
the meta model and the updates that users try to apply to
the model, and produces new updates representing actions
to take to make the model consistent. The input updates
can be a single update, changing a single feature or insert-
ing/deleting an object. It can also be a combination of sev-
eral updates performed by different users in a distributed
environment, changing several locations or inserting/delet-
ing several objects. We will give the concrete syntax for
describing updates in Section 3.

Putting it more concretely, the fixing mode of ClonAll
proceeds in a similar way to the checking mode, but propa-
gates updates when it encounters one. Suppose a user has
renamed an operation to a new name. ClonAll will invoke
C1 on all Message objects and C1 will check if there exists an
operation with the same name. For the renamed message,
such an operation cannot be found. Then the exists state-
ment will insert a new null reference in the collection and
proceed to the inner relation. The expression model.opRef
will create a new operation and replace the null reference



with the actual reference. Finally, the equality relation will
assign the changed name to the newly created operation.
We will see the precise semantics in Section 5.3.

Now if we want to rename an existing operation instead
of inserting a new one in the fixing mode, what we need to
do is to change exists to exists! in the last line. The
new Beanbag program runs the same in the checking mode,
but in the fixing mode it will rename the operation that
originally corresponded to the message.

Note that the current program for C1 can be improved;
the current version will insert a new operation even when we
change the receiver of a message or when we delete/rename
an operation in the class diagram. We can describe a more
natural fixing behavior by extending C1 to allow the message
name to be null. We will see a fully featured program in
Section 5.4.

The rest of the paper is organized as follows. First, Sec-
tion 2 discusses related work. Section 3 describes how we
represent data (models) and updates to build up the founda-
tion for formal discussion. Based on that, Section 4 defines
the correctness properties of a fixing procedure. After that,
Section 5 presents the Beanbag language, including the syn-
tax, the semantics of the checking mode and the fixing mode,
and a few examples to show how to write Beanbag programs
in practice. Section 6 discusses the correctness and termi-
nation of Beanbag. Section 7 evaluates the expressiveness
and usability of Beanbag through practical cases. Finally,
Section 8 concludes the paper.

2. RELATED WORK

Many approaches provide support for automatic inconsis-
tency resolution from logic perspective. These approaches
range from more theoretical, first-order logic [6] and descrip-
tion logic [20], to more practical, OCL expressions [18]. In
general, these approaches require developers to write a set
of fixing rules in the “condition—action” form. The system
checks the condition of each rule, and executes the action
when the condition is satisfied. It takes a lot of efforts to
define a full set of fixing rules, and there is no guarantee
that the actions will bring the data to a consistent state.
Compared to them, our approach exploits the information
in the user updates and in the consistency rules. The Bean-
bag language is much easier to write and the fixing behavior
of every Beanbag program is guaranteed to be correct.

Grundy et al. [8] propose a general framework for manag-
ing inconsistency in multiple-view software. Similar to us,
their framework uses updates as a start point to fix inconsis-
tency. However, they still require developers to write fixing
actions for each type of updates. As a result, the problem of
development cost and the problem of correctness still exist.
More recent work [10] from the same group uses spreadsheet-
like mechanism to define the relation over model and thus
the fixing process is automated as reevaluating the cell ex-
pressions. However, this approach only propagates updates
in one direction and cannot help if the location updated by
users is the result of some expression.

Some approaches seek for automated means to generate
a set of fixing actions from logical expressions. Typical ap-
proach includes the white-box analysis of first-order logic [11]
and the black-box analysis of the consistency rules [4]. Com-
pared to ours, these approaches generate the fixing actions
purely from a consistency relation, but require human in-
terventions in executing the actions, by specifying some lo-

value = primitive | dictionary

primitive := NUMBER | STRING | BOOLEAN | null
dictionary ::= {entries} | {}

entries = entry | entry, entries

entry 1= primitive —> value

Figure 2: Syntax of data

cations to fix, choosing one among a set of actions or fill-
ing some missed parameters. We believe both types of ap-
proaches are important to consistency management, because
while some consistency relations are suitable to be estab-
lished all the time through automatic fixing, some consis-
tency relations are suitable to be manually resolved by hu-
mans.

Another branch of related work is bidirectional model
transformation approaches, such as QVT [14] and TGG [17].
These approaches establish the consistency relation between
two models by using one program to describe two transfor-
mations, each update a model according to the other model
[19]. As a result, bidirectional transformation cannot deal
well with inconsistency in one model. Our approach is built
on the same idea of using one language to describe both
the consistency relation and the fixing behavior, but we ex-
ploit user updates to fix inconsistency in one model. A sub
branch of bidirectional transformation work is model syn-
chronization [1, 23, 9], which also exploits user updates for
synchronization. However, existing model synchronization
approaches still focus on synchronization of two models, and
do not fix inconsistency in one model.

One traditional work on consistency management is the
constraint satisfaction problem (CSP) [21]. Approaches to
CSP try to find a set of values that satisfies a given set
of constraints (consistency relation). Since the problem re-
quires searching the whole state space, it is very difficult
for a solution to scale up. Compared to CSP approaches,
Beanbag is a more lightweight approach in the sense that
we require users to describe the fixing behavior in the Bean-
bag program, and thus does not suffer from the scalability
problem.

Repairing broken data structures [5] is also loosely related.
This work dynamically repairs faults in data at runtime ac-
cording to the consistency relations implicitly specified by
the assertions in code. The core to this work is a set of
heuristics to fix inconsistency. Different from this work, our
approach aims at providing a clear, predictable fixing seman-
tics, so that end users can clearly know how their updates
affect other parts of the model.

3. DATA AND UPDATES

In this section we build up the formal foundation by defin-
ing data (models) and updates in Beanbag.

Data  Although our target is to deal with models, the core
Beanbag is built upon a small set of dictionary-based data
types. Dictionaries can be used to represent many different
kinds of data structures as studied by Foster et al. [7]. In
this way we can make our language compact while retaining
its expressiveness.

Figure 2 shows the syntax of Beanbag data. There are
two types of data (values). One is primitive values including
numbers, strings, booleans and a null value, and the other is
dictionaries that map keys (primitive values) to other values.
A key-value pair is called an entry. We may consider all



update ::= pupdate | dupdate | void

pupdate 2= lprimitive

dupdate = {update_entries} | {}

update_entries ::= update_entry | update_entry, update_entries

update_entry 1= primitive —> update

Figure 3: Syntax of updates

keys that do not exist in the definition are mapped to null.
That is, {"a"->null} and {} are both empty dictionaries.
The set of keys that are not mapped to null by a dictionary
d is called the domain of the dictionary, denoted as dom(d).
We write d.k for the value to which the dictionary d maps
the key k. We also define a union operator on dictionaries,
denoted as di; U dz. The union d; Udz is a dictionary where
each key k is mapped to di.k if k € dom(dy), otherwise is
mapped to da.k.

There are many ways to map MOF-based models into
Beanbag data. For example, one can encode a model into
XML as defined in the XMI standard [13], and map the XML
file (which is a tree structure and can be easily converted
to dictionaries) into Beanbag format. We do not restrict
a particular way of mapping models to Beanbag data, and
users can choose their own way.

In this paper we map models into Beanbag data by as-
signing a unique identifier (ID) to each object, and an object
reference is represented by the ID of the referred object. In
a tool implementation, the IDs can be replaced by the in-
memory addresses of the objects. The model is represented
as a dictionary mapping IDs to the object instances. Fach
instance object is represented as a dictionary mapping fea-
ture names to feature values. For a multiple feature, we
represent its value as a dictionary mapping IDs to the mem-
bers in the feature (we currently do not consider the ordered
features and the unique features). For each object, we also
insert a special key "__type" mapping to the ID of its meta
object in the meta model. For example, the Display class in
Figure 1 is represented by the following dictionaries, where
the numbers are generated IDs.

{1->{"__type"->20,

"name"->"Display",

"operations"->{10->2, 11->3, 12->4, 13->5}},
2->{"__type"->21,

"name"->"select",

"parameters"->{},

R N
3->{"name"->"stop",...},
.}
Updates Dictionaries not only allow us to represent

many data structures but also enable us to uniquely identify
each location in a dictionary. We make use of this feature to
represent updates. An update in Beanbag is represented by
the location of updates and the updated value. For example,
if we rename the Display class to DisplayWindow, the up-
date is described as: {1->{"name"->!"DisplayWindow"}},
where the last “!” indicates the original value is replaced
by the new value following “!”. Deleting an object can be
represented as mapping the ID to null and inserting of an
object can be represented as updates at a new ID. For exam-
ple, deleting the Display class is represented as {1->!null},
and inserting a new class with a new ID 6 is represented as
{6->{"__type"->!20, "name"->!"NewClassName", ...}}.

Figure 3 gives the syntax of updates. An update can be
either pupdate — an update on primitive values, dupdate —
an update on dictionaries, or void — indicating that nothing

Ulvoid](v) =v
U[!'primitive](v) = primitive
Ul dupdate d & dictionar
Uldupdate] (d) - {d’H patel}) d z dictionarz
where d' = UVkedom(dupdate)udom(d) {k->U[dupdate.k](d.k)}

Figure 4: Semantics of updates

Table 1: The result of us o u;

ug = void w2 € pupdate uz € dupdate
u1 = void void U9 us
uy1 € pupdate w1 ug ug
u1 € dupdate ul U9 us

where ug = UVkedom(ul)udom(uz){k_>(“2'k oui.k)}

has been changed. An update on primitive values just con-
tains a new value and an update on dictionaries maps keys
to updates. If a key does not exist in the dupdate definition,
we assume the key is mapped to void. The set of keys that
are not mapped to void is the domain of the dictionary-
update, denoted as dom(dupdate). We also use the notation
dupdate.k, and dupdate, U dupdate, on dictionary-updates.
Their meanings are the same as those defined on dictionar-
ies.

Figure 4 shows the denotational semantics of updates.
The denotation of an update u, represented by Ulu], is a
function mapping between values. The denotation of void
changes nothing. The denotation of pupdate maps any value
to the new value, e.g., U['3](2) = 3. The denotation of
dupdate applies every update in the dictionary-update to the
value at the same key, e.g., U[{2->!"a"}]({2->"m"})={2-
>"a"}. One property of the semantics is that the denotation
of an update is always idempotent, i.e., Yu € update, Vv €
value : Uu](Uu](v)) = Uu](v).

Two updates can be merged (composed). Sometime users
may perform a sequence of updates before the modeling tool
can perform a fix, e.g., in a distributed environment. In such
case we need to merge a sequence of updates into a single
update. We use uz2 o u; to denote merging two updates uy
and us where w1 is considered earlier than us. Table 1 shows
the rules for merging two updates. For example, merging
{1->1"a", 2->1"b"} with {1->!"c", 3->!1"d"} results in
{1->1"e", 2->1"p", 3->1"d"}. A requirement on merging
is that merging should preserve the semantics of updates.
In other words, Ulusz o u1] = Ufuz] o Uu1]. We can easily
prove that the rules in Table 1 satisfy the requirement by
checking the definitions.

However, if two users change the same location to different
values, we say that the two updates by the two users conflict
with each other. If two updates do not conflict, we say the
two updates are compatible, denoted as ui @ uz. We define
compatibility from merging. Formally, w1 & ug iff ui ous =
uzouy. For example, {1->!"a"} and {1->!"b"} conflict but
{1->!"a"} and {2->!"b"} are compatible.

A partial order can be defined over updates. We may want
to know if one update u; is completely included in another
update us. In other words, the locations changed by i
are all changed to the same values by us. This can also be
formally defined by merging. If u; o us = w2, we say u; is
included in u2, denoted as u1 C us.

One property of Beanbag updates is that we can always
find a minimal updates from a value v1 to another value v



Table 2: The result of find_update(vi,v2) when vi # va
v2 € primitive vo € dictionary
v1 € primitive [ find_update({}, v2)
v1 € dictionary 1o u

where u = UVkedom(ul)udom(uz){k_>ﬁn¢uPdate(U1'k7 vo2.k)}

where all other updates from v; to vz include the update.
We use a function find_update to get the minimal update
from two values. Formally, Yu € update, Ulu](vi) = vo =
find_update(vi,v2) C u. The function find update can be
defined as follows: 1) it returns void if the two values are
equal, and 2) it follows the rules in Table 2 for other inputs.

4. CORRECT FIXING

Before explaining in detail how Beanbag describes consis-
tency relations and fixes the inconsistency by update prop-
agation, let us be precise about the properties a fixing pro-
cedure should satisfy.

Beanbag expressions often contain variables. To evaluate
an expression or to propagate updates, we need to know
what the current values of the variables are and what update
users have performed on the variables. We use two sets of
bindings to pass the information. The set of variable-value
bindings, often denoted as o : VAR — wvalue, binds variables
to data values. The set of variable-update bindings, often
denoted as 7 : VAR — update, binds variables to updates.
We write var® or var’ for the value or the update bound
to variable var in binding set o or 7. We write dom(c) for
the set of all variables in 0. We also write 7(o) to denote
applying all updates in 7 to the corresponding variables in
o and returning a new set of variable-value bindings.

As we have seen in Section 1, a Beanbag program can be
executed in either the checking mode or the fixing mode.
We use two denotations to describe the semantics in the two
modes. Suppose c is a constraint (an instantiated relation)
defined by Beanbag. The checking denotation is a function
which evaluates ¢ according to a set of variable bindings.

E[c] : (VAR — value) — BOOLEAN

For example, E[a=b] returns true for an input o where a” =
b.

The fixing denotation is a partial function (called fizing
function) that takes a set of value bindings and a set of
update bindings and produces a new set of update bindings
to satisfy the constraint.

R[c] : (VAR — wvalue) x (VAR — update) — (VAR — update)

The function is partial (returning L on some input) because
the updates may conflict with each other or may not be
allowed by the program. In such cases the modeling tool
should report an error message to users. For example, given
an input (o,7) where a” =b? =1, a” = void, and b” = 12,
R[a=b] returns 7’ where a” =12andb” =12 Ifa” =13
and b” = 12, R[a=b] returns L.

Now we can turn to the correctness properties. First and
foremost, we expect the fixing function to bring the data to
consistency. The CONSISTENCY property requires that when
we apply the output updates of R[c] to the input values,
the values should be consistent according to E[c].

PROPERTY 1  (CONSISTENCY).
R[c(o,7) =" = E[c]('(0))

Second, one naive way of achieving consistency is to sim-
ply modify the updated locations back to their original val-
ues. Such a naive fixing is not what we want. The PRESER-
VATION property prevents such a fixing by requiring the out-
put updates to include the input updates. In this way, the
output updates cannot change an updated location to a dif-
ferent value.

PROPERTY 2 (PRESERVATION).
R[c](o,7) = 7 = Yvar € dom(r) : var™ C var”™

Third, if user updates do not actually change the model,
(e.g., users choose to rename an operation but input exactly
the same operation name), we do not want any part of the
model to be changed. The STABILITY property ensures this
by applying the output updates on the variables and check
if the variables remain the same.

PROPERTY 3 (STABILITY).
E[c](o) ANT(0) =0 = R[c](o,7)(c) =0

There are two things to note about the properties. First,
the properties define correct fixing in general, but satisfying
the properties does not ensure the correctness of a particular
fixing function. As a consistency relation may correspond
to multiple fixing behaviors, the fixing function must ensure
to take one that users want. Second, we do not require the
input data bindings of a fixing function to be consistent. For
example, it is possible a” # b7 in an input (o, 7) to R[a=b].
This is to support the “or” operator and the creation of new
object, as we will see in Section 5.3.

5. THE BEANBAG LANGUAGE

Our Beanbag language is an OCL-like constraint language,
which not only has usual checking semantics but also is
equipped with a novel fixing semantics, which can system-
atically propagate updates through equal relations inherited
in constraint description on both primitive values as well as
dictionary structures.

5.1 An Overview

The left part of Figure 5 shows the syntax of the core
Beanbag language.

The Beanbag language has similar syntax as OCL [12]. It
has the primitive constraint “=” to describe equal relation
between two variables, uses logic operators of and, or and
not, and quantifiers of forall and exists on keys of dictio-
naries to construct complex constraints, and binds variables
to expressions with the let construct. An expression may
be a constant value, a dictionary key indexing d.k, or a local
binding expression with let. With these constructs, Bean-
bag is powerful to describe various kinds of constraints; we
have seen several examples in the introduction, and will see
more examples in Section 5.4.

Different from OCL, the Beanbag provides the follow-
ing declarative ways for people to define fixing behavior for
reestablishing the consistency relation after an update hap-
pens.

e Fach standard constraint operator is equipped with a spe-
cific firing operation. For example, the primitive equa-
tion constraint “v; = wve” will fix the relation by propa-
gating updates from one to the other while treating v
with higher priority (so vz = w1 has different fixing be-
havior from v1 = v2). The conjunction “c; and cy” will



V=V
c and ¢
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Efvi=va] (o)

true
false

VlO' P VZU
v17 # va?

|
|  d->forall(vle) Efecq and c2](o) = Elc](o) A Ee2](0)
| d->exists(vlc) Efec1 or c2](0) = Efei](o) v Ele2](0)
|  d->exists!(vlc) E[d->forall(via)](o) = Vke& dom(d?): E[c](o[v+— d7.k])
| let v=e in ¢ Ef[d->exists(vla)](o) = 3k € dom(d?) : E[c](c]v— d7.k])
| protect v in ¢ Efd->exists! (vlc)](o) = E[d->exists(vlc)](o)
| testc E[let v=e in c](o) = E[c](o[v— E[e](o)])
| mnotc Elprotect v in (o) = E[c|(o)
e u= const E[test c](o) = E[](o)
|  dk Enot c]|(o) = =E[(o)
| let v=e in e E[const] (o) = const
v = any variable E[d.x](o) = d7.k°
d = a dictionary variable Ef1let v=e; in e3](c) = E[e2](o[v+— Ele1](o)])
k = a key variable

Figure 5: Core Synatx and Checking Semantics

fix the relation using the fixing functions of both ¢; and
c2. The disjunction “c; or c2” will fix the relation by first
trying the fixing function of ¢; if ¢; is satisfied before up-
dates happen, and that of co otherwise, and if this fails
we try the fixing function of the other. The forall quali-
fier 7d->forall(v|c)” will fix the relation by fixing each
dictionary entry with the fixing function of c¢ if necessary.

One of our major contributions is a natural and correct

fixing semantics for Beanbag, an extended constraint lan-
guage. Our idea is to propagate updates through equality
constraints, control the propagation order by logic operators,
derive structural updating through logic quantifiers, restrict
fixing behavior through special constructs, and introduce
recursion for describing more involved fixing strategies. We

will use R[c](o,T) to describe the fixing for the constraint

o New constraint constructors are introduced to describe dif-
ferent fixing functions. Two forms of the existence con-
straint are provided to dealing with flexible fixing of dic-
tionary structures. For instance, the two constraints

model->exists(class|class."name"=x)
model->exists!(class|class."name"=x)

c under the variable-value binding set o and an update de-
scribed by the variable-update binding set 7. Its result is
a new variable-update binding set showing how to update
variables in such a way that c is satisfied again. We will
define R[c](o,7) by induction on the construction of c.

Update Propagation based on Equality Constraints

describe the same consistent relation that there exist a
class in the model whose name is equal to x. But they
behave differently when the consistency is destroyed by,
for example, a change of x. The former will create a new

Propagating updates from one part to another to fix the
inconsistency can be reduced to dealing with the following
three equality constraints in our framework. This reduction
will be explained in the fixing semantics for the let con-

class with its name equal to the changed x, while the later struct.
will rename the existing class whose name is equal to x
before x is changed. e R[vi=v2])(o, 7). Let us first consider a simple case, where

e New constructs are introduced to restrict fixing behavior.
The construct “protect v in ¢” describes the same con-
straint as ¢ but does not allow its fixing function to update
v, while the test construct “test ¢” describes the same
constraint as ¢ and allows no update on any variable.

In the following, after briefly explaining the common check-
ing semantics, we focus on a detailed and formal definition
of our new fixing semantics of the language.

5.2 Checking Semantics

The right part of Figure 5 shows the checking semantics
of the Beanbag language. E[c](c) and Efe](o) evaluate a
constraint ¢ to a boolean value and an expression e to a
value under a set of variable-value bindings, respectively.

We write o[var — v] to indicate a new set of bindings that
maps a variable var to value v and maps all other variables
to the same values as 0. We will also use this notation for
dictionaries and updates on dictionaries.

We can see that the checking semantics of Beanbag is
the same as what we can expect from the syntax. In the °
following part we will focus on the fixing semantics.

5.3 Fixing Semantics

the values of v1 and vs are equal before updating 7, that
is, v1? = v27. In this case, we simply merge the input up-
dates on vy and vy when they are compatible, and return
1 when they conflict.

vim Dva”
otherwise

TIv1 = u][ve — 4]

Rlvi=va](o,T) = {J_

where u = v1” o vo”. More generally, the values of v
and ve may be unequal before updating, i.e., v17 # v27.
In this case, we first apply both updates to va to get a
new value new_v, then calculate the update u needed to
update vi to new_v, and finally merge u with vi™ and va”
to satisfy PRESERVATION.

viT ® v’

TVl = Uuj|v2 — u
Rlvi=va](o,7) = J_[ ! v ] otherwise

where u = (v17 ova7) o find_update(v17, new_v)
new_v = UlviT ova"[(v27)

R[v=const](o, 7). To fix the equality constraint between
a variable and a constant, we calculate an update over v"
by finding an update to change the updated v (i.e., v7(?))
to the constant.



Tlv—uovT] u®dv’

R[v=const] (o, T) = {J_ otherwise

where u = find_update(v7(?) | const)

e R[v=d.k[(o,7). To fix the equality constraint between
a variable v and a dictionary key indexing d.k, we first
check the key k. If k is originally null with no update,
denoted by isNull(k), we create a new key using the func-
tion newlD(o, ) and do fixing. If k is deleted, we have no
way to do fixing and return L. Otherwise, we do fixing
on R[v=v'](c,7) where v’ is a fresh variable referring to
the same value and update at k™°) in d. When v/ or
v'" changes, the d” X7() or d7.k™(?) changes accordingly.
This is denoted by R[v=v'](c[v'=d.k™(?)], 7[v'=d.k"(?)]).

R[v=d.k](o,T) =
R[v=d.k[(o, T[k — !newID(c, T)]) isNull(k)
1 k™ = lnull
{ Rlv=v'](o[v/=d.x7(?)], 7[v/=d.k7(?)]) otherwise

Propagation Order Control based on Logic Opera-
tors  We assign a fixing semantics to the logic operators
of and and or to control the order of update propagation.

e The fixing function R[ci and cz] is to establish both ¢;
and c2. To do this, we call R[c1] and R[c2] one by one in
this order to propagate updates. Since R[c2] may prop-
agate new updates to variables used in ¢;, we may need
to call R[e1] again to satisfy ¢1. Similarly, a call of R[c1]
may require a call of R[c2]. Hence in the fixing function
we repeatedly call R[c1] and R[cz] until we reach a fixed
point where no new update is propagated.

T =7
R]c1 and e2](o,7") T # 7T

where 7/ = R[c2](o, R[c1](o, 7))

Rfec1 and e2](o,7) =

Beanbag does not always ensure the existence of such a
fixed point. However, this will not be a problem in prac-
tice because most programs will terminate. We will dis-
cuss more on this issue in Section 6.

It is worth noting a different order of ¢; and c2 sometimes
leads to different fixing behavior. We can write “c; and c2”
or “co and ¢1” to customize the behavior in such cases.

The fixing function R[ci or cz] is to make either ¢; or
c2 be satisfied. As a result, in the fixing mode we can
choose to use either R[ci] or R[cz] to propagate up-
dates. However, to satisfy STABILITY, we must first use
the one that is previously established on the data, oth-
erwise the other constraint may change consistent data
and violate STABILITY. For example, let us consider the
constraint Rfa=b."x" or a=b."y"]. Suppose in the in-
put data bindings a is equal to b."y" and the update
bindings map both a and b to void. If we choose the first
constraint, a will be changed to b."x" and STABILITY is
violated.

In R[c1 or c2], we first find out the constraint that is pre-
viously established by calling Efc;] and Efecz], and use
the constraint to propagate updates. If the constraint fails
to propagate updates, we use the other constraint. Be-
cause here we switch from one constraint to the other, the
data that are previously consistent for the former may not
be consistent for the latter. That is why we require fixing
functions to handle inconsistent data bindings. When the

input data bindings are not consistent, we first try R[ci]
and then try R[cz]. This strategy is very useful in cus-
tomizing the fixing behavior: programmers can assign a
higher priority to a constraint by writing it first.

R[ecy or e2](o,7) =
Rlei] (o, 1) if.E”:Cl]](O') A Rlei](o,7) # L
(o,7) elif Efc2] (o) A R[e2](o,7) #
R[[cl]}go,rg elif Rfe1](o,7) # L

otherwise

1

Derivation of Structural Updating based on Logic
Quantifiers The forall and exists quantifiers both
relate an inner constraint to values in a dictionary. We will
assign a fixing semantics to them to deal with updating on
dictionary structures.

e The forall quantifier is satisfied only if the inner con-
straint is satisfied by all entries in the domain of the dic-
tionary. Consequently we can call the fixing function of
the inner constraint on all entries in the domain. One
special case is deletion. Since we may need to propagate
from the deletion of an entry, we also call on the deleted
entries. However, we do not want to require the inner
constraint to handle deletion, so we append “or v=null”
to the end of the inner constraint. After invocation of
the inner fixing functions, updates may be propagated to
variables other than v, so we recursively call the fixing
function until we reach a fixed point, the same as the and
operator. In the definition we use an union operator on
update bindings to construct the result. The union 7 Ut
is a set of bindings where the updates on the same vari-
able in 7 and 72 are merged, and is | when some updates
conflict, or any of its operands is L.

R[d->forall(vie)](o,7) =

! ’

T =T
R[d->forall(vla)](c,7') 7 # 71
where

7" = Uyrep -Rlc or v=null](c[v=d.k], 7[v=d.k])
D = dom(d?) U dom(d™(?))

e The exists quantifier is satisfied if one entry in the dic-
tionary satisfies the inner constraint. Therefore, we can
fix an inconsistency by either 1) inserting a new entry
in the dictionary that satisfies the inner constraint or 2)
modifying an existing entry to satisfy the inner constraint.
The exist quantifier chooses the first option. It gener-
ates a new key and invokes the inner constraint on the
new key. Because the key does not in the domain of the
dictionaries, v is initially mapped to null and void in
the two binding sets. The inner constraint must change
v to some value different from null otherwise the fixing
function will return L.

R[d->exists(vlc)|(o,7) =
T if Eld->exists(vla)](r(0))
R[c and not (v=null)[(c[v=d.k|, T[v=d.k]) -
otherwise

where k = newlID(c, T)

e The exists! construct explores the second option. It
updates the entry that previously satisfies the inner con-
straint. When such an entry may not be found because
the input value bindings may not be consistent. In this
case it simply proceeds as exists.



Rld->exists! (vlc)](o,7) =
R[c and not (v=null)][(c[v=d.k|, T[v=d.k])
if Ik € dom(a”) : E[c](c]v — d7.k])
R[a->exists(vlc)] (o, T)
else

Restricting Fixing Behavior The constructs protect,
test and not restrict their inner constraints from taking
some fixing actions. These constructs are needed because
sometimes we may want to reduce the fixing behavior. For
example, it is possible that in a=b, a is considered as a source
while b is considered as a read-only view where only source
updates can be propagated to views and view updates can-
not affect source. In this case we want to protect a from
being modified by the fixing function of a=b.

e The “protect v in ¢” statement protects a variable from
being modified by c. If ¢ changes the variable, the protect
statement will return L.

R[protect v in c|(o,7) =
R[c](o,7) UvRle ] (v7) = v (@)
€1 otherwise

e The test construct protects all variables in the inner con-
straint. This construct is useful when we build an or
constraint and we want to test some condition without
changing anything.

E[¢](r())
—E[e](r(7))

R[test (o, 7) = {1

e The operator not reverses a constraint. A constraint con-
taining not is usually unfixable because we may face in-
finite choice of actions. For example, if “not a=b” is vio-
lated, we can change a and b to any pair of values that is
not equal, and a fixing function cannot decide one. Nev-
ertheless, not is still useful in testing conditions, so in
Beanbag we define not in a similar way to test, where
the fixing function simply returns | when the constraint
is not satisfied.

7  =FE|c](r(c
R[not c(o,7) = { i E[[c% (]]T((g())))

The let construct We have mentioned the fixing se-
mantics of expressions can be reduced to an equality con-
straint in the “v=e” form. This reduction is done by the two
let constructs when the constructs connect expressions and
constructs together.

e The constraint “let v=e in ¢” is similar to “v=e and c¢”
because it establishes the relations of both e and c¢. In
the latter e becomes an equality constraint v=e. Since all
expressions will eventually connect to a constraint by let,
all expressions can be reduced to a equality constraint in
this way.

However, one difference between the above two constraint
is that the let constraint has an inner variable v that
initially has no bounded value. We must first set a proper
value on v so that we can invoke the fixing functions of
e and c. If e can be evaluated under the input value
bindings, we produce the value by just evaluating e. If e
cannot be evaluated (e.g., k is bound to null in d.k), we
simply set the value of v to null to indicate an unknown
value. After the value of v is properly set, we proceed to
use the fixing function of and.

R[1let v=e in c](o,7) =

{R[[v=e and c|(o[v— val], 7[v— void])  wval# L
R[v=e and c](o[v+ null], 7[v — void]) otherwise

where val = Efe](o)

e The statement “let v=e¢ in e” will also be reduced to the
“y=¢” form and we define its fixing semantics using the
previous let construct.

R[vi=(let vo=e; in e2)](o,7) =
R[let vo=e; in vi=es2](o,T)

Recursion for More Involved Fixing Recursion is
important to the description power of a language as it al-
lows us to iterate over a recursive structure. Beanbag sup-
ports recursion by allowing us to define named constraints
(called relations) and named expressions (called functions).
We have seen C1 and ClonAll, which are two examples of
relations. Relations and functions can both be recursively
called. For example, we can check if a class is not inherited
from a particular class using the following code.

def check(class, parentRef, model) =
test class.parent = null or
(not class."parent" = parentRef and
check(model.(class."parent"), parentRef, model))

54 Examples

In this section we give a few examples to show how to
write Beanbag programs in practice. First, let us imple-
ment the same fixing behavior for relation C2 as in IBM
RSA: 1) users cannot set the sender/receiver feature of
a message to null, and 2) when a class instance in the se-
quence diagram is deleted, delete the connected messages.
The Beanbag program is as follows.

def C2onAll(model) =
model->forall(obj |
isTypeOf (obj, "Message", metamodel)

and not model.(obj."sender") = null
and not model.(obj."receiver") = null
or not isTypeOf (obj, "Message", metamodel)

or obj = null)

The program uses forall to check all objects and within
forall there are three constraints connected by or. The
first constraint deals with Message objects and requires their
sender and receiver features not to be null. The second
constraint deals with non-Message objects and the third con-
straint deals with object deletion. The third constraint is ac-
tually included in the second, but it can take a fixing action
(setting obj to null) while the second cannot.

When users try to change, for example, the sender fea-
ture to null, none of the three constraints is able to fix
the inconsistency (the first two constraints have no fixing
action to take and the last one cannot change obj to null
because of PRESERVATION) and the fixing function will re-
turn | to denote the update is not allowed. Now suppose
users try to delete a class instance. When we visit to a mes-
sage connected to the class instance, the first constraint will
fail because the referred object is null and no fixing action
can be taken. The second constraint will also fail because it
has no associated fixing action. Finally, the third constraint
will set obj to null to delete the message. In this way we
can ensure all connected messages are deleted when a class
instance is deleted.

The second example shows how to customize fixing behav-
ior using or. Suppose we have a set of objects that may be
persistent. If an object is persistent, it must be assigned to



a persistent container. As a result, when a persistent con-
tainer is deleted, we may have two actions to take on the
persistent object belonging to it; 1) we may delete the ob-
jects, or 2) we may simply change the persistent attributes
of these object to false. The following program implements
the first option.

def persistentConsistent(objs, model) =
objs->forall(obj |

obj."persistent" = true

and not model.(obj."persistentContainer") = null
or obj = null
or obj."persistent" = false

and obj."persistentContainer" = null)

This program has a similar structure to the first one. We
use three constraints to deal with three different situations:
the object is persistent, the object is deleted and the object
is not persistent. When a persistent container is removed,
the second constraint will delete the objects belonging to
it. If we want to instead change the persistent attributes
of these objects, we can just swap the last two constraints.
After swapping, the priority of the attribute-changing con-
straint is higher than that of the object-deleting constraint
and the fixing function will change the attribute rather than
deleting an object.

Finally, let us construct the full program for relation C1.
The program in Section 1 will always insert a new operation
to resolve an inconsistency. However, if the inconsistency is
caused by changing the receiver of a message, changing the
base type of a class instance, or deleting an operation, we
would prefer to set the name of the affected message to null
to indicate that it does not relate to an operation. If users
rename an operation in the class diagram, we would prefer
to rename the related messages accordingly. The following
program implements this fixing behavior.
def C1(msg, model) =

let rec = model.(msg."receiver") in
let opRefs = model.(rec."base")."operations" in
protect model in
(opRefs->exists!(r | msg."name"=model.r."name")
and not msg."name" = null)
or msg."name"=null
or (opRefs->exists(r | model.r."name"=msg."name")
and not msg.name = null)

This program connects three constraints using the or op-
erator. The first constraint protects model so that updates
are only propagated from operations to msg. The second
constraint forces the message name to null. The last one is
similar to the first but it does not protect model. When we
rename an operation in a class diagram, the first constraint
will propagate the update to the related messages. If we
change the receiver of a message, change the type of a class
instance, or delete an operation, the first constraint will fail
because we cannot insert a new operation, and the second
constraint will set the message name to null. If we rename
a message to a new name, the first two will both fail and
the third constraint will insert a new operation. In addi-
tion, we can still customize the fixing behavior of renaming
a message by changing the last “exist” to “exist!”.

6. DISCUSSION OF PROPERTIES

One important question to ask is whether the semantics
of Beanbag satisfies the correctness properties that we have
defined. The answer is positive. Any Beanbag constraint
satisfies CONSISTENCY, PRESERVATION and STABILITY.

We can see this by using structural induction over the
syntax rules for constraints. Most of the induction steps

are straightforward, but there are two issues needed to be
addressed. First, the let statement contains an expression
and we need to know the properties of expressions before we
discuss let. By using structural induction on expressions,
we can see that expressions satisfy the following three prop-
erties, each corresponding to a property on constraint.

PROPERTY 4  (CONSISTENCY OF EXPRESSIONS).

Rv=e](o,7) = 7' = E[e](r'(0)) = v )

PROPERTY 5  (PRESERVATION OF EXPRESSIONS).

Rlv=€](o,7) = 7" = Yvar € dom(r) : var™ C var™

PROPERTY 6 (STABHJTY'OF EXPRESﬁONS}

Ele](c) =v° A7(0) = 0 = R[v=¢](0,7)(0) =0
Then we can reason the let statement using the above prop-
erties.

Second, several constraints and expressions use recursive
calls to reach a fixed point. To satisfy STABILITY, we must
ensure that such a fixed point always exists under the pre-
condition of STABILITY. A fixed point exists if the function
is increasing and has a upper bound. Because of PRESERVA-
TION, the input updates must be included in the output. In
this sense the fixing function is increasing. Because all inner
constraints and expressions satisfy STABILITY, no variables
will be changed when the precondition of STABILITY is satis-
fied. As a result, the updates on the variables cannot grow
beyond the size of the bound values, and thus a fixed point
always exists under the precondition of STABILITY.

Although the three properties are satisfied, it is possible
that the fixing function of a Beanbag constraint does not ter-
minate for some input when the precondition of STABILITY is
not satisfied. For example, R[a."x"=b and b."x"=a] does
not terminate for a input (o, 7) where a” = void and b = {}.
However, such a non-terminating Beanbag program often in-
volves some counter-intuitive constraints (e.g., the example
constraint is universally invalid) and is rarely encountered in
practice. Based on our experience, most Beanbag programs
in practice always terminate.

7. EVALUATION

Since Beanbag satisfies the correctness properties, in the
evaluation we focus on the expressiveness and usability. We
collected 32 consistency relations from the MOF standard [15]
and 34 consistency relations on UML models from Alexan-
der Egyed who used the relations to evaluate their fixing
action generation work [3, 4]'. From the 66 relations we
identify 18 relations that can be automatically established
through fixing actions. These relations are identified mainly
through two criteria. 1) The fixing is sensible without hu-
man intervention or external information. 2) Fixing actions
need to be taken. Some relations can be established without
taking actions. For example, the name of a class should not
be null. We can simply disallow users to change the name
to null.

The selected consistency relations range from high level
semantic relations like C1 to low-level syntactic relations
like C2. For some relations, we also designed multiple fix-
ing behaviors for each of them. As a result, we have the
requirements for 24 Beanbag programs.

Then we proceed to implement these programs in Bean-
bag to see whether Beanbag is expressive enough for MOF

Tn their publications they only mentioned 24 relations, but
actually they have 34 relations in total.



and UML models. The result is encouraging. We have suc-
cessfully implemented 17 programs, that is, about 71% of
all programs. This result shows that although Beanbag is
not expressive enough for any firing behavior, it can support
many scenarios and is useful in practice.

Reviewing the 7 unimplemented programs, we noticed
that one program can be implemented with a trivial exten-
sion to Beanbag: a function counting the number of entries
in a dictionary with no fixing action needed. The other 6
programs need a non-trivial, yet small extension to Bean-
bag: the ability to access the key when iterating entries in
forall. This observation shows that the problems on ex-
pressiveness are not fundamental. All the 7 programs can
be implemented by extensions under the basic philosophy of
Beanbag: attaching fixing actions to primitive constraints
and expressions, and composing them using high-level con-
structs.

On the whole, the development of a Beanbag program is
much easier than manually implementing the fixing proce-
dure. A Beanbag program is usually much shorter than a
manually implemented fixing procedure, and Beanbag en-
sures CONSISTENCY, PRESERVATION and STABILITY of a pro-
gram, which already eliminates many bugs.

However, during our development we also identified sev-
eral problems on usability. First, Beanbag only ensures the
correctness of the output updates, but does not ensure the
existence of an output. It is up to the programmers to en-
sure the primitive constraints and functions are composed
correctly so that the fixing function will not return L for
a proper input. As the interaction among constraints and
expressions may be complex, it sometimes needs quite a few
efforts to achieve this. Second, the fixing behavior involving
inconsistent data is sometimes difficult to analyze. When we
take inconsistent data into account, the domain of the fixing
function becomes much larger. It is sometime very difficult
to consider all situations. One possible solution to the two
problems is to find some design patterns of Beanbag. We
leave this for future work.

8. CONCLUSION

In this paper we have presented a novel language, Bean-
bag, for developing automated inconsistency fixing proce-
dures on models. Beanbag attaches fixing actions to primi-
tive constraints and functions, and composes them through
logic operators and other high-level constructs. As a result,
one Beanbag program has two meanings: one for defining
a relation over data, and one for defining a fixing proce-
dure that establish the relation over data by automatically
propagating updates. Our study has shown that this ap-
proach greatly eases the development of fixing procedures
and can support many, though not all, useful fixing scenar-
ios in practice. Beanbag is implemented and is available on
its website [22].
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