
Automating Presentation Changes in

Dynamic Web Applications via

Collaborative Hybrid Analysis

Xiaoyin Wang* UC Berkeley

Lu Zhang Peking University

Tao Xie NC State University

Yingfei Xiong Peking University

Hong Mei Peking University

* This work was conducted when Xiaoyin Wang was at Peking University.

Dynamic Web Application

• Server code generates HTML page according

to user inputs

Server

code
Browser

HTML page
HTML pageHTML page

Post

HTML page

Generate Fill Form
User

Presentation Changes

• A common task in web application development

Correcting display error or HTML syntax error

Adding interface decorations

Changing appearance styles

• 7% of 600 bug reports investigated are

presentation changes

Challenges

• Presentation changes are often identified

and reported on the generated HTML

pages

• Developers have to modify the server-

side code accordingly

Challenges

Generated web page:
<p2><tr>name:

<input id = 1 color = BFFFFF value = “default”></input></div>country:

<input id = 2 color = BFFFFF value = “country”></input>age:

<input id = 3 color = BFFFFF value = “age”></input><tr>

</p2>

Code generating the web page
$color = BFFFFF; echo “<p2>”; echo “<tr>”; echo “name:”;

echo “<input id =”.$id.” color = ”.color.” value =
“default”></input></div>country:”; $id++;

echo “<input id =”.$id.” color = ”.$color.” value = “country”></input>age:”;
$id++;

echo “<input id =”.$id.” color = ”.$color.” value = “age”></input><tr>”; $id++;

echo “</p2>”;

Affect multiple

places

Too common

for text

search

Outline

• Motivation

• Approach

• Empirical Study

• Discussion

Usage Scenario

HTML page

Runtime /

Server

Server

Code

Our tool

Auto fixed

Needs intervention at

code position xxx

xx

Identify Change

Developer

Approach Overview :

Collaborative Hybrid Analysis

• Dynamic String Taint Analysis
– Locate the piece of code to change

• Static Unexpected Impact Detection
– Check whether the change is safe

Safe: perform the change automatically

Unsafe: report the location to the user

Dynamic String Taint Analysis

• Based on the idea of trace-based bidirectionalization
[Xiong et al., ASE07]

 Add a position tag to each constant string and input
string

 Copy the tags together with the strings

 Propagate through string operations
 Concatenation

<tr> xx.php 153-155

$x = “<tr>”

$y = $x

xx.php 153-155xx.php 153-155

xx.php 153-155

<tr><input xx.php 153-155, xx.php 167-172

String Operation Handling

• Problem: do we need to reimplemenet all string

operations?

• Solution: working with finite state transducer

[Wassermann and Su, PLDI’07]

Constant string A, B, C

String variable $x, $y

$y = B.C

replace($x, A, $y) S0

S1
A/B(tagB)

/C(tagC)
T/T(tagT)

Automatically generated FST with position

tag output, based on the runtime value of

$y, T = Σ* / AΣ*

Unexpected Impacts

• Inner-page impacts
String origin to be changed affects

multiple places in the generated page

• Inter-page impacts
String origin to be changed

affects other pages, or

contents not generated in this

execution

X

 X

 X

X

 X

 X

Checking unexpected impacts

• Inner-page impacts
Checking all locations sharing the same string origin are

changed consistently

• Inter-page impacts
Checking whether any unexecuted code data-dependent or

control dependent on the changed code

Practical Issues
• Insertion:

 When a change requires insertion between two variables,

human intervention is required

 Example:

Code:

$title = “contact”;

echo “<td>”.$title. “</td>”

HTML:

<td>contact˽</td>

• Non-constant string origin

 When a string origin is not constant (thus cannot be

changed directly), human intervention is required

Outline

• Motivation

• Approach

• Empirical Study

• Discussion

Study on the bug reports of three web

applications

• 600 Bug Reports from the early history of 3 popular PHP

web projects: SquirrelMail, OrangeHRM, and

WebCalendar

Project Start

(MM/YY)

End

(MM/YY)

KLoc #Bug

Reports

#PC Bug

Reports

SquirrelMail 04/00 12/01 8-26 200 7

WebCalendar 06/00 12/02 6-17 200 14

OrangeHRM 03/06 10/06 96-105 200 22

PC Bug Reports: Presentation Change related Bug Reports

Are presentation changes trivial?

• Comparison of processing days between PC Bug

Reports and All Bug Reports

• Presentation changes are not trivial (similar processing

days compared with other bug reports)

Project /

Processing

Days

PC Bug Reports All Bug Reports

Avg. Range Avg. Range

SquirrelMail 59.3 0-248 38.8 0- 645

WebCalendar 44.3 0-230 116.5 0-1119

OrangeHRM 20.1 1- 51 18.4 0- 260

Evaluating our approacch
• Dataset: 39 presentation change tasks (from 43

reports, in which 4 are duplicate)

• Evaluation Oracle: developers’ changes

• Research Questions:

 How effective is our approach on finding the source

locations to change?

 How effective is our approach on detecting unexpected

impacts?

Evaluation Results

Categories Number of tasks Percentage

Correctly Located 39 100.0%

Automatically fixed 23 59.0%

Matched fixes 20 51.3%

Unmatched fixes 3 7.7%

Human Intervention

Required

16 41.0%

inner-page impact 1 2.6%

inter-page impact 3 7.7%

insertions 6 15.4%

changing non-constants 6 15.4%

Our approach correctly locates all source origins.

Evaluation Results

Categories Number of tasks Percentage

Correctly Located 39 100.0%

Automatically fixed 23 59.0%

Matched fixes 20 51.3%

Unmatched fixes 3 7.7%

Human Intervention

Required

16 41.0%

inner-page impact 1 2.6%

inter-page impact 3 7.7%

insertions 6 15.4%

changing non-constants 6 15.4%

Most automatic changes match the oracles, yet some do not.

Unmatched Auto-fix

Bug Report No. 1510677 of OrangeHRM

“Feedback information of an operation should be in green

when the operation succeeds”

Our approach changed “#FF0000” (red) to “#005500”

(green).

Developer change added a check for whether the

operation succeeds, and then set different colors

Other unmatched fixes added similar new behavior to the

code

Evaluation Results

Categories Number of tasks Percentage

Correctly Located 39 100.0%

Automatically fixed 23 59.0%

Matched fixes 20 51.3%

Unmatched fixes 3 7.7%

Human Intervention

Required

16 41.0%

inner-page impact 1 2.6%

inter-page impact 3 7.7%

insertions 6 15.4%

changing non-constants 6 15.4%

For the rest of the tasks, our approach correctly identifies the need of human

intervention.

Outline

• Motivation

• Approach

• Empirical Study

• Discussion

Limitations

• More suitable for small atomic changes than

pervasive or large structure changes

• Currently cannot handle web interface

generated with Ajax techniques

• May generate undesirable code changes

Conclusion

• Presentation change being common and

non-trivial

• Hybrid approach to presentation changes

– Dynamic analysis to locate the source code to

change

– Static analysis to ensure the change is safe

• Lightweight approach yet effective

Thanks! Q & A

Evaluation Results

• On locating source code and automatic fixing

Project #PC tasks #Locating #matched

auto-fix

#unmatched

auto-fix

SquirrelMail 6 6 2 0

WebCalendar 12 12 7 2

OrangeHRM 21 21 11 1

Total 39 39 20 3

Evaluation Results

• On detecting unexpected impacts and practical

issues

Project #PC

tasks

#inner-page

Impact

#inter-page

impact

#insert #non-

constant

SquirrelMail 6 0 0 2 2

WebCalendar 12 1 1 1 0

OrangeHRM 21 0 2 3 4

Total 39 1 3 6 6

Example Task
SquirrelMail ---- Bug #601006: “Rejected e-mail link missing a quote”

Error HTML page:

<STRIKE><A HREF="mailto:mymail@gmail.com?

subject=WebCalendar:mycal\>Xiao</STRIKE>Rejected";

Buggy Code:

echo "
<STRIKE><A HREF=\"mailto:" . $tempemail ."?

subject=$subject\>" . $tempfullname . "</STRIKE> (" .
translate("Rejected") . ")\ n";

Result of our tool

1. Locate the “\>” in the code as the data origin of the erroneous place
in the error HTML page

2. Determine that there is no unexpected impacts and practical issues,
so that the fix can be done automatically

Example Task
SquirrelMail ---- Bug #601006: “Rejected e-mail link missing a quote”

Error HTML page:

<STRIKE><A HREF="mailto:mymail@gmail.com?

subject=WebCalendar:mycal\>Xiao</STRIKE>Rejected";

Buggy Code:

echo "
<STRIKE><A HREF=\"mailto:" . $tempemail ."?

subject=$subject\>" . $tempfullname . "</STRIKE> (" .
translate("Rejected") . ")\ n";

Result of our tool

1. Locate the “\>” in the code as the data origin of the erroneous place
in the error HTML page

2. Determine that there is no unexpected impacts and practical issues,
so that the fix can be done automatically

Future Directions

• Empirical studies on more web-based projects

• Handling of more complex presentation

techniques, e.g., Ajax

• User study on how much the approach it going

to help in real maintenance tasks

Dynamic String Taint Analysis

• Based on the idea of trace-based bidirectionalization
[Xiong et al., ASE07]

 Instrumentation
Add a position tag to each constant string and input string

 Propagate through string operations
 Concatenation

 Other Operation

Simulated with Finite State Transducer

[Wassermann and Su, PLDI’07]

<tr>

xx.php 153-155

<input

xx.php 167-172

<tr> xx.php 153-155

String Operation Handling

Constant string A, B, C

String variable $x, $y

$y = B.C

replace($x, A, $y)

Consider A = ‘ts’, $x = ‘abct’(tag1) ‘sdd’(tag2)

Output = ‘abc’(tag1’)B(tagB)C(tagC) ‘dd’(tag2)

S0

S1
A/B(tagB)

/C(tagC)
T/T(tagT)

Automatically generated FST with position

tag output, based on the runtime value of

$y, T = Σ* / AΣ*

