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ABSTRACT
Web applications are becoming increasingly popular nowadays. Dur-
ing the development and evolution of a web application, a typical
type of tasks is to change the presentation of the web application,
such as correcting display errors, adding user-interface controls, or
changing appearance styles. To change the presentation of a static
web page, developers are able to modify the HTML text of the
web page using a graphical web-page editor. However, to change
the presentation of a dynamic web application, instead of using a
graphical web-page editor to directly modify generated web pages,
developers need to modify the code that generates the web pages.
As manually performing presentation changes in dynamic web ap-
plications is tedious and error-prone, we propose a novel approach
based on collaborative hybrid analysis that combines static analy-
sis and dynamic analysis to facilitate developers to perform presen-
tation changes in dynamic web applications. Our approach includes
two parts. The first part takes as input the presentation change to
be performed on a generated web page (with proper runtime in-
formation), and uses dynamic string-origin analysis to locate the
source-code segment that generates the changed part of the web
page. The second part checks unexpected impact of directly per-
forming the change on the source-code segment, and asks for hu-
man intervention when unexpected impact exists. We implemented
our approach for the PHP language and carried out an empirical
study on 39 presentation-change tasks identified from 600 bug re-
ports of three real-world dynamic web applications (in total more
than 148 KLOC). Among the 39 tasks, our approach is able to cor-
rectly locate the place to modify in each presentation-change task
and correctly perform the presentation change on the source code
in more than half of the tasks.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: [Distribution, Maintenance, En-
hancement]

General Terms
Reliability
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1. INTRODUCTION
Recently, web applications are becoming increasingly popular

due to easier access to the Internet. Various researchers have de-
veloped techniques to facilitate the development and evolution of
web applications, such as testing web applications [4, 3, 19], static
checking for bugs in web applications [10, 33], and refactoring
web applications [31, 18]. A typical type of daily tasks during
the development and evolution of web applications is presentation
changes, which are modifications made to change the appearance
of web pages. Typical presentation changes in web applications
include correction of display errors, adding user-interface controls,
etc. According to our investigation of 600 bug reports from three
real-world web applications, about 7% of the bug reports are pre-
sentation changes, and these presentation-change bug reports pri-
marily occur in early evolution stages of the applications.

On a static web page, it is straightforward to perform a presenta-
tion change, because a developer can directly modify the graphical
presentation of each static web page with the help of a graphical
web-page editor. However, most web applications nowadays con-
tain a large number of web pages that are generated dynamically
at the server side through code written in a programming language
(e.g., PHP). In such a case, it is difficult to perform presentation
changes, because the developer should not directly modify the gen-
erated web pages but needs to modify the code that generates the
web pages requiring presentation changes.

Manually performing a presentation change in the code that gen-
erates a web page is often tedious and error-prone for two main
reasons. First, to locate the piece of code for modification, the
developer needs to be familiar with both the structure of the gen-
erated web page and the structure of the code generating the web
page. Typically, the structure of the web-page-generation code is
different from the structure of the generated web page itself. For ex-
ample, the web-page-generation code may use complex loop struc-
tures to generate repetitive fragments in the generated web page.
Second, the developer also needs to ensure that the modification
of the located code realizes only the presentation change without
inducing unexpected impact. Due to the dynamic nature, modify-
ing one place in the web-page-generation code may impact many
places in the generated web page and/or other web pages that can
be generated by the code. Without knowing the potential impact,
the developer may change the code in an unexpected way.

Text search may be helpful in some occasions where the devel-
oper uses the need-to-change presentation fragment in the gener-
ated web page as a query to search in the web-page-generation
code. However, it is common that the text serving as the query
appears many times in the web-page-generation code and the de-
veloper thus faces a large number of false positives. For example,



if the developer wants to delete a certain tag “<tr>”1 in a dynami-
cally generated web page, he or she may get hundreds or thousands
of irrelevant “<tr>” tags when searching for the code that gener-
ates the web page with “<tr>”. Furthermore, when the need-to-
change presentation fragment is not generated from one entire con-
stant string, text search can hardly locate the piece of code corre-
sponding to the need-to-change presentation fragment. In the pre-
ceding example, if the developer searches using “<tr>” together
with its surrounding texts to try to filter out some irrelevant results,
text search may return nothing, because “<tr>” and its surround-
ing texts may be in separate constant strings in the source code,
and are concatenated at runtime. Fault localization [2] is another
approach to supporting locating the code segment to change. How-
ever, existing fault-localization techniques usually require to run
the web application with many test cases including passing and fail-
ing ones, incurring much extra overhead. Furthermore, these tech-
niques typically require developers to inspect a non-trivial number
of suspected locations without providing support on changing these
locations.

To facilitate developers to perform presentation changes, we pro-
pose a novel approach to automating presentation changes in dy-
namic web applications. Our approach aims to help a developer
perform presentation changes in a dynamic web application in a
way similar to performing presentation changes in static web pages.
To use our approach, a developer needs to run an instrumented ver-
sion of the web application to generate the need-to-change web
page with runtime information produced by the instrumentation.
Then the developer can annotate a presentation change on the gen-
erated need-to-change web page by selecting a need-to-change HTML
segment and providing the new value2. With the annotated change
and the runtime information as input, our approach automatically
performs a change on the source code to fulfil the presentation
change if no unexpected impact is found, or provide the developer
with the need-to-change location in the source code together with
the information of detected unexpected impacts.

Our approach basically consists of two parts. The first part is
dynamic string-origin analysis, which takes as input the runtime
information of a web-page-generating execution, and a given part
p in the generated web page. The output of dynamic string-origin
analysis is the source-code segment that generates p during the ex-
ecution. Therefore, our dynamic string-origin analyzer can map a
presentation change back into the web-page-generation code. The
second part is unexpected-impact detection, which takes as inputs
the source code of a web application, an annotated presentation
change PC on the web page generated by the web application, and
a change SC on the source code. The output of our unexpected-
impact detector is all the possible places affected by SC except
PC.

The general idea of our approach is to generate code changes by
mapping changes from the program output to its source code us-
ing dynamic analysis and check the safety of the changes through
static analysis and dynamic analysis. In this paper, we refer to this
two-part analysis for automating code changes as collaborative hy-
brid analysis, since both static analysis and dynamic analysis are
involved and collaboration between the two types of analysis is es-
sential. Note that the general idea of collaborative hybrid analysis
may not be limited to the particular problem discussed in this pa-
per, but be potentially applicable to automate other types of code
changes, such as fixing SQL queries or changing file outputs.

1In HTML, “<tr>” causes to print a new line in the web page,
similar to “\n” in some programming languages.
2For insertion, the developer needs actually to choose a point be-
tween two characters in the HTML document as the insertion point.

As we implemented and evaluated our approach for dynamic
web applications written in the PHP language, we use examples in
PHP throughout this paper for illustration. However, the idea of our
approach is general and in principle applicable for dynamic web
applications written in other languages. The presentation changes
that this paper aims to handle are changes in the presentation part
of web pages, including the display style, the layout of controls,
and the format and labels of controls. Handling changes about
the displayed data and computation results is out of the scope of
this paper. To evaluate our approach, we carried out an empiri-
cal study on 39 presentation changes identified from 600 bug re-
ports in three real-world dynamic web applications (in total up to
148 KLOC). Note that, in our evaluation, we extracted presentation
changes from bug reports because we had the recorded developer
changes as the ground truth. Our approach is not specific to fix-
ing presentation-change bugs, but can also be applied to evolution-
related presentation changes. Our empirical results show that our
approach is able to correctly locate the place to modify to realize
a presentation change in each presentation-change task. Further-
more, our approach can correctly propagate the presentation change
to the source code in more than half of the tasks, and correctly de-
tect unexpected impacts in most of the remaining tasks.

This paper makes the following main contributions:
• An approach based on collaborative hybrid analysis that au-

tomatically performs presentation changes in a dynamic web
application.

• Dynamic string-origin analysis, which locates the source-
code segment in the web application that generates a certain
part of a generated web page.

• Unexpected-impact detection, which determines whether the
web-page-generation code can be directly changed to realize
the presentation change without unexpected impact.

• An empirical study on a total of 600 bug reports of three
real-world dynamic web applications (i.e., SquirrelMail,
WebCalendar, and OrangeHR) to demonstrate the effec-
tiveness of our approach.

2. MOTIVATING EXAMPLE
Consider the example from file “mailbox_display.php” in the

version of May-23-2001 of the SquirrelMail project. The pre-
sentation change is made to fix bug report No. 417165. The tex-
tual description of the bug report is “Missing </form> in mail-
box_display.php”. From the bug report, we know that a bug in the
code results in a missing “</form>” in an HTML text generated by
“mailbox_display.php”. Therefore, the developer needs to change
the code in “mailbox_display.php” to make the string “</form>”
inserted into an appropriate position in the generated web page.
The code related to the change is depicted below.
1 function displayMessageArray(...) {

...
2 mail_message_listing_beginning(...);

...
3 echo ’</table></FORM>’;
4 echo ’</td></tr>’;

...
6 }
7 function mail_message_listing_beginning(...){

...
8 echo ’\ n\ n\ n<FORM name=messageList method=post

action=\"$moveURL\">\ n’;
...

9 }

The form begins in mail_message_listing_beginning, but
needs to be closed in displayMessageArray. Thus, the devel-
oper must check the code very carefully to insert the string “</form>”
into an appropriate position. Actually, earlier comments to the bug



report suggest to insert echo ‘</FORM>’ at the end of function
mail_message_listing_beginning. However, the correct fix,
which was done a month later, actually inserts echo ‘</FORM>’ in
the middle of displayMessageArray, as shown in the italicized
Line 3. From the example, we can see that, due to the complexity
of the web-page-generation code, it is tedious and error-prone for
the developer to perform presentation changes manually.

The HTML segment generated by the preceding code is depicted
below. The italicized </FORM> is where the missing “</form>”
should be inserted into the generated HTML text.
<FORM name=messageList method=post
action="move_messages.php?msg=&mailbox=INBOX&startMessage=1">;
</table></FORM></td></tr>;

With our approach, the developer can run the instrumented source
code of SquirrelMail to record the required execution informa-
tion. After the developer specifies that the “</FORM>” should be
inserted between “</table>” and “</td>” in the generated HTML
text, our approach maps all the substrings in the generated HTML
text to their origins in “mailbox_display.php” and thus identifies
the place in “mailbox_display.php” where the echo ‘</FORM>’

should be inserted. In particular, our approach actually appends
“</FORM>” to one constant string in “mailbox_display.php”. Our
approach further checks that this change to the PHP file would not
have any unexpected impacts.

3. RELATED WORK
For convenience, we classify related research into seven cate-

gories: string-taint analysis, dynamic taint analysis, impact anal-
ysis, hybrid analysis, automated support for presentation changes,
bidirectional transformation, and automated bug fixing.

String-Taint Analysis. Our dynamic string-origin analysis is
closely related to static string-taint analysis, which is developed
by Wassermann and Su [32] on the basis of string analysis [6,
20, 28], in order to determine whether the data origins of a given
string variable are from an unsafe source. Yu et al. [38] recently
proposed an automaton-based string-taint analyzer for PHP with
stronger handling of string operations. In our previous research [30,
31], we adapted string-taint analysis to statically locate all the con-
stant strings that are the data origins of a given string variable.
Our dynamic string-origin analysis differs from existing research
on string-taint analysis as follows. First, we apply string-taint anal-
ysis dynamically on one execution trace, while all existing vari-
ants of string-taint analysis statically analyze all possible execu-
tions. Second, our dynamic string-origin analysis uses execution-
specific information (such as actual values of unanalyzable strings
and execution-specific finite state transducers) to improve the preci-
sion of analysis. Third, the taints used in our string-origin analysis
record locations of a runtime string value’s data origins, which are
different from the taints used in any existing variants of string-taint
analysis. Finally, our unexpected-impact detection is able to check
the impacts of changing a certain constant string in the code; such
checking cannot be handled by existing string analysis and string-
taint analysis.

Dynamic Taint Analysis. Dynamic taint analysis [22] is a cate-
gory of techniques that add taints on a runtime value (e.g., a byte or
an object), propagate taints during the flow of the value, and trace
where the value goes to by checking the taints. Typically, dynamic
taint analysis [12, 24] traces where the user input goes to at runtime,
since user input is often considered as insecure in many security-
related tasks. As a character in a string takes a byte, our dynamic
string-origin analysis is similar to byte-level dynamic taint analysis.
However, there are two main differences between the two analy-
ses. First, our dynamic string-origin analysis uses complex taints to
trace location information, while existing techniques for dynamic

taint analysis mainly use boolean taints to trace security informa-
tion. Second, our dynamic string-origin analysis is based on an-
alyzing productions in the extracted context free grammar, while
byte-level dynamic taint analysis is based on analyzing all opera-
tions on each byte of each involved variable. Therefore, it would
be much more expensive to adapt byte-level dynamic taint anal-
ysis for our target problem than using our dynamic string-origin
analysis. For example, byte-level dynamic taint analysis needs to
instrument at a level finer than the statement level used in our dy-
namic string-origin analysis; and byte-level dynamic taint analy-
sis needs to instrument all involved library code, but our dynamic
string-origin analysis does not. Note that the propagation of com-
plex taints could further worsen the situation.

Impact Analysis. Our unexpected-impact detection is related to
research on impact analysis. Impact analysis refers to approaches
to inferring how a change to one piece of code affects other places
in the same code base. Arnold and Bohner [1] wrote a book on
impact analysis for software changes. The book contains the latest
approaches in the area of impact analysis at its publication time,
such as dependence analysis [13] and static slicing [36], and pro-
vides ideas and guidelines for using impact analysis practically.
Ren et al. [25] proposed an automatic impact-analysis tool for Java
called Chianti. Chianti first decomposes the differences between
two versions of software to a list of atomic changes, and then de-
cides which parts of the code and which test cases may be affected
by the changes. Law and Rothermal [17] proposed to use dynamic
analysis to decide more precise but incomplete impact of a soft-
ware change. Existing techniques of impact analysis, either static
or dynamic, try to locate all affected places of a given change on the
source code. In contrast, our unexpected-impact detection takes as
inputs both the source code and an execution trace, and tries to lo-
cate only the affected places that are “unexpected” (i.e., the affected
places that do not correspond to the developer-specified presenta-
tion change).

Hybrid Analysis. There have been some research efforts on in-
tegrating static analysis and dynamic analysis. Nimmer and Ernst [23]
proposed a bug-detection approach that first mines program invari-
ants from a large number of program executions, and then verifies
the mined invariants using static analysis. This research uses dy-
namic analysis and static analysis as two independent steps, while
our approach relies on the collaboration of static analysis and dy-
namic analysis. Furthermore, dynamic analysis in our approach
requires only one single execution, while dynamic analysis in their
approach requires multiple executions. Dufour et al. [8] proposed
the blended analysis, which performs static analysis in the scope of
an execution trace. Conceptually, the first part in our approach is
similar to this research, but the second part in our approach involves
more static and dynamic analyses.

Automated Support for Presentation Changes. Whyline [16]
is a debugging tool that allows developers to ask “why” and “why
not” questions about presentation bugs. It provides some support
for presentation changes. Similar to our approach, Whyline also
uses program instrumentation to build mappings between GUI com-
ponents and the source code. Therefore, Whyline is able to answer
questions about the GUI components such as “why is the color of
the button red?”, and guide developers to the related places in the
code to fix presentation bugs. However, there are two main dif-
ferences between Whyline and our approach. First, as Whyline is
developed for traditional GUI structures, it is not applicable for dy-
namic web applications in which the whole GUI is built by concate-
nations and operations of strings. In contrast, our approach uses dy-
namic string-origin analysis to map GUI components in web appli-
cations to their origins in the source code. Second, beside mapping



between GUI components and the source code, our approach fur-
ther provides support for developers to propagate changes in gen-
erated web pages back to the source code.

Nguyen et al. [21] proposed an approach that automatically prop-
agates fixes of syntactical errors in HTML texts back to the server-
side code. Their basic idea is to first statically build from the source
code a symbolic model that estimates all the possible HTML pages
that the source code may generate, and then they match the fixed
HTML page to the model to locate the source-code segment that
corresponds to the fixed part of the HTML page. Our work differs
from this approach in three main aspects. First, our approach is
able to handle presentation changes besides syntactical fixes. Sec-
ond, we use dynamic analysis, which is able to precisely handle all
statically uncertain issues such as user inputs and library functions
without source code. Thus, our approach is able to construct a cor-
rect mapping from an arbitrary part of the HTML page back to the
source code. Third, our approach further detects the unexpected
impacts of propagating a change on the HTML page back to the
source code.

There is concurrently conducted work by Samimi et al. [26] that
proposed an approach to automatically fixing HTML-generation
errors. Their approach is based on multiple test cases, and gen-
erates a string constraint on the printed constant strings (constant
strings that are echoed to the HTML page) to make all the test
cases pass. Then a fix is automatically generated through solving
the constraint. Compared to their approach, our approach relies on
only one test case. Furthermore, by further tracing back to the data
origins of printed variables, our approach is able to generate fixes
beyond changing printed constant strings.

Bidirectional Transformation. Bidirectional transformation aims
to tackle the problem of maintaining data consistency between two
related data sources [9, 14]. When one of the two related data
sources changes, the other data source must change accordingly.
Bidirectionalization [37, 11], which aims to add the capability of
backward transformation to one-directional transformation programs,
is a state-of-the-art solution for bidirectional transformation. Thus,
maintaining the consistency between the presentation and the source
code can also be viewed as a bidirectionalization problem in gen-
eral. There are two main differences between our approach and
bidirectional transformation. First, bidirectional transformation prop-
agates changes in output back to input, while our approach prop-
agates changes in output back to the program. Second, existing
bidirectionalization techniques are able to handle only data trans-
formation programs that contain no complex operations (e.g., string
operations, arithmetic operations), while our approach is able to
handle string operations that are popular in our target problem.

Automated Bug Fixing. Automatically performing presentation
changes can be viewed as a case of automated bug fixing, such
as Wei et al. [34], Weimer et al. [35], Carzaniga et al. [5], and
Dallmeier et al. [7]. Typically, these approaches search for good
fixes using specifications or test oracles as the criterion. Further-
more, these approaches are concerned with bugs that result in er-
roneous program states instead of the presentation. Different from
these approaches, our approach actually propagates the fixes writ-
ten by developers in the generated web pages to the source code,
and our approach is concerned with presentation bugs that may not
be related to program states.

4. APPROACH
To solve the problem of automating presentation changes in dy-

namic web applications, we propose a general idea named col-
laborative hybrid analysis, which contains two main parts: (1) a
change-mapping part that involves dynamic analysis to map the

change on the generated HTML text to the code generating the
HTML text and (2) a checking part that involves both static analy-
sis and dynamic analysis to make sure that the change in the code
would not bring unexpected impacts. Note that this idea is general
and may be applicable to various code-change scenarios other than
presentation changes in dynamic web applications.

In the change-mapping part, a developer needs to (re-)generate
the need-to-change web page through executing an instrumented
version of the web application. Along with the generation of the
need-to-change web page, our approach uses the instrumented code
to record some runtime information. With the help of the runtime
information, our approach uses dynamic string-origin analysis to
locate in the web-page-generation code the data origins of gener-
ated parts. Thus, our approach is able to map the change (i.e., inser-
tion, deletion, or replacement) made by the developer on the gener-
ated web page to the data origins in the web-page-generation code.
In the checking part (which uses both static analysis and dynamic
analysis), our approach further checks whether the change can be
applied without further revisions of the code. If so, our approach
recommends direct propagation of the change to the web-page-
generation code. Otherwise, our approach highlights the need-to-
change place in the code and provides the reason for not being able
to perform the change directly. In this paper, we refer to this check-
ing as unexpected-impact detection.

In the preceding approach to automating presentation changes in
dynamic web applications, there are two main technical challenges
to overcome. The first challenge is what dynamic information to
record and how to use the collected information to achieve required
precision for mapping the change from the generated web page to
the code. To overcome this challenge, we propose dynamic string-
origin analysis based on static string-taint analysis (which typically
does not meet our requirement when handling user inputs, string
operations, etc.) to deal with our dynamic information. The second
challenge is how to check against unexpected impacts. To over-
come this challenge, we propose unexpected-impact detection. We
describe the details of how we overcome the two challenges in the
next two subsections.

4.1 Dynamic String-Origin Analysis
As mentioned previously, our dynamic string-origin analysis is

based on string-taint analysis [33, 30]. The process of string-taint
analysis is as below. The analysis transforms the web-page-generation
code to an extended Context Free Grammar (CFG) containing Fi-
nite State Transducers (FSTs). Then, the analysis propagates taints
from the terminals to the nonterminals through productions and
FSTs in the CFG, and determines the taints of the nonterminals.

However, static string-taint analysis may not be suitable for the
target problem without adaptation. First, it may generate false posi-
tives due to its approximation for statically unknown elements (e.g.,
user input, possible numbers of loop iterations). Second, static
string-taint analysis considers all possible executions and therefore
can hardly achieve mappings between code elements and the exact
positions in the generated HTML text.

Therefore, we propose dynamic string-origin analysis. One con-
cern of dynamic analysis is the runtime overhead imposed by the
instrumentation, but such concern is not a problem in our case: we
could have two versions of the program, an instrumented one for
performing the presentation change and the original one for normal
execution and testing. The basic idea of dynamic string-origin anal-
ysis is to perform string-taint analysis on an execution trace instead
of the source code. As dynamic string-origin analysis makes use
of the recorded runtime information of the execution, there would
be no approximation. Moreover, instead of boolean taints, our dy-
namic string-origin analysis uses a taint that records the source-



code-location information, so that the taints of a generated HTML
text represent all of its data origins.

We next present how we record runtime information for our dy-
namic string-origin analysis (Section 4.1.1). We then present how
we adapt string-taint analysis for our purpose (Section 4.1.2).

4.1.1 Recording of Runtime Information
In the instrumented web application, the instrumented code records

two kinds of information. The first kind of information is the ex-
ecuted statements in their execution order. This kind of informa-
tion provides the basis for our dynamic string-origin analysis. The
second kind of information is the values of expressions that ex-
isting techniques of string-taint analysis cannot handle precisely.
Typically, those expressions include user inputs (e.g., “POST” and
“GET” operations), the invocations of library functions (except string
operations), array elements, and arithmetic or boolean expressions
used as strings. For such an expression, existing techniques of
string-taint analysis use the closure of the alphabet to estimate its
value. For example, the statement $x = $_Post[’name’] is trans-
formed to a production “X → σ*”. As we use our dynamic string-
origin analysis on one execution trace, we are able to use the actual
values of these expressions, and thus further reduce the imprecision
of string-taint analysis.

We next illustrate how we record the runtime information with
the following example code portion:
1 $i = 0;
2 $uid = str_replace("’", "&#39;", $_Post[’id’]);
3 $sql = "select * from utbl where uid = ".$uid;
4 $query = mysql_query($sql);
5 $num = mysql_num_rows($query);
6 while($i <$num) {
7 $result = mysql_fetch_array($query);
8 $str.= "<td>".$i." ".$result["title"]."</td>";
9 $i++;
10 }
11 echo $str;
12 echo "<tr>".$uid;

The execution trace of the code portion is as below, where the
value of $_Post[‘id’] is “wxy”, and there are two titles in the database
for user “wxy”: “T1” and “T2”. For brevity, we present only the
line number of a statement and the recorded values associated with
the statement. For Line 2, we record the value of a user input. For
Lines 4, 5, and 7, we record the return values of library functions,
where “Resource id#1” is the handler of the SQL query, and “#Ar-
ray1#” and “#Array2#” represent two arrays of values read from
the database. For Line 8, we record the value of an array element,
and for Line 1 or 9, we record the value of an arithmetic expression.
1:$i=0, 2:$_Post[’id’]="wxy", 3,
4:$query= Resource id#1, 5:$num = 2,
7:$result=#Array1#,
8:$result["title"]="T1", 9:$i=1,
7:$result=#Array2#,
8:$result["title"]="T2", 9:$i=2,
11, 12

4.1.2 Analysis with Runtime Information
When placing the executed statements in their execution order,

we get a new program, which we refer to as the trace program in
this paper. From the trace program, we construct an extended CFG
in a way similar to the construction of an extended CFG in string-
taint analysis. The only difference lies in that we use the recorded
actual values for places where existing techniques of string-taint
analysis use the closure of the alphabet for estimation. Note that
the trace program contains neither branches nor loops. Thus, the
imprecision caused by the control dependencies on user inputs has
already been removed naturally.

For the code portion and the runtime information presented in
Section 4.1.1, we construct the following extended CFG, in which,

instead of using the alphabet closure to estimate the values of user
inputs and unanalyzable variables (i.e., $_Post[’id’], $num, $result
["title"], and $i), we use their actual values:
$i1 → 0
$Post_id → wxy
$uid → preg_replace(’, &#39;, $Post_id)
$str1 → <td>.0. .T1.</td>
$str2 → <td>.1. .T2.</td>
$page → $str2.$expr
$expr → <tr>.

As our extended CFG is constructed from an execution trace,
either a terminal or a nonterminal represents just one string. There-
fore, we are able to use the taint of a terminal or a nonterminal to
represent the origins of different parts in the string represented by
the terminal or the nonterminal. Initially, we give each terminal a
location flag as the taint. In particular, if the terminal represents a
string constant, the location flag records the exact location of the
string constant in the code. If the terminal represents a string value
read from files, databases, the network, or the user input, the loca-
tion flag records the location of the reading statement. If the termi-
nal represents a non-string-type variable or constant concatenated
with strings, the location flag records the location of the concatena-
tion. The taint of a terminal also contains information to distinguish
these different types of terminals. We give no taint to any nontermi-
nal initially, and we propagate taints of the terminals to the nonter-
minals. The taint of a nonterminal is a list of index ranges and their
corresponding location flags3. For example, a nonterminal whose
value is “abcde15” may have the following taint: 1-3 (file1.php,
Line 1, constant), 4-5 (file2.php, Line 2, database), 6-7 (file2.php,
Line 5, number). The taint indicates that the origin of substring
“abc” is the string constant in Line 1 of file1.php, the origin of sub-
string “de” is from a database in Line 2 of file2.php, and the origin
of the substring “15” is from a number in Line 5 of file2.php. As
our taint of a terminal/nonterminal indicates the origins of its sub-
string, we also refer to our taint as the origin signature below.

To ensure that we have calculated the origin signatures of all
the nonterminals at the right-hand side of a production before we
calculate the origin signature of the nonterminal at the left-hand
side of the production, we propagate the origin signatures in the
same order as the execution order. To present how we propagate
origin signatures in a production whose right-hand side is simple
concatenation, let us consider a production in the form of “Y →
X1X2X3...Xn”, in which Y is the nonterminal at the left-hand
side, and each Xi is a terminal or a nonterminal whose origin
signature is sig(Xi) and whose value is value(Xi). The origin
signature of Y after propagation is basically the concatenation of
sig(Xi) with adjustment of the index ranges. For example, if the
length of value(X1) is length(X1), we need to increase the in-
dices in sig(X2) by length(X1) to form the corresponding part
of indices in the origin signature of Y. As each nonterminal in our
CFG represents just one string, our propagation of the origin sig-
nature is able to calculate the exact origin of any substring of the
string represented by the nonterminal. If the right-hand side of a
production is not just concatenation of nonterminals and/or termi-
nals, but is a more complex string operation (such as str_replace
and trim), there is a Finite State Transducer (FST) in the extended
CFG to simulate the string operation. In existing techniques of
string-taint analysis [32, 30], an FST can read a string str with
its origin signature sig(st) and output a string str1 and its origin
signature sig(str1). If we use exactly the same FSTs used in exist-
ing techniques of string-taint analysis in our dynamic string-origin
analysis, the FSTs can guarantee that (1) str1 is the same as the
3Note that our previous research [30, 31] uses location flags but not
index ranges as taints.



Figure 1: An example of location-FST (t=Σ/a)
output of the string operation with input str, and (2) sig(str1) in-
dicates the origin of each substring in str1 that comes from str.
However, if the output of a string operation has substrings coming
from more than one parameter of the string operation, an FST used
in existing techniques of string-taint analysis can calculate only a
partial origin signature. To overcome this limitation, we extend
the existing FSTs by adding origin signatures to output strings on
edges of the FSTs. As any real argument of a string operation with
multiple parameters can be a string variable, one origin signature
added on one edge of the FSTs may contain multiple origins. Note
that, as FSTs can simulate string operations defined in library code,
using FSTs naturally avoids instrumenting library code.

To illustrate our adaptation on FSTs, we present an example in
Figure 1, which shows an adapted FST for str_replace(’a’,
$y, $x), where the value of $y is “bc”. In the figure, we use
“tag(ch)” to represent the location flag of a character “ch”. Con-
sider the case where the value of $x is “abcda”, the location flag of
“abc” in $x is tag1, the location flag of “da” in $x is tag2, the loca-
tion flags of the “b” and “c” in $y are tag3 and tag4, respectively.
The output of the FST would be “b(tag3)c(tag4)b(tag1)c(tag1)d(tag2)
b(tag3)c(tag4)”, in which the tag after each character indicates the
location flag of the character. In contrast, using the standard FST,
the output would be “bcb(tag1)c(tag1)d(tag2)bc”, and the location
information of the characters from the argument $y would get lost.

After taint propagation, the origin signature of the start nonter-
minal (i.e., S) describes the origins of all the substrings in the gen-
erated web page. Using this origin signature, when the developer
makes a change in the generated web page, our approach is able to
map the change to its data origins in the web-page-generation code.

4.2 Unexpected-Impact Detection
As mentioned previously, propagating a presentation change from

a web page back to the web-page-generation code may have unex-
pected impacts on other places in the generated web page and/or
on other web pages that can be generated by the code. Specifically,
we deem an impact of a code fix as expected, if the impact matches
the user-specified presentation change in the generated web page.
Other impacts of the code fix are deemed unexpected.

When the unexpected impact is on other places in the generated
web page, we refer to it as inner-page impact. Existing bidirection-
alization techniques have already considered this category of unex-
pected impacts, and refer to them as conflicts. In particular, conflict
detection in bidirectionalization checks whether multiple elements
in the output of the transformation are mapped to a single element
in the input, and whether these output elements are changed incon-
sistently. Similar to existing bidirectionalization techniques, our
approach checks whether two substrings in the generated web page
(corresponding to the start variable in the CFG) sharing the same
location flag change consistently or not. Note that, in nature, the
checking of this category of unexpected impacts is based on dy-
namic analysis, which analyzes the CFG constructed from one ex-
ecution trace.

When the unexpected impact is on other web pages, we refer to
it as inter-page impact. Bidirectionalization techniques do not con-
sider this category of unexpected impacts, because a transforma-
tion program in bidirectionalization always transforms one input to
the same output. When a change propagation (denoted as C) has
an inter-page impact, the changed code must have some impact to
multiple web pages (denoted as P−Set). Among these pages, only
one (denoted as p) is shown in the execution and contains the user-
specified presentation change. In each page in P − Set other than
p, there must be some part (denoted as pa) that is data-dependent
or control-dependent to C, and part of the code that generates pa
is not included in the execution trace because pa is not generated.
Therefore, the clue of inter-page impact should be the existence
of some code that is data-dependent or control-dependent on the
changed code, but not included in the execution trace.

Therefore, we detect inter-page impacts by first searching the ex-
ecution trace for code elements (variables, expressions, and return
values) that may contain the changed part as a substring, and then
statically checking in the source code whether these code elements
are used in branch predicates in the execution trace or are used in
statements not in the execution trace. Specifically, to detect inter-
page impacts, we use a static-analysis technique that consists of
four steps. First, in the origin signature of the start nonterminal,
we find the location flags corresponding to the changed part on the
changed web page, and use these flags to form a flag set (denoted as
Flags). Second, for each nonterminal in the CFG, if its origin sig-
nature contains any location flag in Flags, we put the nonterminal
into a set called RefNT. Note that the origin signature of a nontermi-
nal is the sequence of the location flags of its each substring. Third,
we map each nonterminal in RefNT back to the code elements that
the nonterminal represents. If a code element is represented by a
nonterminal in RefNT, we put it into a set called RefVar. Fourth, we
check whether there exists a reference of a code element in RefVar
that (1) is in branch predicates recorded in the input execution trace
or (2) is in any statements not recorded in the input execution trace.
If so, we deem that we have detected an unexpected impact in the
second category, because the change may affect some parts of the
code that are not executed in the current execution.

When our approach detects an unexpected impact in either cat-
egory, our approach highlights the unexpected impact and recom-
mends to the developer that the presentation change cannot be di-
rectly performed to the source code.

4.3 Practical Issues
Beside the preceding two categories of unexpected impacts, our

approach also considers two practical issues before performing a
presentation change. First, the presentation change made in a gen-
erated web page may not always map to constant strings in the
code. When a presentation change maps to strings read from files,
databases, the network, or the user input, we would recommend the
developer to do some manual refactoring to realize the presentation
change, since the developer needs to adjust the processing logic to
change the value of data read from outside the web-page-generation
code. Second, if the made presentation change is an insertion and
the inserted string is between two concatenated constant strings, the
string can be inserted either to the right of the first string or to the
left of the second string. In such a case, our approach would also
ask the developer to choose one insertion point.

5. EMPIRICAL STUDY
To evaluate our approach, we implemented our approach for the

PHP language and conducted an empirical study on our approach
using three PHP projects as subjects.



Table 1: Subject web applications used in our study
Subject #Dev. Start End KLOC

SquirrelMail 10 Apr-15-2000 Dec-23-2001 8 to 26
WebCalendar 7 Jun-06-2000 Dec-11-2002 6 to 17
OrangeHRM 33 Mar-02-2006 Oct-27-2006 96 to 105

5.1 Research Questions
Our empirical study tries to answer the following two research

questions.

• RQ1: How effective is our approach on locating the source
code that generates the changed part of the HTML page?

• RQ2: How effective is our approach on detecting unexpected
impacts and discovering practical issues?

The first research question is mainly concerned with the effec-
tiveness of our technique for dynamic string-origin analysis. The
second research question is mainly concerned with the effective-
ness of our techniques to detect unexpected impacts and to deal
with practical issues.

5.2 Study Design
We used three popular open source dynamic web applications as

subjects in our empirical study: SquirrelMail, WebCalendar
and OrangeHRM . SquirrelMail is one of the most popular
web-based email clients, WebCalendar is one of the most pop-
ular web-based calendars and memorandums, and OrangeHRM
is a web-based human-resource management systems. All of the
three web applications are dynamic web applications written in
PHP and their source code is accessible from SourceForge4. We
choose these three applications because they are from different do-
mains and their presentation styles are different from each other,
so that our empirical results on them would probably be generaliz-
able to different presentation styles. Furthermore, all three subjects
have more than 2000 bug reports so that we have enough data sets
to construct presentation changes for our empirical study.

To perform our study, we manually studied 200 bug reports for
each web application. In particular, we chose the earliest 200 bug
reports marked as fixed in the bug repository of each web appli-
cation. The reason is that we need bug reports marked as fixed
to compare the results of our approach with the actual results and
most of early bug reports were already fixed no matter whether they
were easy or difficult to fix. However, among recent bug reports,
the bug reports marked as fixed may be more likely to be easy to
fix and thus may not be representative. Table 1 depicts the detailed
information of the three web applications.

In Table 1, Columns 3 and 4 present the submission date of the
first fixed bug report and the submission date of the 200th fixed
bug report in the form of “mmm-dd-yyyy”, respectively. Column
5 presents the size of each web application in Kilo Lines Of Code
(KLOC). Since the size of the source code would change from the
start date to the end date, we give two numbers for the size of the
source code on the start date and that on the end date, respectively.
For example, “8 to 26” indicates that the size of the source code is
8 KLOC on the start date and 26 KLOC on the end date.

Among the 600 studied bug reports, we manually identified 43
bug reports5 corresponding to presentation changes from the ver-
sion histories and the bug repositories of the three subjects. Table 2
depicts the result of our manual investigation of the 600 bug re-
ports. In Table 2, Columns 2 to 6 present the number of studied
4http://sourceforge.net/
5The information of the bug reports are available on the
project web site: http://research.csc.ncsu.edu/ase/
projects/apc/

bug reports, the number of presentation-change bug reports, the
percentage of presentation-change bug reports among all studied
bug reports, the number of duplicate presentation-change bug re-
ports, and the number of identified presentation-change tasks, re-
spectively.

In Table 2, we have three main observations. First, in all of
the web applications under study, there exist some bugs related
to presentation changes. This fact indicates that most web ap-
plications may require presentation changes during their develop-
ment and evolution. Second, the average percentage of presentation
bugs among all bugs is 7.2%. This percentage number indicates
that presentation-change bug reports are an important category of
bug reports for web applications and presentation-change tasks are
quite common in the early evolution history of web applications.
Third, in SquirrelMail, presentation-change bug reports account
for 3.5% of all the studied bug reports, while in OrangeHRM ,
presentation-change bug reports account for 11.0% of all the stud-
ied bug reports. This difference indicates that the frequency of pre-
sentation changes may be different for different web applications.
A possible explanation is that the GUI structure of SquirrelMail
is more stable than that of OrangeHRM , because there is a de-
facto standard GUI structure for web-based email-client applica-
tions.

Furthermore, to understand whether some presentation-change
tasks take developers non-trivial effort to perform, we studied the
processing days of the presentation-change bug reports and other
bug reports6. For each software project under study, Table 3 com-
pares the processing days of the presentation-change bug reports
and the processing days of all the 200 studied bug reports. In Ta-
ble 3, Column 1 presents the software project under study. Columns
2 and 3 present the average processing days and the processing-day
range for the presentation-change bug reports among the 200 stud-
ied bug reports of the software project, respectively. Columns 4
and 5 present the average processing days and the processing-day
range for all the 200 studied bug reports of the software project,
respectively. All the processing-day values are calculated as the
difference between a bug report’s closing date and its submission
date. If a bug report is closed on the day it is submitted, we deem
the processing days as zero day.

From Table 3, we have two main observations. First, the aver-
age processing-day values of presentation-change bug reports vary
from 20.1 days to 59.3 days in the three software projects. This ob-
servation indicates that presentation-change tasks are generally not
trivial and developers do take some time to perform them. Second,
the average processing-day values of presentation-change bug re-
ports are typically comparable to that of all bug reports: presentation-
change bug reports take longer time in two subjects, and shorter
time in one subject. This observation indicates that presentation-
change tasks are not significantly simpler than other bug-fixing
tasks. Third, the maximal processing days of all bug reports are
much more (3-5 times) than those of the presentation-change bug
reports. This result shows that the presentation-change bug reports
are usually not the most time-consuming ones to process among all
the bug reports, but require average processing days of all the bug
reports.

Among the 200 studied bug reports for each subject, there are
duplicate bug reports7. As the developers of the three web appli-
cations did not record duplication relationships between bug re-

6Note that the processing days of a bug report may not exactly
reflect the difficulty of bug-fixing tasks for various reasons (e.g.,
developers’ different schedules).
7In fact, automated detection of duplicate bug reports in bug repos-
itories is a recent research focus [29].



Table 2: Result of manual investigation of the studied bug reports
Subject Bug Reports Presentation- % of Presentation- Duplicate Presentation- Presentation-

Studied Change Reports Change Reports Change reports Change Tasks
SquirrelMail 200 7 3.5% 1 6
WebCalendar 200 14 7.0% 2 12
OrangeHRM 200 22 11.0% 1 21

Total 600 43 7.2% 4 39

Table 3: The Processing Days of the Bug Reports
Subject Presentation Change Bug Reports All Bug Reports

Avg. Processing Days Processing-Day Range Avg. Processing Days Processing-Day Range
SquirrelMail 59.3 0-248 38.8 0-645
WebCalendar 44.3 0-230 116.5 0-1119
OrangeHRM 20.1 1-51 18.4 0-260

ports, we manually picked out the duplicate bug reports from the 43
presentation-change bug reports. As shown in Table 2, we identi-
fied 4 duplicate presentation-change bug reports in total. Since it is
difficult for us to remove all duplicate bug reports in the 600 studied
bug reports without detailed analysis of each bug report, we used
all the bug reports (including the 4 duplicate presentation-change
bug reports) when calculating the numbers for the percentage.

For each of the 39 unique presentation-change bug reports, we
built a presentation-change task according to the following proce-
dure. First, we checked the description of the presentation-change
bug report in the bug-tracking system and the comments of the code
commits. From this information, we figured out which code com-
mit contains code changes related to the presentation-change bug
report. Second, according to the description in the presentation-
change bug report, we used our approach to instrument the web
application and executed the instrumented web application to gen-
erate the need-to-change web page. Third, we identified the re-
quired change in the generated web page and used our approach to
map the required change to the web-page-generation code. Finally,
we checked the code changes in the corresponding code commit to
discover how the developers changed the code to realize the pre-
sentation change. We used these code changes as the ground truth
of the corresponding presentation-change task.

For each of the 39 tasks, if our approach can directly propa-
gate the change in the generated web page to the source code, we
checked whether the change suggested by our approach matches
the actual change; otherwise, we checked whether our approach
can correctly detect the unexpected impacts and practical issues by
checking with developers’ actual changes. To check the correctness
of a mapping, we compared the places suggested by our approach
with the places changed by the developers. In the case of unex-
pected impacts and mapping to places other than constant strings,
the fix made by the developers is typically more complex. In such
case, we checked whether the statements that contain the places
suggested by our approach are involved in the fix made by the de-
velopers. In the case of the insertion issue, we checked whether
the two suggested places match the actual change in the fix made
by the developers. If one suggested place matches it, we deem that
our approach correctly locates the need-to-change place.

5.3 Overall Results
Table 4 depicts the overall results of our approach on preform-

ing the 39 presentation-change tasks in the three web applications.
For each subject, Columns 2 to 9 in Table 4 present the number
of presentation-change tasks under study, the number of tasks for
which our approach correctly maps the changed substrings in the
web page to their corresponding places in the source code, the num-
ber of tasks for which our approach directly propagates the change
to the source code in a way matching the actual change, the number
of tasks for which our approach directly propagates the change to

the source code without matching the actual change, the number
of tasks for which our approach does not recommend direct prop-
agation due to inner-page impact, the number of tasks for which
our approach does not recommend direct propagation due to inter-
page impact, the number of tasks for which our approach does not
recommend direct propagation due to an insertion issue, and the
number of tasks for which our approach does not recommend di-
rect propagation due to mapping the change to code elements other
than constant strings, respectively.

From Table 4, we have four main observations. First, for all
of the 39 changing tasks, our approach is able to correctly map
the presentation change to the corresponding places in the source
code. This observation indicates that dynamic string-origin analy-
sis on the execution trace is very precise in providing developers
with places to modify for realizing presentation changes.

Second, for 20 out of the 39 tasks, our approach is able to di-
rectly propagate the presentation change to the source code cor-
rectly. This observation indicates that developers can perform more
than half of the presentation changes in dynamic web applications
as in static web pages with the help of our approach.

Third, there are 3 tasks for each of which our approach cor-
rectly locates the corresponding source code and recommends di-
rect propagation, but the actual change is not a direct change. In
each of the 3 tasks, the developers actually try to make a static part
in the generated web page dynamic. For example, in Bug Report
No. 1510677 of the OrangeHRM subject, the users complained
that the feedback information of an operation is always in red no
matter whether the operation fails or not, and demanded that the
information should be in green when the operation succeeds. Our
approach is able to locate the corresponding constant string about
the color in the source code and confirm that changing the sub-
string from “#FF0000" (red) to “#005500" (green) would not have
unexpected impacts. However, in the actual fix, the developers add
some condition checking instead of directly changing the substring
“#FF0000". In such a case, there is no wonder that our approach
cannot produce the correct fix. The reason is that the intention of
the change is not to always have the feedback information in red.
Since the developers know the intention of the change, they should
know that the direct propagation is incorrect beforehand.

Finally, for each of the other 16 tasks, our approach is able to
correctly decide that the presentation change in the generated web
page cannot be directly propagated to the source code. Among
these 16 tasks, 3 tasks are due to unexpected impacts on other pos-
sible generated web pages, 6 tasks are due to ambiguity of insertion,
6 tasks are due to mapping the presentation change in the generated
web page to code elements other than constant strings. This obser-
vation indicates that the proposed techniques to detect unexpected
impacts and to address the practical issues are helpful to prevent
our approach from producing incorrect changes.



Table 4: Overall results of our approach
Subject Tasks Correct Correct Direct Incorrect Direct Inners-Page Inter-Page Issue of Issue of None-

Map Propagation Propagation Impact Impact Insertion Constant Strings
SquirrelMail 6 6 2 0 0 0 2 2
WebCalendar 12 12 7 2 1 1 1 0
OrangeHRM 21 21 11 1 0 2 3 4

Total 39 39 20 3 1 3 6 6

5.4 Example Tasks
In this subsection, we use two example tasks to further illustrate

how our approach works in different situations.
Example 1. The first example is about bug report No. 601006

of WebCalendar, which takes the developers 13 days to process.
The bug is for the version on Aug. 8th, 2000. The summary of the
bug report is “Rejected e-mail link missing a quote”. The descrip-
tion of the bug report states that a quotation mark is missing for the
email links in the rejected list. This missing quotation mark causes
the page to be displayed incorrectly. Therefore, the presentation-
change task is to add the quotation mark to a proper place in the
source code. The erroneous HTML fragment is as below. The un-
derlined part of the HTML should be “\">”.

...
1 <BR><STRIKE><A HREF="mailto:mymail@gmail.com?
2 subject=WebCalendar:mycal\>
3 Xiao</a></STRIKE>Rejected";
...

The source code that generates the preceding HTML fragment
is as below. Our approach is able to locate the underlined constant
string in the code and recommend a direct insertion of a quotation
mark between the two characters of the constant string. It is not
easy to manually locate the fixing place for this bug because the
whole HTML tag is broken into concatenated fragments and string
variables in the PHP source code, while our approach is able to lo-
cate the place and fix it automatically. Note that text search can
hardly help much in this case, because the strings immediately be-
fore and after the underlined “>” are from the database and do not
appear in the PHP file at all. Therefore, using text search, the de-
velopers would find nothing by searching for the texts around the
underlined “>”. If searching for the string “subject” in the PHP
file, there would be 77 places for further inspection.

...
4 echo "<BR><STRIKE><A HREF=\"mailto:" . $tempemail .
5 "?subject=$subject\>" . $tempfullname .
6 "</a></STRIKE> (" . translate("Rejected") . ")\ n";

...

Example 2. The second example is about bug report No. 1530219
of OrangeHRM , which takes the developers 14 days to process.
This bug is for the version on Jul. 27th, 2006. The summary of the
bug report is “PIM - Emergency Contact - There has to be a space
after fields”. The bug report states that the developers should insert
a space after the fields in the page about the emergency-contact in-
formation of employees. The need-to-change HTML fragment is
as below. The underlined space is what should be added.

...
1 <tr>
2 <td>Home Telephone </td>

...
3 <td><strong>Home Telephone</strong></td>

...

The source code that generates the preceding HTML fragment
is as below. Our approach is able to locate “</td>” in Line 5 as
the right side of the insertion, and “Home Telephone” in Line 4 as
the left side of the insertion. Furthermore, our approach is able to
identify that changing “Home Telephone” would have inner-page
impact because of another appearance of “Home Telephone” gener-
ated by Line 6. With the preceding information, a developer should
be able to choose the correct insertion point without further inspec-
tion of the code.

...
4 $hmtele = "Home Telephone";

...
5 <td><?=$hmtele?>(insertion)</td>

...
6 <td><strong><?=$hmtele?></strong></td>

...

Using text search, a developer can easily locate the appearance
of “Home Telephone” in Line 4, but adding a space after “Home
Telephone” would be an incorrect change of the code. As a result,
the developer may notice this incorrectness only after some testing,
which may be performed by a tester sometime later. Furthermore,
even after the developer knows that the space is added to a wrong
place, the developer still needs to inspect the code to find the correct
place to add the space.

5.5 Threats to Validity
In our study, we applied our approach on 39 presentation-change

tasks for three dynamic web applications. This factor may be a
threat to the external validity, since it is possible that our empirical
results may be specific to the used tasks and web applications, and
thus may not be generalizable. To reduce this threat, we used web
applications from different domains as subjects. The main threat to
construct validity is the way we construct our presentation-change
tasks. Since the tasks are recovered from bug reports and version
histories, the scenarios in the constructed tasks may not be exactly
the same as the scenarios in real-world development. To reduce this
threat, we carefully studied the bug reports and the version histories
of each subject, and examined the changed code to confirm that we
correctly reproduced the need-to-change web pages and identified
the required changes. The main threat to the internal validity is the
possible faults in implementing our approach. To reduce this threat,
we carefully reviewed the source code of our implementation be-
fore conducting our empirical study. Another threat to the internal
validity is that the developers themselves may make mistakes so
that the bug fixes that we used as the ground truth may not all be
correct. To reduce this threat, we use the earliest bug reports in the
software-development history, so that the developers should have
enough time to correct their fixes if they made mistakes.

6. DISCUSSION
Limitations of Our Approach. Our approach has three main

limitations. First, our approach is more suitable for being applied
to small atomic presentation changes such as changing a certain
property of a certain GUI component. For pervasive-style changes
and large structure changes, the developers can still trace the whole
need-to-change part in the generated web page to the data origins in
the web-page-generation code. However, in such a case, the located
data origins may include user inputs or computation results, or the
data origins may affect a large number of other web pages so that
intensive human invention may be required.

Second, since our approach does not record or analyze the exe-
cution of JavaScript at the browser side, we cannot handle the pre-
sentation changes in the web-page parts generated dynamically at
the browser side using AJAX or similar technologies. In such a
case, the code that generates the web page is itself dynamically
generated, and thus more difficult to instrument and analyze.



Third, although our approach includes a series of techniques to
check whether the intended presentation change can be directly
propagated to the web-page-generation code, we still cannot guar-
antee that a directly propagated presentation change is desirable.
Our empirical results confirm the existence of such undesirable
propagated presentation changes. However, our empirical results
also show that undesirable cases are rare and developers’ intention
for such a presentation change is typically different from ordinary
presentation changes. Further investigation may be needed to study
the condition for propagating a desirable presentation change.

Using CFGs in Dynamic Analysis. Note that although Context-
Free Grammars (CFGs) are essential in static string-taint analysis,
it is not necessary for us to use CFGs in our dynamic string-origin
analysis. In fact, due to its dynamic nature, the CFG constructed
by our dynamic string-origin analysis is a simple regular grammar.
Therefore, it is feasible to directly process the execution informa-
tion without involving CFGs8. However, transforming the execu-
tion information to a CFG makes it possible for us to take advan-
tage of existing tools for static string-taint analysis, which provides
a convenient way to deal with string operations provided by library
methods without instrumenting the library code.

Dealing with CSS Properties. CSS (Cascading Style Sheet)
has been widely used in web-application development and web-
page design. By using CSS, developers can define a format in an
external format file (i.e., .css file), and link HTML tags to their for-
mats. For example, a developer can define a format “f1”, which
indicates the color of the text to be red. Then, she can use “f1”
in the “class” property of HTML tags to link the tag with the for-
mat. For example, the developer can write the HTML text “<p
class=“f1”>abc</p>”, and then “abc” is shown in red. The advan-
tage of using CSS is that it can help developers perform format-
related presentation changes just in the CSS file when they want
to switch all the tags linked to a certain format to another format.
However, there are still quite many presentation changes on dynam-
ically generated HTML pages that are not about format switching.
Actually, both examples depicted in this paper are about display
errors rather than format switching. Furthermore, it is also possi-
ble for developers to change only one tag linked with the format
(e.g., changing “abc” to be in black, but keeping other texts with
the “f1” tag to be still in red). In these cases, the change should be
made in HTML texts instead of CSS files, and our approach is able
to handle these cases well. Actually, two of the three subject ap-
plications (i.e., Squirrel and OrangeHRM ) use CSS properties
in their presentation, but the presentation changes required in these
two applications are similar to those in WebCalendar.

Dealing with Non-Presentation Changes. Our approach may
also be helpful for some non-presentation-change tasks, especially
those user-visible non-presentation changes. For a user-visible non-
presentation change, our approach is able to provide the starting
locations for the developers to further investigate.

Pervasiveness of Presentation Changes. Our empirical results
demonstrate that, in the studied web applications, more than 7%
of bug reports among the 600 studied bug reports are about pre-
sentation changes. Actually, there are also presentation-change
tasks triggered by the design decisions of developers (especially
before the release of the first version) but not related to bug re-
ports. That is to say, presentation changes are a common type
of software changes in the early evolution history of web appli-
cations. Indeed, in the later evolution history of a web application,
its presentation structures may become stable and the number of
presentation-change tasks may decrease accordingly.
8Actually, the simplicity of only one execution gives us many al-
ternatives for implementing our dynamic string-origin analysis.

Due to the difficulty of constructing tasks for presentation changes
triggered by design decisions, our empirical study uses presentation-
change tasks constructed only from bug reports. However, we ex-
pect that our approach should still be applicable for such a presen-
tation change because the developers should be able to generate the
need-to-change web page and the desired change to the generated
web page for such a presentation-change task.

Strength of Collaborative Hybrid Analysis. In our approach,
the basic idea of collaborative hybrid analysis plays an important
role. Based on this idea, we can use one execution to perform pre-
cise analysis without considering other possible executions. On the
basis of one execution, it is also natural for developers to provide
the desired presentation change, because only with a generated web
page can developers know what the presentation change is. How-
ever, changing the source code based on only one execution may be
too risky. The second part of our collaborative hybrid analysis uses
both dynamic and static analyses to reduce the risk. Therefore, we
design the unexpected-impact detection in a conservative way.

Therefore, we expect that the paradigm of collaborative hybrid
analysis might provide a useful framework to automate various
kinds of code changes. First, when looking for the right place to re-
alize a specific code change, dynamic analysis can be a means more
precise and/or more reliable than static analysis, because dynamic
analysis is able to use the information specific to one execution
to avoid interferences between different executions. Second, as it
may be risky to perform a code change based on dynamic analysis,
static analysis should be indispensable to guard the code change.
Indeed, different combinations of dynamic and static analyses may
be needed for different code changes.

7. CONCLUSION AND FUTURE WORK
In this paper, we have proposed an approach based on collabora-

tive hybrid analysis to automating presentation changes in dynamic
web applications. In particular, we use dynamic analysis to propa-
gate the change on the generated HTML text to the source code, and
use both static analysis and dynamic analysis to ensure the safety
of such propagation. We carried out an empirical study on three
widely used open source PHP web applications. We identified and
constructed 39 presentation-change tasks from their bug reports.
Our empirical results demonstrate that our approach is able to cor-
rectly locate the place to modify to realize the presentation change
in each presentation-change task and correctly propagate the pre-
sentation change to the source code in more than half of the tasks.
For most of the remaining tasks, our approach is able to correctly
detect unexpected impacts.

There are three main ways to further improve and extend our
approach in future work. First, as there are several threats to valid-
ity in our empirical study, we plan to further reduce these threats
in future work. Specifically, we plan to apply our approach on
more presentation-change tasks for more dynamic web applica-
tions. Furthermore, our evaluation involves a relatively small num-
ber of cases related to unexpected-impact detection. We plan to
evaluate our approach on more presentation-change tasks involv-
ing unexpected-impact detection, so that we can have a better eval-
uation on this part of our approach. Second, our approach cannot
guarantee that a presentation change is desirable. In future work,
we plan to investigate new techniques for this purpose, such as con-
sidering multiple executions. Third, we currently evaluate our ap-
proach with the development histories. We plan to carry out a user
study on groups of developers to evaluate our approach on the prac-
tice of web-application development and maintenance.
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