Probabilistic Delta Debugging

Guancheng Wang∗
Key Laboratory of High Confidence Software Technologies, MoE
Department of Computer Science and Technology, Peking University
Beijing, PR China
guancheng.wang@pku.edu.cn

Ruobing Shen∗
Key Laboratory of High Confidence Software Technologies, MoE
Department of Computer Science and Technology, Peking University
Beijing, PR China
ruobingshen@pku.edu.cn

Junjie Chen
College of Intelligence and Computing, Tianjin University
Tianjin, PR China
junjiechen@tju.edu.cn

Yingfei Xiong†
Key Laboratory of High Confidence Software Technologies, MoE
Department of Computer Science and Technology, Peking University
Beijing, PR China
xiongyf@pku.edu.cn

Lu Zhang
Key Laboratory of High Confidence Software Technologies, MoE
Department of Computer Science and Technology, Peking University
Beijing, PR China
zhanglucs@pku.edu.cn

ABSTRACT

The delta debugging problem concerns how to reduce an object while preserving a certain property, and widely exists in many applications, such as compiler development, regression fault localization, and software deboating. Given the importance of delta debugging, multiple algorithms have been proposed to solve the delta debugging problem efficiently and effectively. However, the efficiency and effectiveness of the state-of-the-art algorithms are still not satisfactory. For example, the state-of-the-art delta debugging tool, CHISEL, may take up to 3 hours to reduce a single program with 14,092 lines of code, while the reduced program may be up to 2 times unnecessarily large.

In this paper, we propose a probabilistic delta debugging algorithm (named ProbDD) to improve the efficiency and the effectiveness of delta debugging. Our key insight is, the ddmin algorithm, the basic algorithm upon which many existing approaches are built, follows a predefined sequence of attempts to remove elements from a sequence, and fails to utilize the information from existing test results. To address this problem, ProbDD builds a probabilistic model to estimate the probabilities of the elements to be kept in the produced result, selects a set of elements to maximize the gain of the next test based on the model, and improves the model based on the test results.

We prove the correctness of ProbDD, and analyze the minimality of its result and the asymptotic number of tests under the worst case. The asymptotic number of tests in the worst case of ProbDD is $O(n)$.

∗Both authors contributed equally to this research.
†Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8562-6/21/08 . . . $15.00
https://doi.org/10.1145/3468264.3468625

1 INTRODUCTION

Delta debugging automatically reduces a set of elements while preserving a certain property [31], and has found applications in many domains, such as compiler debugging [7, 8, 11, 28, 32], regression fault localization [6, 9, 29], isolating the cause-effect chain of a failure [10, 17, 30], and deboating software to reduce the size of a program while keeping certain desired functionalities [13].

Formally, delta debugging is defined as follows. Let \mathcal{X} be a universe of all objects of interest, $\phi : \mathcal{X} \rightarrow \{F, T\}$ be a test function determining whether an object exhibits a given property (T) or not (F), and $|X|$ be the size of an object $X \in \mathcal{X}$. Given an object $X \in \mathcal{X}$ that $\phi(X) = T$, the goal of delta debugging is to find another object $X' \in \mathcal{X}$ such that $|X'|$ is as small as possible and $\phi(X') = T$, i.e., X' preserves the property. For example, in compiler development, delta debugging is used to find a smaller program that reproduces a compilation failure. Here \mathcal{X} is a universe of programs, X is a
possibly large program that leads a compilation failure, and \(\phi \) tests whether the compilation failure still exists or not.

The state-of-the-art family of delta debugging approaches is built upon the ddmin algorithm [32]. The ddmin algorithm views an object \(X \in \mathbb{X} \) as a sequence. In each iteration, ddmin splits \(X \) into \(n \) subsequences and tries to remove each subsequence and its complement from \(X \). The number \(n \) starts with 2 and doubles in each iteration. Subsequent approaches in this family assume more complex domain-specific structures and apply ddmin to the sequences in the structures. For example, HDD [21] assumes the objects have a structure of a tree and applies ddmin only to the sequences of siblings. CHISEL [13] further considers the data and control dependency relations between elements in a C program and applies ddmin in a way that would not break the dependencies.

However, the efficiency and effectiveness of the state-of-the-art delta debugging algorithms are still not satisfactory. For example, as our evaluation will reveal later, the state-of-the-art delta debugging tool, CHISEL [13], may take up to 3 hours to reduce a single program with 14,092 lines of code, while the reduced program may be up to 2 times unnecessarily large.

In this paper, we aim to improve the effectiveness and efficiency of delta debugging. Our key insight is, the ddmin algorithm, the central component of many existing approaches, follows a predefined sequence of attempts to remove elements from the original object, and fails to utilize the information from existing test results. To address this problem, we propose a probabilistic delta debugging algorithm, ProbDD. ProbDD builds a probabilistic model to estimate the probability of each element to be kept in the produced result. In each iteration, ProbDD selects a subset of elements to maximize the gain of the next test based on the probabilistic model, and tests if the desired property is preserved in this subset. Then, ProbDD updates the probabilistic model based on the testing result.

We prove the result produced by ProbDD is correct and is minimal or minimum if the universe of objects satisfies certain conditions. We also analyze the asymptotic number of tests under the worst case. The asymptotic number of tests in the worst case of ProbDD is \(O(n) \), which is smaller than that of ddmin, \(O(n^2) \) worst-case asymptotic number of tests.

Furthermore, we evaluated ProbDD on 40 subjects in two application domains, i.e., trees and C programs, by substituting ProbDD for ddmin in two representative approaches for the two domains, HDD [21] and CHISEL [13]. The number of subjects in our evaluation is larger than all recent publications on delta debugging at top venues [13, 15, 16, 18, 21, 23, 25, 29, 30, 32] as far as we are aware. The results demonstrate that ProbDD significantly improves both the efficiency and the effectiveness of the representative approaches in the two domains. On average, after substituting ProbDD for ddmin, HDD and CHISEL produces 59.48% and 11.51% smaller results within the time limit, respectively. On the subjects where both versions finish within the time limit, after substituting ProbDD for ddmin, HDD and CHISEL use 63.22% and 45.27% less time, respectively.

In summary, this paper makes the following main contributions.

- We propose a novel probabilistic delta debugging algorithm, ProbDD, which dynamically learns a probabilistic model to efficiently and effectively reduce a sequence of elements.
- We prove the correctness of ProbDD, analyze the minimality of its result and the asymptotic number of tests under the worst case.
- We evaluate ProbDD in two application domains, demonstrating that ProbDD significantly improves the representative approaches in the two domains in both efficiency and effectiveness.

2 MOTIVATING EXAMPLE

We use a program minimization example to illustrate how ddmin works. Listing 1 shows a real program from TensorFlow tutorials [2]. Let us assume that the function type() is faulty and any valid invocation to it will result in the same error. Now we would like to reduce the program such that the error is still produced. There are 8 statements in the program, and the goal of delta debugging is to find a subsequence of statements that still invokes type() and thus produces the error. Here we use \(s_i \) to denote the statement in Line \(i \).

Listing 1: Example program to be reduced

```python
1 import tensorflow as tf
2 x = tf.constant(3.0)
3 b = 1.0
4 with tf.GradientTape() as tape:
5     tape.watch(x)
6     y = x**2
7     b = tape.gradient(y, x)
8     print(type(b))
```

The ddmin algorithm views the set of elements as a sequence and proceeds as two nested loops. The outer loop reduces a variable \(n \) representing the length of the subsequence to be considered. The length \(n \) starts from 1/2 of all elements and reduces by half at each iteration until it reaches 1. The inner loop first tests all consecutive and disjoint subsequences of length \(n \), and then tests the complements of these subsequences. If any test is successful, keep only this subsequence. If a subsequence or its complement has been tested before, skip it.

The tests that ddmin performs for this example are shown in Figure 1. The end of each row, there is a T or an F, which means that the error is still produced (T) or not (F). First, \(n \) is 4, the two subsequences of length 4 are tested at lines 1 and 2. Both tests fail and their complements are all tested, so the first outer iteration finishes. Second, \(n \) is halved as 2, the four subsequences of length 2 are tested at lines 3 to 6. All the tests fail and the tests of their complements also fail, so the second outer iteration finishes. Third, \(n \) is halved as 1, the eight subsequences of length 1 are tested at lines 11 to 18. All these tests fail. Then, the complements are tested and the complement of \(\{s_1\} \) passes the test at line 21. Since the test passes, the elements in the complement are kept and the seven subsequences and their complements need to be tested, so the algorithm continues with \(n \) as 1. However, none of the tests for the seven subsequences succeed, which are tested before, and none of their complements succeed (lines 22-28), so the third outer iteration finishes and the algorithm returns \(\{s_1, s_2, s_4, s_5, s_6, s_7, s_8\} \). The returned set is 1-minimal because it cannot be further reduced by removing any single element from it.
3 APPROACH

As we can see from the example, the sequence of attempts for ddmin is predefined and does not learn from past test results. For example, in this example statement, s8 should not be removed. However, following the predefined order, the statement s8 has been tried to remove 13 times, and all these attempts would fail. In fact, as studied by Zeller and Hildebrandt [32], the worst-case asymptotic number of tests in ddmin is $O(n^2)$, where n is the size of the initial set. Also, the reduced result contains seven statements, while the optimal result is $\{s_3, s_8\}$, containing only two statements.

3.1 The Probabilistic Model

3.1.1 Notations

Since our goal is to optimize ddmin, we also view the input object as a sequence and try to identify a subsequence that makes the test function pass. In other words, the universe X is a n-dimensional Boolean space and an object X in the universe is a Boolean vector $X = (x_1, x_2, \ldots, x_n)$ where $x_i \in \{0, 1\}$. Here $x_i = 1$ indicates that the ith element is included in the subsequence and $x_i = 0$ indicates that the ith element is excluded from the subsequence. To simplify the presentation, we also view a subsequence X as a set containing the indexes of the included elements, i.e., $\{i \mid x_i = 1\}$, so that the set operators such as \subseteq apply to subsequences.

3.1.2 The Existence of the Optimal Subsequence

To simplify the probabilistic analysis, we assume two properties of the universe X which are often assumed or discussed in existing work [29, 32]. Please note the goal of assuming the two properties is to deduce the design of our probabilistic model, and the correctness and the time complexity of ProbDD do not depend on the two properties.

The monotony property says that if X fails the test function, any subsequence of X fails the test function.

Definition 3.1 (Monotony). $\forall X, X' \in X, X' \subseteq X \land \phi(X) = F \Rightarrow \phi(X') = F$

The unambiguity property says that if two subsequences pass the test function, their intersection passes the test function.

Definition 3.2 (Unambiguity). $\forall X, X' \in X, \phi(X) = T \land \phi(X') = T \Rightarrow \phi(X \cap X') = T$

We show that the above two properties imply the existence of an optimal subsequence where the test function passes if and only if the elements in the subsequence are present.

Theorem 3.3. If a universe X is both monotone and unambiguous, there exists an optimal subsequence X^* such that the following holds.

$$\phi(X) = \begin{cases} T & X^* \subseteq X \\ F & \text{otherwise} \end{cases}$$

Proof. Let $X^* = \bigcap_{\phi(X) = T} X$. Based on unambiguity, we know that $\phi(X^*) = T$. Based on monotony, we know that any superset X of X^* makes the test function pass, i.e., $\phi(X) = T$. Now let X be a subsequence that is not a superset of X^*. If we assume $\phi(X) = T$, we have $X \cap X^* = X^*$ by the definition of X^*, which contradicts with the fact that X is not a superset of X^*. Therefore, $\phi(X) = F$. \qed

3.1.3 The Model

Now we proceed to define the probabilistic model. Given the existence of the optimal subsequence X^*, the goal of delta debugging is to identify elements in X^*. Therefore, we assign the element at each index i a Bernoulli random variable θ_i to denote whether the ith element is in X^* or not. We use parameter p_i to denote the probability of the ith element is in X^*, i.e., $Pr(\theta_i = 1) = p_i$. Therefore, our probabilistic model is a n-dimensional vector of parameters (p_1, p_2, \ldots, p_n).

We further assume that the random variables θ are mutually independent. This assumption is reasonable because modern delta debugging approaches have considered the domain-specific structure of the objects, and if two elements depend on each other, e.g., they can be removed together but cannot be individually removed.

\begin{figure}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
s1 & s2 & s3 & s4 & s5 & s6 & s7 & s8 \\
\hline
1 & s1 & s2 & s3 & s4 & s5 & s6 & s7 & F \\
2 & s1 & s2 & s3 & s4 & s5 & s6 & s7 & F \\
3 & s1 & s2 & s3 & s4 & s5 & s6 & s7 & F \\
4 & s1 & s2 & s3 & s4 & s5 & s6 & s7 & F \\
5 & s1 & s2 & s3 & s4 & s5 & s6 & s7 & F \\
6 & s1 & s2 & s3 & s4 & s5 & s6 & s7 & F \\
7 & s1 & s2 & s3 & s4 & s5 & s6 & s7 & F \\
8 & s1 & s2 & s3 & s4 & s5 & s6 & s7 & F \\
9 & s1 & s2 & s3 & s4 & s5 & s6 & s7 & F \\
10 & s1 & s2 & s3 & s4 & s5 & s6 & s7 & F \\
11 & s1 & s2 & s3 & s4 & s5 & s6 & s7 & F \\
12 & s1 & s2 & s3 & s4 & s5 & s6 & s7 & F \\
13 & s1 & s2 & s3 & s4 & s5 & s6 & s7 & F \\
14 & s1 & s2 & s3 & s4 & s5 & s6 & s7 & F \\
15 & s1 & s2 & s3 & s4 & s5 & s6 & s7 & F \\
16 & s1 & s2 & s3 & s4 & s5 & s6 & s7 & F \\
17 & s1 & s2 & s3 & s4 & s5 & s6 & s7 & F \\
18 & s1 & s2 & s3 & s4 & s5 & s6 & s7 & F \\
19 & s1 & s2 & s3 & s4 & s5 & s6 & s7 & F \\
20 & s1 & s2 & s3 & s4 & s5 & s6 & s7 & F \\
21 & s1 & s2 & s3 & s4 & s5 & s6 & s7 & F \\
22 & s1 & s2 & s3 & s4 & s5 & s6 & s7 & F \\
23 & s1 & s2 & s3 & s4 & s5 & s6 & s7 & F \\
24 & s1 & s2 & s3 & s4 & s5 & s6 & s7 & F \\
25 & s1 & s2 & s3 & s4 & s5 & s6 & s7 & F \\
26 & s1 & s2 & s3 & s4 & s5 & s6 & s7 & F \\
27 & s1 & s2 & s3 & s4 & s5 & s6 & s7 & F \\
28 & s1 & s2 & s3 & s4 & s5 & s6 & s7 & F \\
\hline
\end{tabular}
\caption{Detailed iterations of ddmin}
\end{figure}
such a dependency are likely to be captured by the outer approach wrapping ddmin. When ddmin is applied to a sequence, most of the elements in this sequence should not depend on each other. Based on this assumption, the probability of a vector X being equal to X' is $\prod_i p_i^{x_i}(1 - p_i)^{1-x_i}$. This also implies that the delta debugging process of our approach stops when each p_i is either 1 or 0.

With this model, it is easy for us to calculate the probability of a test result. For example, the probability of X passing the test function is the probability that no element in X' is excluded from X, i.e., $Pr(\phi(X) = T) = \prod_i (1 - p_i)^{1-x_i}$.

3.1.4 Prior Distribution. Since initially we do not have any knowledge about the individual elements, we uniformly set all p_i to σ, where $0 < \sigma < 1$ is a hyper-parameter of ProbDD. There are multiple ways to determine σ based on the properties of the problem domain. If the results usually have a fixed reduction ratio, we set σ to this ratio. If the reduced subsequences usually have a fixed length m, we can set σ to m/n, where n is the length of the input sequence.

3.2 Update the Model

After a set of tests, we would like to calculate the posterior probabilities conditioned on the test results so as to guide future tests using the posterior probabilities. Now assume that we have performed a series of tests on X_1, X_2, \ldots, X_m with test results R_1, R_2, \ldots, R_m. We denote the event that testing X_i returning R_i (i.e., $\phi(X_i) = R_i$) as T_i. Then we can calculate the posterior probability of θ_i as follows.

$$Pr(\theta_i = 1 | T_1, T_2, \ldots, T_n) = \frac{Pr(\theta_i = 1, T_1, T_2, \ldots, T_n)}{Pr(T_1, T_2, \ldots, T_n)}$$

A basic method to calculate the above two joint probabilities is to enumerate the universe of subsequences, and sum up the probability of a subsequence being the optimal one for each subsequence consistent with the events. A subsequence X is consistent with a test result $T = (X', R)$ if $\phi(X') = R$ when X is the optimal one. More concretely, we define the following function to test whether a subsequence is consistent with the test results.

$$con(X, \langle T_1, \ldots, T_m \rangle) = \begin{cases} 1 & \text{con}'(X, T_1) \land \cdots \land \text{con}'(X, T_m) \\ 0 & \text{otherwise} \end{cases}$$

$$\text{con}'(X, (X', R)) = \begin{cases} \land_{x_i = 0} x_i = 0 & R = T \\ \lor_{x_i = 0} x_i = 1 & R = F \end{cases}$$

Based on this function, we have the following result.

$$Pr(\theta_i = 1, T_1, T_2, \ldots, T_n)$$

$$= \frac{\sum_{X \in con(X, \langle T_1, \ldots, T_m \rangle)} x_i \cdot \text{con}'(X, \langle T_1, \ldots, T_m \rangle) \cdot \prod_j p_j^{x_j}(1 - p_j)^{1-x_j}}{\sum_{X \in con(X, \langle T_1, \ldots, T_m \rangle)} \text{con}'(X, \langle T_1, \ldots, T_m \rangle) \cdot \prod_j p_j^{x_j}(1 - p_j)^{1-x_j}}$$

Calculating the above formula is a typical weighted model counting problem [5]: we need to sum up the weight of any solution X satisfying a constraint $con(X, \langle T_1, \ldots, T_m \rangle)$, and the weight of a solution is the product of the weight of individual assignments to x_i (i.e., p_i or $1 - p_i$). However, so far we still lack an efficient algorithm to solve weighted model counting: a state-of-the-art solver often takes thousands of seconds to solve a model of thousands of variables [5], which is typical in delta debugging. This is too slow to accelerate delta debugging.

Alternatively, instead of calculating the posterior probabilities conditioned on all test results, we calculate the posterior probabilities after every single test and update the model for future calculations. Concretely, we update p_i to $Pr(\theta_i = 1 | T)$ after a test T. This method ignores the interaction between different tests and is not as precise as the previous one, but can be calculated efficiently.

Below we describe how to update p_i for each i. First we have the following lemma.

Lemma 3.4. Given a subsequence X where $x_i = 1$, i.e., the ith element is preserved in X, then $\phi(X) \perp \theta_i$, i.e., $\phi(X)$ and θ_i are independent.

Proof. Denote the indexes of elements excluded from X as j_1, j_2, \ldots, j_k. Then

$$Pr(\phi(X) = F) = Pr(\theta_{j_1} = 1 \cup \theta_{j_2} = 1 \cup \ldots \cup \theta_{j_k} = 1)$$

and

$$Pr(\phi(X) = T) = Pr(\theta_{j_1} = 0 \land \theta_{j_2} = 0 \land \ldots \land \theta_{j_k} = 0).$$

The independence between $\theta_{j_1}, \theta_{j_2}, \ldots, \theta_{j_k}$ and θ_i implies the independence between $\phi(X)$ and θ_i. □

Given the above lemma, we show how to update p_i for each i. On the one hand, if the test fails, the posterior probability is as follows.

$$Pr(\theta_i = 1 | \phi(X) = F)$$

$$= \frac{Pr(\theta_i = 1) Pr(\phi(X) = F | \theta_i = 1)}{Pr(\phi(X) = F)}$$

$$= \frac{Pr(\theta_i = 1) + \prod_i \frac{p_i}{1-p_i} \frac{1-\prod_j (1-p_j)^{1-x_j}}{\prod_j (1-p_j)^{1-x_j}} x_i = 0}{Pr(\phi(X) = F)}$$

On the other hand, if the test passes, the posterior probability is as follows.

$$Pr(\theta_i = 1 | \phi(X) = T)$$

$$= \frac{Pr(\theta_i = 1) Pr(\phi(X) = T | \theta_i = 1)}{Pr(\phi(X) = T)}$$

$$= \frac{Pr(\theta_i = 1) \cdot p_i \cdot \frac{1-\prod_j (1-p_j)^{1-x_j}}{\prod_j (1-p_j)^{1-x_j}} x_i = 0}{Pr(\phi(X) = T)}$$

Based on the above equations, we update the parameter p_i for each i after a test $\phi(X) = R$ according to the following rules.

1. p_i remains unchanged if the ith element is included in X.
2. p_i is set to zero if the ith element is excluded from X and the test function passes.
3. p_i is set to $\frac{p_i}{1-\prod_j (1-p_j)^{1-x_j}}$ if the ith element is excluded from X and the test function fails.
3.3 Select a Subsequence for Testing

We first define the gain of a test and then discuss how to maximize the expected gain.

3.3.1 The Gain of a Test. As we can see from the previous section, when \(X \) passes the test, the probabilities of the elements excluded from \(X \) would be set to zero, i.e., these elements should not be selected again for testing. As a result, each passed test excludes some elements from the final result. To measure how many elements a test can exclude, we define the gain of a test on subsequence \(X \) as the number of elements excluded if the test passes, and zero otherwise.

\[
\text{gain}(X, X_T) = \begin{cases} |\{x \in X \mid T \} \phi(x) = T \} & \phi(x) = T \\ 0 & \phi(x) = F \end{cases}
\]

Here \(X_T \) denotes the last subsequence passing the test function, and \(\text{ex}(X, X_T) \) denotes the set of elements newly excluded when the test of \(X \) passes, i.e., \(\text{ex}(X, X_T) = \emptyset \) iff \(x_i = 0 \) and \(p_i > 0 \). To simplify presentation, we would omit the parameter \(X_T \) if no confusion would be caused, i.e., we would write \(\text{gain}(X) \) for \(\text{gain}(X, X_T) \) and \(\text{ex}(X) \) for \(\text{ex}(X, X_T) \).

Based on the probabilistic model \((p_1, p_2, \ldots, p_n)\), we can calculate the expected gain of a test.

\[
\mathbb{E}[\text{gain}(X)] = |\{x \in X \mid T \} \text{Pr}(\phi(x) = T) = |\{x \in X \mid (1 - p_i)^{x_i} \}\]

Therefore, the goal of selecting a subsequence for a test is to select a subsequence \(X \) that maximizes \(\mathbb{E}[\text{gain}(X)] \).

3.3.2 Maximizing the Expected Gain. Please note that simply selecting the subsequence that has the maximum probability to be equal to \(X^* \) does not necessarily lead to the maximum expected gain because the probability for it to pass the test function may be low.

To understand how to maximize the expected gain, let us first consider a simple situation where all probabilities \(p_i \) are equal. In this case, any subsequence of the same size leads to the same expected gain. Figure 2 shows the relation between \(\mathbb{E}[\text{gain}(X)] \) and \(|\{x \in X \mid T \} \) when any \(p_i \) is 0.1. As we can see from the figure, when we remove more elements, the expected gain first increases and then decreases, with the maximum at the inflection. This is because \(\mathbb{E}[\text{gain}(X)] \) is the product of two components, \(|\{x \in X \mid T \} \) and \((1 - p_i)^{x_i} \). The first one monotonously increases, but the rate of increase gradually decreases. The second one monotonously decreases, but the rate of decrease remains the same. Therefore, there must be a point at which the rate of decrease surpasses the rate of increase, which maximizes the expected gain.

Now let us consider the case where the probabilities are different. The first component, \(|\{x \in X \mid T \} \), is not affected by this change. The second component, \((1 - p_i)^{x_i} \), may lead to different values for different subsequences of the same length. To select the subsequence with the maximum value, we need to exclude the elements whose probabilities of being in \(X^* \) are the lowest.

Based on the above analysis, we use the following procedure to find a subsequence that has the maximum expected gain. Remember \(X_T \) is the last subsequence that passes the test function.

1. Sort the elements in \(X_T \) ascending by their probabilities \(p_i \).
2. Exclude the elements one by one from \(X_T \) based on the above order until the expected gain begins to decrease.
3. Return the subsequence with the highest expected gain.

Let \(\hat{X} \) be the subsequence returned from the above procedure. The following theorem shows that \(\hat{X} \) has the maximum expected gain.

Theorem 3.5. \(\mathbb{E}[\text{gain}(\hat{X})] \geq \mathbb{E}[\text{gain}(X)] \) for any \(X \subseteq X_T \).

Proof. Use \(S(k) \) to denote the subsequence obtained after removing \(k \) elements in step (2). First, we prove \(\forall X \subseteq X_T \), the subsequence \(S(\{\text{ex}(X)\}) \) which excludes the same number of elements as \(X \) but selects elements in order of increasing probability cannot have a worse expected gain. Second, we show the subsequence returned by the algorithm has the highest expected gain among \(S(k) \) where \(1 \leq k \leq |X_T| \). As a result \(\mathbb{E}[\text{gain}(\hat{X})] \geq \mathbb{E}[\text{gain}(S(\{\text{ex}(X)\}))] \geq \mathbb{E}[\text{gain}(X)] \). The details can be found in Appendix. \(\square \)

<table>
<thead>
<tr>
<th>(s_1)</th>
<th>(s_2)</th>
<th>(s_3)</th>
<th>(s_4)</th>
<th>(s_5)</th>
<th>(s_6)</th>
<th>(s_7)</th>
<th>(s_8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2500</td>
<td>0.2500</td>
<td>0.2500</td>
<td>0.2500</td>
<td>0.2500</td>
<td>0.2500</td>
<td>0.2500</td>
<td>0.2500</td>
</tr>
<tr>
<td>0.3657</td>
<td>0.3657</td>
<td>0.3657</td>
<td>0.2500</td>
<td>0.2500</td>
<td>0.2500</td>
<td>0.2500</td>
<td>0.3657</td>
</tr>
<tr>
<td>0.3657</td>
<td>0.3657</td>
<td>0.3657</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.3657</td>
</tr>
<tr>
<td>0.6119</td>
<td>0.3657</td>
<td>0.3657</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.6119</td>
</tr>
<tr>
<td>0.6119</td>
<td>0.6119</td>
<td>0.6119</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.6119</td>
</tr>
<tr>
<td>0.6119</td>
<td>0.00</td>
<td>0.6119</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.6119</td>
</tr>
<tr>
<td>0.6119</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.6119</td>
</tr>
<tr>
<td>0.6119</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.6119</td>
</tr>
<tr>
<td>0.6119</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.6119</td>
</tr>
</tbody>
</table>

Figure 2: The relation between \(\mathbb{E}[\text{gain}(X)] \) and \(|\{x \in X \mid T \} \)

Figure 3: Iterations of our algorithm

3.4 Revisiting the Motivating Example

Figure 3 shows a possible testing sequence of ProbDD for the motivating example. In Figure 3, each odd row represents each test, and the selected elements are shown in cells with darker colors. The last cell of each odd row shows the result of each test. Each even row represents the probability of each element after a test. The changes are shown in cells with darker colors.
Let us assume that the expected reduction ratio (Section 3.1.4) is 0.25 and initially all probabilities are set to 0.2500. In each iteration, ProbDD keeps excluding the element with the lowest probability until the expected gain begins to decrease. Since the initial probabilities are all equal, the selection of the first iteration is effectively random. ProbDD excludes s_1, s_2, s_3, and s_4 and the test function fails, so ProbDD updates the probabilities of the removed elements based on rule (3) at the end of Section 3.2. At the second iteration, ProbDD selects four elements with the lowest probabilities, s_4, s_5, s_6, and s_7 to exclude. In this case, the test passes, so ProbDD directly sets the probabilities of the removed elements to zero according to rule (2). ProbDD sampled $\{s_2, s_3\}$ and $\{s_5, s_8\}$ to test at the third and fourth iteration, respectively. They all failed the test and the probabilities of the removed elements are updated accordingly. In the remaining iterations, the probabilities of the remaining elements have raised to a level such that only one element could be excluded at each time, and the probability of the removed element would be set to either 0 or 1 based on the test result. Finally, ProbDD stops when the probability of each element is either 1 or 0, and returns $\{s_5, s_8\}$.

As we can see from the above process, ProbDD learns from the history of tests: when removing s_8 fails, the probability of s_8 would be increased and s_8 would not be repetitively selected for removal. Furthermore, in the above process, ProbDD returns a much smaller history of tests: when removing s_8 fails, the probability of the removed elements to zero according to rule (2). ProbDD sampled $\{s_2, s_3\}$ and $\{s_4, s_8\}$ to test at the third and fourth iteration, respectively. They all failed the test and the probabilities of the removed elements are updated accordingly. In the remaining iterations, the probabilities of the remaining elements have raised to a level such that only one element could be excluded at each time, and the probability of the removed element would be set to either 0 or 1 based on the test result. Finally, ProbDD stops when the probability of each element is either 1 or 0, and returns $\{s_5, s_8\}$.

4 PROPERTIES OF ProbDD

In this section, we discuss the efficiency, the correctness, and the minimality of the result.

4.1 Efficiency

Theorem 4.1. Given input with size n, the asymptotic number of tests performed by ProbDD is bounded by $O(n)$ in the worst case.

Proof. First, there can be at most n passed tests as each passing test sets the probability of at least one element to 0. Second, it can be shown that there can be at most $O(n)$ failed tests before the probabilities of all elements are either zero or larger than 0.5. When the probabilities of all remaining elements are larger than 0.5, the algorithm will test elements one by one, so there could be at most $O(n)$ failed tests left. The details can be found in Appendix. □

Please note that this theorem implies that the ProbDD always terminates.

4.2 Correctness

Theorem 4.2. The returned subsequence X_O of ProbDD will always maintain the property, i.e., $\phi(X_O) = T$.

Proof. Let X^k be a subsequence where all elements with zero probability after the kth iteration are removed and all elements with non-zero probabilities are kept, i.e., $X^k = 1 \Leftrightarrow p_i \neq 0$, and X^0 be such a sequence before the first iteration. We show that X^k passes the test function for $k = 0$ and any iteration k during an algorithm execution, i.e., $\phi(X^k) = T$.

First, it is easy to see that X^0 is the input object and passes the test function.

Let us assume that X^k passes the test function. If the test function fails in iteration $k+1$, then only the probabilities of some elements whose probabilities were not zero would increase, and thus $X^{k+1} = X^k$ still passes the test function. If the test function passes, the probabilities of the removed elements would be set to zero, and thus X^{k+1} is the same as the tested subsequence and passes the test function.

Putting the above together, the above property holds. Since X_O is X^k for the last iteration k, we know that X_O passes the test function. □

4.3 Minimality

Theorem 4.3. If monotony holds, the output of ProbDD X_O is minimal, i.e., $\forall X \subseteq X_O, \phi(X) = F$.

Proof. Let s_i be the element in X_O but not in X. Since X_O is the output, we know that $p_i = 1$. It is easy to see $\frac{p_i}{\Pi_j(1-p_j)^{x_j-1}} = 1$ only when $\forall k \neq i, p_k = 0 \lor x_k = 1$, i.e., there exists a failed test on X' where only s_i is newly removed. Since X_O is the output, we know that $X \subseteq X_O \subseteq X' \cup \{s_i\}$. Since s_i is not in X, we know $X \subseteq X'$. Since $\phi(X') = F$, by monotony we have $\phi(X) = F$. □

Theorem 4.4. If monotony and unambiguity both hold, the output of ProbDD X_O is minimal, i.e., $\forall X, |X| < |X_O| \Rightarrow \phi(X) = F$.

Proof. By the proof of Theorem 3.3, minimum $X^* = \cap_{\phi(X) = T} X$. Since $\phi(X_O) = T$, we know $X^* \subseteq X_O$. Let us assume $X^* \subset X_O$. Then from Theorem 4.3, we know that $\phi(X^*) = F$, which contradicts the definition of X^*. As a result, $X^* = X_O$, i.e., X_O is minimum. □

5 EVALUATION

As discussed before, many existing delta debugging approaches are domain-specific based on the ddmmin algorithm. Specifically, a typical domain-specific delta debugging approach considers the constraints in the domain, and applies ddmmin to subsequence of the elements such that the domain-specific constraints would not be violated. Since our goal is to improve ddmmin, we would like to understand whether and how much ProbDD outperforms ddmmin in different application domains, i.e., whether the performance of a domain-specific approach improves when replacing ddmmin with ProbDD. Furthermore, we would like to investigate how ProbDD compares with ACTIVECOARSEN [20], which is the only randomized search algorithm that can be applied to delta debugging within our knowledge. To sum up, our evaluation addresses the following research questions.

- **RQ1**: How does ProbDD compare to ddmmin in different application domains?
- **RQ2**: What is the impact of the parameter in ProbDD?
- **RQ3**: How does ProbDD compare with ACTIVECOARSEN?
5.1 Experiment Setup

Application Domains. Our evaluation considers the following two application domains, in each of which we picked the representative delta debugging approach based on ddmin as the target approach. We replaced the ddmin component with ProbDD in each target approach, and compared the performance with the original target approach with ddmin.

- **Trees.** The representative delta debugging approach for trees is HDD [21], and is often applied to programs where the abstract syntax tree (AST) of the program is available.
- **C Programs.** The representative debugging tool for C program is CHISEL [13], which relies on both the grammar of C language and the dependency relations between elements in programs.

We chose the two domains because they are actively studied in existing delta debugging research and there are publicly available implementations of the representative approaches based on ddmin.

To facilitate presentation, we call the original HDD with ddmin as d-HDD, and the version where ddmin is replaced with ProbDD as p-HDD. Similarly, the two versions of CHISEL is called d-CHISEL and p-CHISEL, respectively. We also use d-version and p-version if no specific approach is referred to.

Subjects. We mainly picked the subjects for evaluating the original approaches in existing publications to avoid selection bias. More specifically, we chose the following subjects.

- **Trees.** We used 30 subjects in the domain of trees. We used the 20 publicly available subjects in the benchmark for comparing HDD and Perses [25], which are C programs triggering crash and compilation bugs in GCC and Clang. The property to be preserved is to reproduce the reported bug without any undefined behavior. Since these subjects all fall into the application domain of C programs, we added 10 XML reduction tasks for diversity. We crawled a corpus of more than 1,000 XML files from repositories of XML files publicly available on the Internet, filtered out 73 of those that cannot be parsed, and randomly picked 10 XML files as subjects. The property to be preserved is to keep at least the original test coverage on an XML parser xmllint [3]. We did not use the benchmark in the original publication of HDD [21] because it is not publicly available.
- **C Programs.** We used 30 subjects in the domain of C programs. We used the benchmark for evaluating CHISEL [13], which includes 10 subjects that are C programs to be debloated to be used in embedded systems, as well as the same 20 subjects used for trees. The property for those 10 subjects is to compile successfully, pass given test cases, and contain specific functions. The property for those 20 subjects to keep is the same as that used in the application domain of trees.

In total, we used 40 subjects in our evaluation, and 20 of them are used in both application domains. The number of subjects in our evaluation is larger than all recent publications on delta debugging at top venues [13, 15, 16, 18, 21, 23, 25, 29, 30, 32] as far as we are aware. We made full use of 16 cores of the server, and the whole process of our evaluation took about 90 hours per core on average (1,441 hours in total).

Metrics. Following the existing work [13, 21, 25], we used three metrics to measure the effectiveness of a delta debugging approach in the study, i.e., the size of the produced result, the processing time, and the number of tokens deleted per second. We measured the size of the subjects in both domains using the number of tokens. We measured the processing time in seconds. The reduction process of each subject has a timeout limit of 3 hours. If timed out, the size of the produced result is the size of the smallest object in all passed tests and the processing time is not available. When calculating the average results, we calculated geometric means rather than arithmetic means because different subjects diverge significantly on the three metrics.

Process. To answer RQ1, we first recorded the original size for each subject. Then, we applied both d- and p-version of the approaches for each subject and recorded the size of the produced result and the processing time. Then we calculated the number of tokens deleted per second. What’s more, we calculated the p-value of a paired sample Wilcoxon signed-ranked test given the size of the produced result, the number of tokens deleted per second, and the processing time of the subjects without timeout on the both p- and d-version to answer whether our approach achieves significant improvement in both effectiveness and efficiency compared to the original approaches, respectively.

To answer RQ2, we adjusted the values of the only parameter used in ProbDD, i.e., the initial value of probability σ. Since this experiment is time-consuming, we sampled a subset of subjects for this experiment. Considering the diversity of the reduction ratio (i.e., the ratio of the smallest returned size to the original size), we sorted the reduction ratio of all subjects and evenly selected 14 subjects with the reduction ratio from 0.005 to 0.809. These 14 subjects are xml-10, xml-5, xml-6, xml-3, clang-27747, gcc-64990, clang-27137, gcc-65383, gcc-71626, chown-8.2, mkdir-5.2.1, date-8.21, sort-8.16, and grep-2.19 as the ascending order of the reduction ratio. We ran the first half of subjects in the application domain of trees and the remaining subjects in the application domain of C programs. We changed the initial value of probability σ to 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3, respectively. For each setting, we measured the results using all the metrics. Since some subjects are timed out, we do not present the results on the processing time but use the number of tokens deleted per second as the main metric for efficiency. In this RQ, we did not conduct experiments on all subjects because it would take a very long time.

To answer RQ3, we selected ACTIVECOARSEN [20] as the representative random search algorithm and used the default setting in ACTIVECOARSEN. Then we created two versions of HDD and CHISEL by replacing ddmin with ACTIVECOARSEN, and the respective versions are called a-HDD and a-CHISEL. Then we compared the a-version and the p-version in all subjects in all domains.

The results of ProbDD, CHISEL, and ACTIVECOARSEN are also affected by randomness. To reduce the influence of randomness, we ran all versions affected by randomness 5 times and computed the average results. We chose 5 times because the standard deviation of the 5 running results for each subject and each approach is already less than 1% of their corresponding average results. In RQ1 and RQ3, we set σ in ProbDD to 0.1.
Table 1: Comparison between ProbDD and ddmin

<table>
<thead>
<tr>
<th>Summary</th>
<th>Trees</th>
<th>C Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_i</td>
<td>31,533</td>
<td>64,782</td>
</tr>
<tr>
<td>p-version</td>
<td>376</td>
<td>8,791</td>
</tr>
<tr>
<td>d-version</td>
<td>9788</td>
<td>31</td>
</tr>
<tr>
<td>T_p</td>
<td>2,115</td>
<td>8935</td>
</tr>
<tr>
<td>T_d</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>S_p</td>
<td>11,597</td>
<td>15,197</td>
</tr>
<tr>
<td>S_d</td>
<td>59.48%</td>
<td>11.51%</td>
</tr>
<tr>
<td>$p - \text{value}_R$</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>x_S</td>
<td>2.25</td>
<td>0.0000</td>
</tr>
<tr>
<td>$p - \text{values}_T$</td>
<td>63.22%</td>
<td>45.27%</td>
</tr>
<tr>
<td>T_R</td>
<td>0.0015</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

In this table and the tables in the rest of this section, R represents the size of the results, S represents the number of tokens deleted per seconds, T represents the processing time in seconds; R_p represents the size of the input; p represents the p-versions; d represents the d-versions; \uparrow denotes the improvement, where $\times S = \frac{S_p}{S_d}$; $\times S$ denotes the speedup, where $\times S = \frac{S_p}{S_d}$. In this table, all numbers are geometric means, and the means of process time are only calculated on the subjects where both p- and d-versions finish within the time limit.

Implementation. We introduce the implementations for both application domains below:

- **Trees.** We adopted a recent implementation of HDD [1, 15] in Python as d-HDD and implemented p-HDD and a-HDD on top of this implementation.
- **C Programs.** We adopted the implementation of CHISEL in C++ by the original authors [13] as d-CHISEL and implemented p-CHISEL and a-CHISEL on top of it. In particular, the CHISEL implementation includes components for automatic dead code elimination (DCE) and dependency analysis (DA), and we disabled these components by using three command-line options, i.e., -skip_local_dep, -skip_global_dep, and -skip_dce, due to the following reasons. First, DCE is designed for program deboating in CHISEL and it fails most of the tests in other domains, e.g., compiler bugs triggered by unreachable code. Second, we found that the DA component produces incorrect results in some cases, e.g., when a function call is passed as a parameter, which exists in the subjects used in our evaluation. Please note that DCE and DA are disabled for all versions of CHISEL.

Our evaluation was performed on a Linux server with 16-core 32-thread Intel(R) Xeon(R) Gold 6130 CPU (3.7GHz), 128 Gigabyte RAM, and the operating system of Ubuntu Linux 16.04.

5.2 Results and Analysis

5.2.1 Comparison between ProbDD and ddmin

Table 1 shows the overall performance of the p- and d-versions in terms of the three metrics. From Table 1, we can see that p-versions perform better than d-versions in all metrics. On average, p-versions delete 5 and 14 more tokens per second to obtain 59.48% and 11.51% smaller results than d-versions in the application domains of trees and C programs, respectively. On the subjects where both p- and d-versions finish within the time limit, p-HDD and d-HDD use 63.22% and 45.27% less time, respectively. All p-values are significant (<0.05).

Detailed Results in Each Application Domain

We then investigate the detailed results of p-versions for each subject in both application domains. Table 2 shows the comparison results between p- and d-versions. From Table 2, the p-versions outperform the d-versions on 58 out of 60 subjects. Here we define the p-version outperforms the d-version on a subject if the p-version has better result in any of the three metrics and does not have worse result in any of the metrics. Only on 2 subjects, mkdir-5.2.1 and grep-2.19, the p-version performs worse than the d-version.

We analyzed the two subjects and found that, to preserve target properties, we have to keep consecutive subsequences in the returned result. In other words, if we know the element at index i is in X^*, elements at indexes $i - 1$ and $i + 1$ are also likely to be in X^*. This contradicts with our independence assumption, and thus p-CHISEL does not have better performance. Nevertheless, even on the two subjects where our independence assumption does not hold.
not hold, the performance of p-CHISEL is only slightly worse than d-CHISEL.

Further, we consider the values larger than 0 and 1 in the columns T_R and $\times S$ of Table 2, and use boxplots to show the distribution, as shown in left and right sub-figures of Figure 4a, respectively. In each box, the line that divides the box into two parts represents the median of the data, the ends of the box shows the upper (Q3) and lower (Q1) quartiles, the difference between Quartiles 1 and 3 is called the interquartile range (IQR), the extreme line shows Q3+1.5xIQR to Q1-1.5xIQR, and the outliers are omitted.

RQ1: On average, ProbDD improves HDD and CHISEL by deleting 5 and 14 more tokens per second to obtain 59.48% and 11.51% smaller results, respectively. On the subjects where both versions finish within the time limit, ProbDD reduces the execution time of HDD and CHISEL by 63.22% and 45.27%, respectively.

5.2.2 Impact of the Parameter. We then investigate the impact of the only parameter in p-versions, i.e., the initial probability for each element σ, based on the selected 14 subjects in both application domains (as presented in Section 5.1). The results are shown in Figure 5. The left sub-figures in Figure 5a and Figure 5b show the geometric means of the produced size, while the right sub-figures depict the geometric means of the number of tokens deleted per second. In each sub-figure, the blue line marks the performance of ProbDD. Also, we used the red line to mark the performance of the original approaches with ddmin for clear comparison.

We observe that though different σ values cause deviations in the performance, the p-versions stably outperform the d-versions with all studied σ values. Furthermore, the performance differences between different σ values is significantly smaller than the difference between the p-versions and the d-versions.

RQ2: The parameter σ has a small impact on the performance of ProbDD and ProbDD stably improves HDD and CHISEL in all parameter values we tested.

5.2.3 Compared between ProbDD and ACTIVECOARSEN. Table 3 shows the overall comparison results between p-versions and a-versions on all the subjects in the application domains of trees and C programs. From this table, p-versions delete 3 and 21 more tokens per second to obtain 58.68% and 27.03% smaller size of produced result than a-versions on average in the application domains of trees and C programs, respectively. On subjects where both versions finish, the p-versions also use 58.77% and 68.65% less time. The detailed comparison results on each subject can be found in Table 4, and the distribution of the improvement (T_R) and speedup ($\times S$) achieved by ProbDD can be found in Figure 4b.

RQ3: On average, p-versions significantly outperform a-versions by deleting 3 and 22 more tokens per second to obtain 58.68% and 27.03% smaller results in the application domains of trees and C programs, respectively. On the subjects where both versions finish within the time limit, p-versions use 58.77% and 68.65% less processing time on the two domains, respectively.

5.3 Threats to Validity

The threat to internal validity mainly lies in the correctness of the implementation of p-versions and the experimental scripts. To reduce this threat, we have carefully reviewed our code.

The threat to external validity mainly lies in the subjects and the target approaches. Regarding the subjects used in our study, we adopted the subjects used in existing publications for the two application domains, i.e., trees and C programs. Besides, to increase the subject diversity in the domain of trees, we additionally evaluated our approach on 10 XML files, which were randomly picked from the crawled corpus. In the future, we will evaluate ProbDD on more subjects. Regarding the target approaches, we adopted two representative approaches in domains of trees and C programs, i.e., HDD and CHISEL, as presented in Section 5.1.

The threat to construct validity mainly lies in randomness. The randomness may impact the performance of p-versions, a-versions, and d-CHISEL. To reduce this threat, we ran each of them on each subject 5 times and calculated the average results as presented in Section 5.1.

6 RELATED WORK

Delta Debugging Approaches built on ddmin. As the basic algorithm for delta debugging, ddmin was proposed by Zeller and Hildebrandt to minimize failure-inducing test inputs [32], which has been described in Section 1 and 2. Further, they proposed an extended version of ddmin, named dd, which aims to obtain a
minimal difference between a passing test input and a failing test input rather than a minimal failure-inducing test input [32].

Subsequently, some approaches wrap ddmin for different domain-specific structures. Misherghi and Su [21] proposed HDD for more effective delta debugging on tree-structured data that has been described in Section 1. Inspired by HDD, modernized HDD [15], coarse HDD [16], and HDDr [18] were proposed to further improve the performance of HDD. For example, HDDr is a recursive variant of HDD. Sun et al. [25] proposed Perses, which utilizes the formal syntax of a programming language to guide reduction and always produces syntactically valid subsequences. For each iteration of reduction, Perses invokes ddmin to prune the nodes in the parse tree for quantified nodes, and it proposes replacement strategies for regular nodes. CHISEL [13], implemented based on Perses, introduces dependency analysis to understand which elements need to be removed together. CHISEL also improves ddmin, and builds a decision tree model to prune the predefined sequences of ddmin during the reduction process.

Different from most existing approaches that wrap ddmin for different domains, our work aims to improve ddmin itself. Different from ddmin, ProbDD builds a probabilistic model to guide the tests and updates the model based on the test results. Our study has demonstrated that ProbDD significantly improves the performance of representative approaches built on ddmin in different application domains by replacing ddmin with ProbDD.

Among the existing approaches, CHISEL also builds statistical model to improve ddmin and thus is closely related to our work. However, CHISEL still relies on the predefined sequence of attempts in ddmin and only uses the statistical model to prioritize attempts in the sequence. Different from it, ProbDD directly selects elements based on the learned distribution. Our evaluation has demonstrated that ProbDD could significantly improve the performance of CHISEL.

Delta Debugging Approaches based on transformation templates

There are some approaches that employ transformation templates to transform an original object. GTR [14] defines two transformation templates for tree-structured data and can automatically choose which template to use in the reduction step by learning from a corpus of example data. C-Reduce [23] was proposed to solve the problem of test-case minimization, which employs plenty of source-to-source transformations for a more effective reduction on C, C++, and OpenCL programs. Although these transformation-template-based delta debugging approaches can further improve the reduction effectiveness in their domains [14, 23], they suffer from the serious efficiency problem based on the existing study [13, 25].

In this paper, we focus on solving the efficiency problem in the existing approaches built on ddmin. Improving the transformation-template-based approaches is future work.

Blackbox Optimization

Delta debugging is a blackbox optimization problem. Bayesian optimization is widely used to solve blackbox optimization problems. It builds a probabilistic model and updates the model with test results [22]. ProbDD can be viewed as a Bayesian optimization algorithm specifically designed for the delta debugging problem. Different from the classic Bayesian optimization algorithms that are designed for objective functions modeled by Gaussian process regression [12], ProbDD targets the delta debugging problem with binary test results. Although recently some Bayesian optimization approaches were proposed for binary objective functions [26, 33], they are designed for specific tasks. Furthermore, some Bayesian approaches have been proposed for other debugging tasks, e.g., slicing [19] and fault localization [4]. To our knowledge, there is no existing Bayesian optimization approach that can be applied to solve the delta debugging problem.

Furthermore, heuristic search algorithms (such as the genetic search algorithms [24]) are also widely used to solve blackbox optimization problems, but similar to classic Bayesian optimization, classic heuristic search algorithms rely on continuous fitness functions. Since the test results are binary, how to design an effective fitness function to guide these algorithms is an open problem for future research.

The only heuristic search approach that can be applied to delta debugging within our knowledge is ACTIVECOARSEN [20]. It aims to find a minimal abstraction in the domain of static analyses...
In this paper, we propose a probabilistic delta debugging algorithm, ProbDD, which builds a probabilistic model to estimate a subset of each element to be kept in the reduced result. ProbDD selects into existing approaches such that these existing approaches apply constraints in the target domain. For example, in a tree structure, the existence of a child depends on the existence of its parent. In this paper, we ensure these structural constraints by building ProbDD into existing approaches such that these existing approaches apply ProbDD to only the subsets that would not violate the constraints. A more direct way to accomplish this is to directly build these constraints in the probabilistic model. For example, in a tree of two elements, we can use two random variables to represent the probability of the parent and the conditional probability of the child when the parent is present. We do not need the conditional probability of the child when the parent is not present because we know the probability is zero. This is a future direction.

7 CONCLUSION

In this paper, we propose a probabilistic delta debugging algorithm, ProbDD, that is based on MCMC with Metropolis-Hastings approach, DEBOP, that is based on MCMC with Metropolis-Hastings approach, COARSE as a baseline and the results that suggest that ProbDD this problem is to maximize a set of continuous objective functions. However, elements may depend on each other due to structural constraints in the target domain. For example, in a tree structure, the existence of a child depends on the existence of its parent. In this paper, we ensure these structural constraints by building ProbDD into existing approaches such that these existing approaches apply ProbDD to only the subsets that would not violate the constraints. A more direct way to accomplish this is to directly build these constraints in the probabilistic model. For example, in a tree of two elements, we can use two random variables to represent the probability of the parent and the conditional probability of the child when the parent is present. We do not need the conditional probability of the child when the parent is not present because we know the probability is zero. This is a future direction.

ACKNOWLEDGEMENTS

We thank the anonymous FSE reviewers for their thoughtful comments and efforts towards improving this work. This work is supported by the National Key Research and Development Program of China under Grant No. 2017YFB1001803, the National Natural Science Foundation of China under Grant Nos. 61922003, 62002256.

REFERENCES

7 FUTURE WORK

Unlike traditional delta debugging algorithms that search with a pre-defined order, our approach ProbDD builds a probabilistic model to estimate the probabilities of the elements to be kept in the produced result. A basic assumption of this model is that each element is independently related to the property to be preserved. However, elements may depend on each other due to structural constraints in the target domain. For example, in a tree structure, the existence of a child depends on the existence of its parent. In this paper, we ensure these structural constraints by building ProbDD into existing approaches such that these existing approaches apply ProbDD to only the subsets that would not violate the constraints. A more direct way to accomplish this is to directly build these constraints in the probabilistic model. For example, in a tree of two elements, we can use two random variables to represent the probability of the parent and the conditional probability of the child when the parent is present. We do not need the conditional probability of the child when the parent is not present because we know the probability is zero. This is a future direction.

ACKNOWLEDGEMENTS

We thank the anonymous FSE reviewers for their thoughtful comments and efforts towards improving this work. This work is supported by the National Key Research and Development Program of China under Grant No. 2017YFB1001803, the National Natural Science Foundation of China under Grant Nos. 61922003, 62002256.

REFERENCES

[34] Guancheng Wang, Ruoling Shen, Junjie Chen, Yingfei Xiong, and Lu Zhang

ESEC/FSE '21, August 23–28, 2021, Athens, Greece

892