
Probabilistic Delta Debugging

Guancheng Wang∗

Key Laboratory of High Confidence
Software Technologies, MoE

Department of Computer Science and
Technology, Peking University

Beijing, PR China
guancheng.wang@pku.edu.cn

Ruobing Shen∗

Key Laboratory of High Confidence
Software Technologies, MoE

Department of Computer Science and
Technology, Peking University

Beijing, PR China
ruobingshen@pku.edu.cn

Junjie Chen
College of Intelligence and

Computing, Tianjin University
Tianjin, PR China

junjiechen@tju.edu.cn

Yingfei Xiong2

Key Laboratory of High Confidence
Software Technologies, MoE

Department of Computer Science and
Technology, Peking University

Beijing, PR China
xiongyf@pku.edu.cn

Lu Zhang
Key Laboratory of High Confidence

Software Technologies, MoE
Department of Computer Science and

Technology, Peking University
Beijing, PR China

zhanglucs@pku.edu.cn

ABSTRACT

The delta debugging problem concerns how to reduce an object
while preserving a certain property, and widely exists in many
applications, such as compiler development, regression fault local-
ization, and software debloating. Given the importance of delta
debugging, multiple algorithms have been proposed to solve the
delta debugging problem efficiently and effectively. However, the ef-
ficiency and effectiveness of the state-of-the-art algorithms are still
not satisfactory. For example, the state-of-the-art delta debugging
tool, CHISEL, may take up to 3 hours to reduce a single program
with 14,092 lines of code, while the reduced program may be up to
2 times unnecessarily large.

In this paper, we propose a probabilistic delta debugging algo-
rithm (named ProbDD) to improve the efficiency and the effective-
ness of delta debugging. Our key insight is, the ddmin algorithm,
the basic algorithm upon which many existing approaches are built,
follows a predefined sequence of attempts to remove elements from
a sequence, and fails to utilize the information from existing test re-
sults. To address this problem, ProbDD builds a probabilistic model
to estimate the probabilities of the elements to be kept in the pro-
duced result, selects a set of elements to maximize the gain of the
next test based on the model, and improves the model based on the
test results.

We prove the correctness of ProbDD, and analyze the minimality
of its result and the asymptotic number of tests under the worst case.
The asymptotic number of tests in the worst case of ProbDD is𝑂 (𝑛),

∗Both authors contributed equally to this research.
2Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8562-6/21/08. . . $15.00
https://doi.org/10.1145/3468264.3468625

which is smaller than that of ddmin, 𝑂 (𝑛2) worst-case asymptotic
number of tests. Furthermore, we experimentally compared ProbDD
with ddmin on 40 subjects in HDD and CHISEL, two approaches
that wrap ddmin for reducing trees and C programs, respectively.
The results show that, after replacing ddmin with ProbDD, HDD
and CHISEL produce 59.48% and 11.51% smaller results and use
63.22% and 45.27% less time, respectively.

CCS CONCEPTS

· Software and its engineering → Software testing and de-

bugging.

KEYWORDS

Delta Debugging, Probabilistic Model

ACM Reference Format:

GuanchengWang, Ruobing Shen, Junjie Chen, Yingfei Xiong, and Lu Zhang.
2021. Probabilistic Delta Debugging. In Proceedings of the 29th ACM Joint Eu-

ropean Software Engineering Conference and Symposium on the Foundations

of Software Engineering (ESEC/FSE ’21), August 23ś28, 2021, Athens, Greece.

ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3468264.3468625

1 INTRODUCTION

Delta debugging automatically reduces a set of elements while pre-
serving a certain property [31], and has found applications in many
domains, such as compiler debugging [7, 8, 11, 28, 32], regression
fault localization [6, 9, 29], isolating the cause-effect chain of a
failure [10, 17, 30], and debloating software to reduce the size of a
program while keeping certain desired functionalities [13].

Formally, delta debugging is defined as follows. Let X be a uni-
verse of all objects of interest, 𝜙 : X → {𝐹,𝑇 } be a test function
determining whether an object exhibits a given property (T) or not
(F), and |𝑋 | be the size of an object 𝑋 ∈ X. Given an object 𝑋 ∈ X

that 𝜙 (𝑋) = 𝑇 , the goal of delta debugging is to find another object
𝑋 ∗ ∈ X such that |𝑋 ∗ | is as small as possible and 𝜙 (𝑋 ∗) = 𝑇 , i.e.,
𝑋 ∗ preserves the property. For example, in compiler development,
delta debugging is used to find a smaller program that reproduces
a compilation failure. Here X is a universe of programs, 𝑋 is a

881

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3468264.3468625
https://doi.org/10.1145/3468264.3468625

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Guancheng Wang, Ruobing Shen, Junjie Chen, Yingfei Xiong, and Lu Zhang

possibly large program that leads a compilation failure, and 𝜙 tests
whether the compilation failure still exists or not.

The state-of-the-art family of delta debugging approaches is
built upon the ddmin algorithm [32]. The ddmin algorithm views
an object 𝑋 ∈ X as a sequence. In each iteration, ddmin splits 𝑋
into 𝑛 subsequences and tries to remove each subsequence and
its complement from 𝑋 . The number 𝑛 starts with 2 and doubles
in each iteration. Subsequent approaches in this family assume
more complex domain-specific structures and apply ddmin to the
sequences in the structures. For example, HDD [21] assumes the
objects have a structure of a tree and applies ddmin only to the
sequences of siblings. CHISEL [13] further considers the data and
control dependency relations between elements in a C program
and applies ddmin in a way that would not break the dependencies.

However, the efficiency and effectiveness of the state-of-the-art
delta debugging algorithms are still not satisfactory. For example, as
our evaluation will reveal later, the state-of-the-art delta debugging
tool, CHISEL [13], may take up to 3 hours to reduce a single program
with 14,092 lines of code, while the reduced program may be up to
2 times unnecessarily large.

In this paper, we aim to improve the effectiveness and efficiency
of delta debugging. Our key insight is, the ddmin algorithm, the
central component of many existing approaches, follows a prede-
fined sequence of attempts to remove elements from the original
object, and fails to utilize the information from existing test results.
To address this problem, we propose a probabilistic delta debugging
algorithm, ProbDD. ProbDD builds a probabilistic model to estimate
the probability of each element to be kept in the produced result.
In each iteration, ProbDD selects a subset of elements to maximize
the gain of the next test based on the probabilistic model, and tests
if the desired property is preserved in this subset. Then, ProbDD
updates the probabilistic model based on the testing result.

We prove the result produced by ProbDD is correct and is min-
imal or minimum if the universe of objects satisfies certain con-
ditions. We also analyze the asymptotic number of tests under
the worst case. The asymptotic number of tests in the worst case
of ProbDD is 𝑂 (𝑛), which is smaller than that of ddmin, 𝑂 (𝑛2)

worst-case asymptotic number of tests.
Furthermore, we evaluated ProbDD on 40 subjects in two appli-

cation domains, i.e., trees and C programs, by substituting ProbDD
for ddmin in two representative approaches for the two domains,
HDD [21] and CHISEL [13]. The number of subjects in our evalu-
ation is larger than all recent publications on delta debugging at
top venues [13, 15, 16, 18, 21, 23, 25, 29, 30, 32] as far as we are
aware. The results demonstrate that ProbDD significantly improves
both the efficiency and the effectiveness of the representative ap-
proaches in the two domains. On average, after substituting ProbDD
for ddmin, HDD and CHISEL produces 59.48% and 11.51% smaller
results within the time limit, respectively. On the subjects where
both versions finish within the time limit, after substituting ProbDD
for ddmin, HDD and CHISEL use 63.22% and 45.27% less time, re-
spectively.

In summary, this paper makes the following main contributions.

• We propose a novel probabilistic delta debugging algorithm,
ProbDD, which dynamically learns a probabilistic model to
efficiently and effectively reduce a sequence of elements.

• We prove the correctness of ProbDD, analyze the minimality
of its result and the asymptotic number of tests under the
worst case.

• We evaluate ProbDD in two application domains, demon-
strating that ProbDD significantly improves the representa-
tive approaches in the two domains in both efficiency and
effectiveness.

2 MOTIVATING EXAMPLE

We use a program minimization example to illustrate how ddmin
works. Listing 1 shows a real program from TensorFlow tutori-
als [2]. Let us assume that the function type() is faulty and any valid
invocation to it will result in the same error. Now we would like
to reduce the program such that the error is still produced. There
are 8 statements in the program, and the goal of delta debugging
is to find a subsequence of statements that still invokes type() and
thus produces the error. Here we use 𝑠𝑖 to denote the statement in
Line 𝑖 .

Listing 1: Example program to be reduced

1 impor t t e n s o r f l ow as t f

2 x = t f . c on s t a n t (3 . 0)

3 b = 1 . 0

4 with t f . Grad ien tTape () as t ape :

5 t ape . watch (x)

6 y = x ∗ ∗ 2

7 b = t ape . g r a d i e n t (y , x)

8 p r i n t (type (b))

The ddmin algorithm views the set of elements as a sequence
and proceeds as two nested loops. The outer loop reduces a variable
𝑛 representing the length of the subsequence to be considered.
The length 𝑛 starts from 1/2 of all elements and reduces by half
at each iteration until it reaches 1. The inner loop first tests all
consecutive and disjoint subsequences of length 𝑛, and then tests
the complements of these subsequences. If any test is successful,
keep only this subsequence. If a subsequence or its complement
has been tested before, skip it.

The tests that ddmin performs for this example are shown in
Figure 1. At the end of each row, there is a T or an F, which means
that the error is still produced (T) or not (F). First, 𝑛 is 4, the two
subsequences of length 4 are tested at lines 1 and 2. Both tests fail
and their complements are all tested, so the first outer iteration
finishes. Second, 𝑛 is halved as 2, the four subsequences of length
2 are tested at lines 3 to 6. All the tests fail and the tests of their
complements also fail, so the second outer iteration finishes. Third,
𝑛 is halved as 1, the eight subsequences of length 1 are tested
at lines 11 to 18. All these tests fail. Then, the complements are
tested and the complement of {𝑠3} passes the test at line 21. Since
the test passes, the elements in the complement are kept and the
seven subsequences and their complements need to be tested, so
the algorithm continues with 𝑛 as 1. However, none of the tests
for the seven subsequences succeed, which are tested before, and
none of their complements succeed (lines 22-28), so the third outer
iteration finishes and the algorithm returns {𝑠1, 𝑠2, 𝑠4, 𝑠5, 𝑠6, 𝑠7, 𝑠8}.
The returned set is 1-minimal because it cannot be further reduced
by removing any single element from it.

882

Probabilistic Delta Debugging ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

s1 s2 s3 s4 s5 s6 s7 s8
1 s1 s2 s3 s4 s5 s6 s7 s8 F
2 s1 s2 s3 s4 s5 s6 s7 s8 F
3 s1 s2 s3 s4 s5 s6 s7 s8 F
4 s1 s2 s3 s4 s5 s6 s7 s8 F
5 s1 s2 s3 s4 s5 s6 s7 s8 F
6 s1 s2 s3 s4 s5 s6 s7 s8 F
7 s1 s2 s3 s4 s5 s6 s7 s8 F
8 s1 s2 s3 s4 s5 s6 s7 s8 F
9 s1 s2 s3 s4 s5 s6 s7 s8 F
10 s1 s2 s3 s4 s5 s6 s7 s8 F
11 s1 s2 s3 s4 s5 s6 s7 s8 F
12 s1 s2 s3 s4 s5 s6 s7 s8 F
13 s1 s2 s3 s4 s5 s6 s7 s8 F
14 s1 s2 s3 s4 s5 s6 s7 s8 F
15 s1 s2 s3 s4 s5 s6 s7 s8 F
16 s1 s2 s3 s4 s5 s6 s7 s8 F
17 s1 s2 s3 s4 s5 s6 s7 s8 F
18 s1 s2 s3 s4 s5 s6 s7 s8 F
19 s1 s2 s3 s4 s5 s6 s7 s8 F
20 s1 s2 s3 s4 s5 s6 s7 s8 F
21 s1 s2 s3 s4 s5 s6 s7 s8 T
22 s1 s2 s3 s4 s5 s6 s7 s8 F
23 s1 s2 s3 s4 s5 s6 s7 s8 F
24 s1 s2 s3 s4 s5 s6 s7 s8 F
25 s1 s2 s3 s4 s5 s6 s7 s8 F
26 s1 s2 s3 s4 s5 s6 s7 s8 F
27 s1 s2 s3 s4 s5 s6 s7 s8 F
28 s1 s2 s3 s4 s5 s6 s7 s8 F

Figure 1: Detailed iterations of ddmin

As we can see from the example, the sequence of attempts for
ddmin is predefined and does not learn from past test results. For
example, in this example statement, 𝑠8 should not be removed.
However, following the predefined order, the statement 𝑠8 has been
tried to remove 13 times, and all these attempts would fail. In fact, as
studied by Zeller and Hildebrandt [32], the worst-case asymptotic
number of tests in ddmin is 𝑂 (𝑛2), where 𝑛 is the size of the initial
set. Also, the reduced result contains seven statements, while the
optimal result is {𝑠3, 𝑠8}, containing only two statements.

3 APPROACH

From the analysis of the previous section, we can see that ddmin
does not learn from the history of test results, and could keep
removing an element though all historical removals of this element
lead to test failures. To overcome this problem, our approach builds
a probabilistic model to guide the tests and updates the probabilistic
model based on the test results. The process continues until the
probabilistic model predicts with 100% certainty that a subsequence
is the optimal subsequence. In this way, the test history guides
future tests through the probabilistic model. In this section, we
describe (1) this model, (2) how this model should be updated based
on the test results, and (3) how to use this model to guide tests.

3.1 The Probabilistic Model

3.1.1 Notations. Since our goal is to optimize ddmin, we also view
the input object as a sequence and try to identify a subsequence
that makes the test function pass. In other words, the universe X is
a n-dimensional Boolean space and an object 𝑋 in the universe is
a Boolean vector 𝑋 = ⟨𝑥1, 𝑥2, ..., 𝑥𝑛⟩ where 𝑥𝑖 ∈ {0, 1}. Here 𝑥𝑖 = 1
indicates that the 𝑖th element is included in the subsequence and
𝑥𝑖 = 0 indicates that the 𝑖th element is excluded from the subse-
quence. To simplify the presentation, we also view a subsequence
𝑋 as a set containing the indexes of the included elements, i.e.,
{𝑖 | 𝑥𝑖 = 1}, so that the set operators such as ⊆ apply to subse-
quences.

3.1.2 The Existence of the Optimal Subsequence. To simplify the
probabilistic analysis, we assume two properties of the universe
X which are often assumed or discussed in existing work [29, 32].
Please note the goal of assuming the two properties is to deduce
the design of our probabilistic model, and the correctness and the
time complexity of ProbDD do not depend on the two properties.

The monotony property says that if 𝑋 fails the test function, any
subsequence of 𝑋 fails the test function.

Definition 3.1 (Monotony). ∀𝑋,𝑋 ′ ∈ X, 𝑋 ′ ⊆ 𝑋 ∧ 𝜙 (𝑋) = 𝐹 ⇒

𝜙 (𝑋 ′) = 𝐹

The unambiguity property says that if two subsequences pass
the test function, their intersection passes the test function.

Definition 3.2 (Unambiguity). ∀𝑋,𝑋 ′ ∈ X, 𝜙 (𝑋) = 𝑇 ∧ 𝜙 (𝑋 ′) =

𝑇 ⇒ 𝜙 (𝑋 ∩ 𝑋 ′) = 𝑇

We show that the above two properties imply the existence of
an optimal subsequence where the test function passes if and only
if the elements in the subsequence are present.

Theorem3.3. If a universeX is bothmonotone and unambiguous,

there exists an optimal subsequence 𝑋 ∗ such that the following holds.

𝜙 (𝑋) =

{
𝑇 𝑋 ∗ ⊆ 𝑋

𝐹 otherwise

Proof. Let 𝑋 ∗
=
⋂

𝜙 (𝑋)=𝑇 𝑋 . Based on unambiguity, we know
that 𝜙 (𝑋 ∗) = 𝑇 . Based on monotony, we know that any superset 𝑋
of 𝑋 ∗ makes the test function pass, i.e., 𝜙 (𝑋) = 𝑇 . Now let 𝑋 be a
subsequence that is not a superset of𝑋 ∗. If we assume𝜙 (𝑋) = 𝑇 , we
have 𝑋 ∩ 𝑋 ∗

= 𝑋 ∗ by the definition of 𝑋 ∗, which contradicts with
the fact that 𝑋 is not a superset of 𝑋 ∗. Therefore, 𝜙 (𝑋) = 𝐹 . □

3.1.3 TheModel. Nowwe proceed to define the probabilisticmodel.
Given the existence of the optimal subsequence𝑋 ∗, the goal of delta
debugging is to identify elements in 𝑋 ∗. Therefore, we assign the
element at each index 𝑖 a Bernoulli random variable 𝜃𝑖 to denote
whether the 𝑖th element is in 𝑋 ∗ or not. We use parameter 𝑝𝑖 to de-
note the probability of the 𝑖th element is in 𝑋 ∗, i.e., 𝑃𝑟 (𝜃𝑖 = 1) = 𝑝𝑖 .
Therefore, our probabilistic model is a 𝑛-dimensional vector of
parameters ⟨𝑝1, 𝑝2, . . . , 𝑝𝑛⟩.

We further assume that the random variables 𝜃 are mutually
independent. This assumption is reasonable because modern delta
debugging approaches have considered the domain-specific struc-
ture of the objects, and if two elements depend on each other, e.g.,
they can be removed together but cannot be individually removed,

883

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Guancheng Wang, Ruobing Shen, Junjie Chen, Yingfei Xiong, and Lu Zhang

such a dependency are likely to be captured by the outer approach
wrapping ddmin. When ddmin is applied to a sequence, most of the
elements in this sequence should not depend on each other. Based
on this assumption, the probability of a vector 𝑋 being equal to 𝑋 ∗

is
∏

𝑖 𝑝
𝑥𝑖
𝑖 (1 − 𝑝𝑖)

1−𝑥𝑖 .1 This also implies that the delta debugging
process of our approach stops when each 𝑝𝑖 is either 1 or 0.

With this model, it is easy for us to calculate the probability
of a test result. For example, the probability of 𝑋 passing the test
function is the probability that no element in 𝑋 ∗ is excluded from
𝑋 , i.e., 𝑃𝑟 (𝜙 (𝑋) = 𝑇) =

∏
𝑖 (1 − 𝑝𝑖)

1−𝑥𝑖 .

3.1.4 Prior Distribution. Since initially we do not have any knowl-
edge about the individual elements, we uniformly set all 𝑝𝑖 to 𝜎 ,
where 0 < 𝜎 < 1 is a hyper-parameter of ProbDD. There are mul-
tiple ways to determine 𝜎 based on the properties of the problem
domain. If the results usually have a fixed reduction ratio, we set
𝜎 to this ratio. If the reduced subsequences usually have a fixed
length𝑚, we can set 𝜎 to𝑚/𝑛, where 𝑛 is the length of the input
sequence.

3.2 Update the Model

After a set of tests, we would like to calculate the posterior probabil-
ities conditioned on the test results so as to guide future tests using
the posterior probabilities. Now assume that we have performed a
series of tests on𝑋1, 𝑋2, . . . , 𝑋𝑚 with test results 𝑅1, 𝑅2, . . . , 𝑅𝑚 . We
denote the event that testing 𝑋𝑖 returning 𝑅𝑖 (i.e., 𝜙 (𝑋𝑖) = 𝑅𝑖) as 𝑇𝑖 .
Then we can calculate the posterior probability of 𝜃𝑖 as follows.

𝑃𝑟 (𝜃𝑖 = 1|𝑇1,𝑇2, ...,𝑇𝑛) =
𝑃𝑟 (𝜃𝑖 = 1,𝑇1,𝑇2, ...,𝑇𝑛)

𝑃𝑟 (𝑇1,𝑇2, ..,𝑇𝑛)

A basic method to calculate the above two joint probabilities is
to enumerate the universe of subsequences, and sum up the proba-
bility of a subsequence being the optimal one for each subsequence
consistent with the events. A subsequence 𝑋 is consistent with a
test result 𝑇 = ⟨𝑋 ′, 𝑅⟩ if 𝜙 (𝑋 ′) = 𝑅 when 𝑋 is the optimal one.
More concretely, we define the following function to test whether
a subsequence is consistent with the test results.

𝑐𝑜𝑛(𝑋, ⟨𝑇1, . . . ,𝑇𝑚⟩) =

{
1 𝑐𝑜𝑛′(𝑋,𝑇1) ∧ . . . ∧ 𝑐𝑜𝑛′(𝑋,𝑇𝑚)

0 otherwise

𝑐𝑜𝑛′(𝑋, ⟨𝑋 ′, 𝑅⟩) =

{ ∧
𝑥 ′𝑖=0

𝑥𝑖 = 0 𝑅 = 𝑇
∨

𝑥 ′𝑖=0
𝑥𝑖 = 1 𝑅 = 𝐹

Based on this function, we have the following result.

𝑃𝑟 (𝜃𝑖 = 1,𝑇1,𝑇2, ...,𝑇𝑛)

𝑃𝑟 (𝑇1,𝑇2, ..,𝑇𝑛)

=

∑
𝑋 ∈X

(
𝑥𝑖 ∗ 𝑐𝑜𝑛(𝑋, ⟨𝑇1, . . . ,𝑇𝑚⟩) ∗ Π 𝑗𝑝

𝑥 𝑗

𝑗 (1 − 𝑝 𝑗)
1−𝑥 𝑗

)

∑
𝑋 ∈X

(
𝑐𝑜𝑛(𝑋, ⟨𝑇1, . . . ,𝑇𝑚⟩) ∗ Π 𝑗𝑝

𝑥 𝑗

𝑗 (1 − 𝑝 𝑗)
1−𝑥 𝑗

)

Calculating the above formula is a typical weighted model count-
ing problem [5]: we need to sum up the weight of any solution
𝑋 satisfying a constraint 𝑐𝑜𝑛(𝑋, ⟨𝑇1, . . . ,𝑇𝑚⟩), and the weight of a
solution is the product of the weight of individual assignments to
𝑥𝑖 (i.e., 𝑝𝑖 or 1 − 𝑝𝑖). However, so far we still lack an efficient algo-
rithm to solve weighted model counting: a state-of-the-art solver

1In this paper we assume 00 = 1.

often takes thousands of seconds to solve a model of thousands of
variables [5], which is typical in delta debugging. This is too slow
to accelerate delta debugging.

Alternatively, instead of calculating the posterior probabilities
conditioned on all test results, we calculate the posterior prob-
abilities after every single test and update the model for future
calculations. Concretely, we update 𝑝𝑖 to 𝑃𝑟 (𝜃𝑖 = 1 | 𝑇) after a
test 𝑇 . This method ignores the interaction between different tests
and is not as precise as the previous one, but can be calculated
efficiently.

Below we describe how to update 𝑝𝑖 for each 𝑖 . First we have the
following lemma.

Lemma 3.4. Given a subsequence 𝑋 where 𝑥𝑖 = 1, .i.e, the 𝑖𝑡ℎ

element is preserved in 𝑋 , then 𝜙 (𝑋)⊥𝜃𝑖 , i.e., 𝜙 (𝑋) and 𝜃𝑖 are inde-

pendent.

Proof. Denote the indexes of elements excluded from 𝑋 as
𝑗1, 𝑗2, ..., 𝑗𝑘 . Then

𝑃𝑟 (𝜙 (𝑋) = 𝐹) = 𝑃𝑟 (𝜃 𝑗1 = 1 ∪ 𝜃 𝑗2 = 1 ∪ ... ∪ 𝜃 𝑗𝑘 = 1)

and

𝑃𝑟 (𝜙 (𝑋) = 𝑇) = 𝑃𝑟 (𝜃 𝑗1 = 0 ∩ 𝜃 𝑗2 = 0 ∩ ... ∩ 𝜃 𝑗𝑘 = 0).

The independence between 𝜃 𝑗1, 𝜃 𝑗2, ..., 𝜃 𝑗𝑘 and 𝜃𝑖 implies the inde-
pendence between 𝜙 (𝑋) and 𝜃𝑖 . □

Given the above lemma, we show how to update 𝑝𝑖 for each 𝑖 .
On the one hand, if the test fails, the posterior probability is as
follows.

𝑃𝑟 (𝜃𝑖 = 1|𝜙 (𝑋) = 𝐹)

=
𝑃𝑟 (𝜃𝑖 = 1)𝑃𝑟 (𝜙 (𝑋) = 𝐹 |𝜃𝑖 = 1)

𝑃𝑟 (𝜙 (𝑋) = 𝐹)

=




𝑃𝑟 (𝜃𝑖=1) ·1

1−Π 𝑗 (1−𝑃𝑟 (𝜃 𝑗=1))
1−𝑥𝑗

=
𝑝𝑖

1−Π 𝑗 (1−𝑝 𝑗)
1−𝑥𝑗

𝑥𝑖 = 0

𝑃𝑟 (𝜃𝑖=1)𝑃𝑟 (𝜙 (𝑋)=𝐹)
𝑃𝑟 (𝜙 (𝑋)=𝐹)

= 𝑃𝑟 (𝜃𝑖 = 1) = 𝑝𝑖 𝑥𝑖 = 1

On the other hand, if the test passes, the posterior probability is as
follows.

𝑃𝑟 (𝜃𝑖 = 1|𝜙 (𝑋) = 𝑇)

=
𝑃𝑟 (𝜃𝑖 = 1)𝑃𝑟 (𝜙 (𝑋) = 𝑇 |𝜃𝑖 = 1)

𝑃𝑟 (𝜙 (𝑋) = 𝑇)

=




𝑃𝑟 (𝜃𝑖=1) ·0
𝑃𝑟 (𝜙 (𝑋)=𝑇)

= 0 𝑥𝑖 = 0

𝑃𝑟 (𝜃𝑖=1)𝑃𝑟 (𝜙 (𝑋)=𝑇)
𝑃𝑟 (𝜙 (𝑋)=𝑇)

= 𝑃𝑟 (𝜃𝑖 = 1) = 𝑝𝑖 𝑥𝑖 = 1

Based on the above equations, we update the parameter 𝑝𝑖 for
each 𝑖 after a test 𝜙 (𝑋) = 𝑅 according to the following rules.

(1) 𝑝𝑖 remains unchanged if the 𝑖th element is included in 𝑋 .
(2) 𝑝𝑖 is set to zero if the 𝑖th element is excluded from 𝑋 and the

test function passes.
(3) 𝑝𝑖 is set to

𝑝𝑖

1−Π 𝑗 (1−𝑝 𝑗)
1−𝑥𝑗

if the 𝑖th element is excluded from

𝑋 and the test function fails.

884

Probabilistic Delta Debugging ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

3.3 Select a Subsequence for Testing

We first define the gain of a test and then discuss how to maximize
the expected gain.

3.3.1 The Gain of a Test. As we can see from the previous section,
when 𝑋 passes the test, the probabilities of the elements excluded
from 𝑋 would be set to zero, i.e., these elements should not be
selected again for testing. As a result, each passed test excludes
some elements from the final result. Tomeasure howmany elements
a test can exclude, we define the gain of a test on subsequence 𝑋
as the number of elements excluded if the test passes, and zero
otherwise.

𝑔𝑎𝑖𝑛(𝑋,𝑋𝑇) =

{
|𝑒𝑥 (𝑋,𝑋𝑇) | 𝜙 (𝑋) = 𝑇

0 𝜙 (𝑋) = 𝐹

Here𝑋𝑇 denotes the last subsequence passing the test function, and
𝑒𝑥 (𝑋,𝑋𝑇) denotes the set of elements newly excluded when the test
of 𝑋 passes, i.e., 𝑒𝑥 (𝑋,𝑋𝑇)𝑖 = 1 iff 𝑥𝑖 = 0 and 𝑝𝑖 > 0. To simplify
presentation, we would omit the parameter 𝑋𝑇 if no confusion
would be caused, i.e., we would write 𝑔𝑎𝑖𝑛(𝑋) for 𝑔𝑎𝑖𝑛(𝑋,𝑋𝑇) and
𝑒𝑥 (𝑋) for 𝑒𝑥 (𝑋,𝑋𝑇).

Based on the probabilistic model ⟨𝑝1, 𝑝2, . . . , 𝑝𝑛⟩, we can calcu-
late the expected gain of a test.

E[𝑔𝑎𝑖𝑛(𝑋)] = |𝑒𝑥 (𝑋) | 𝑃𝑟 (𝜙 (𝑋) = 𝑇) = |𝑒𝑥 (𝑋) | Π𝑖 (1 − 𝑝𝑖)
1−𝑥𝑖

Therefore, the goal of selecting a subsequence for a test is to
select a subsequence 𝑋 that maximizes E[𝑔𝑎𝑖𝑛(𝑋)].

3.3.2 Maximizing the Expected Gain. Please note that simply se-
lecting the subsequence that has the maximum probability to be
equal to 𝑋 ∗ does not necessarily lead to the maximum expected
gain because the probability for it to pass the test function may be
low.

To understand how to maximize the expected gain, let us first
consider a simple situation where all probabilities 𝑝𝑖 are equal.
In this case, any subsequence of the same size leads to the same
expected gain. Figure 2 shows the relation between E[𝑔𝑎𝑖𝑛(𝑋)]

and |𝑒𝑥 (𝑋) | when any 𝑝𝑖 is 0.1. As we can see from the figure,
when we remove more elements, the expected gain first increases
and then decreases, with the maximum at the inflection. This is
because E[𝑔𝑎𝑖𝑛(𝑋)] is the product of two components, |𝑒𝑥 (𝑋) |

and Π𝑖 (1 − 𝑝𝑖)
1−𝑥𝑖 . The first one monotonously increases, but the

rate of increase gradually decreases. The second one monotonously
decreases, but the rate of decrease remains the same. Therefore,
there must be a point at which the rate of decrease surpasses the
rate of increase, which maximizes the expected gain.

Now let us consider the case where the probabilities are different.
The first component, |𝑒𝑥 (𝑋) |, is not affected by this change. The
second component, Π𝑖 (1 − 𝑝𝑖)

1−𝑥𝑖 , may lead to different values
for different subsequences of the same length. To select the subse-
quence with the maximum value, we need to exclude the elements
whose probabilities of being in 𝑋 ∗ are the lowest.

Based on the above analysis, we use the following procedure to
find a subsequence that has the maximum expected gain. Remember
𝑋𝑇 is the last subsequence that passes the test function.

(1) Sort the elements in 𝑋𝑇 ascending by their probabilities 𝑝𝑖 .

0 5 10 15 20 25 30 35 40

|ex(X)|

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

E
[g
ai
n(
X
)]

Figure 2: The relation between E[𝑔𝑎𝑖𝑛(𝑋)] and |𝑒𝑥 (𝑋) |

(2) Exclude the elements one by one from𝑋𝑇 based on the above
order until the expected gain begins to decrease.

(3) Return the subsequence with the highest expected gain.

Let 𝑋 be the subsequence returned from the above procedure.
The following theorem shows that 𝑋 has the maximum expected
gain.

Theorem 3.5. E[𝑔𝑎𝑖𝑛(𝑋)] ≥ E[𝑔𝑎𝑖𝑛(𝑋)] for any 𝑋 ⊆ 𝑋𝑇 .

Proof. Use 𝑆 (𝑘) to denote the subsequence obtained after re-
moving 𝑘 elements in step (2). First, we prove ∀𝑋 ⊆ 𝑋𝑇 , the subse-
quence 𝑆 (|𝑒𝑥 (𝑋) |) which excludes the same number of elements as
𝑋 but selects elements in order of increasing probability cannot have
a worse expected gain. Second, we show the subsequence returned
by the algorithm has the highest expected gain among 𝑆 (𝑘) where
1 ≤ 𝑘 ≤ |𝑋𝑇 |. As a result 𝐸 [𝑔𝑎𝑖𝑛(𝑋)] ≥ 𝐸 [𝑔𝑎𝑖𝑛(𝑆 (|𝑒𝑥 (𝑋) |))] ≥

𝐸 [𝑔𝑎𝑖𝑛(𝑋)] . The details can be found in Appendix. □

s1 s2 s3 s4 s5 s6 s7 s8
0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500

1 s1 s2 s3 s4 s5 s6 s7 s8 F
0.3657 0.3657 0.3657 0.2500 0.2500 0.2500 0.2500 0.3657

2 s1 s2 s3 s4 s5 s6 s7 s8 T
0.3657 0.3657 0.3657 0 0 0 0 0.3657

3 s1 s2 s3 s4 s5 s6 s7 s8 F
0.6119 0.3657 0.3657 0 0 0 0 0.6119

4 s1 s2 s3 s4 s5 s6 s7 s8 F
0.6119 0.6119 0.6119 0 0 0 0 0.6119

5 s1 s2 s3 s4 s5 s6 s7 s8 T
0.6119 0 0.6119 0 0 0 0 0.6119

6 s1 s2 s3 s4 s5 s6 s7 s8 F
0.6119 0 1 0 0 0 0 0.6119

7 s1 s2 s3 s4 s5 s6 s7 s8 T
0 0 1 0 0 0 0 0.6119

8 s1 s2 s3 s4 s5 s6 s7 s8 F
0 0 1 0 0 0 0 1

Figure 3: Iterations of our algorithm

3.4 Revisiting the Motivating Example

Figure 3 shows a possible testing sequence of ProbDD for the mo-
tivating example. In Figure 3, each odd row represents each test,
and the selected elements are shown in cells with darker colors.
The last cell of each odd row shows the result of each test. Each
even row represents the probability of each element after a test.
The changes are shown in cells with darker colors.

885

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Guancheng Wang, Ruobing Shen, Junjie Chen, Yingfei Xiong, and Lu Zhang

Let us assume that the expected reduction ratio (Section 3.1.4) is
0.25 and initially all probabilities are set to 0.2500. In each iteration,
ProbDD keeps excluding the element with the lowest probability
until the expected gain begins to decrease. Since the initial proba-
bilities are all equal, the selection of the first iteration is effectively
random. ProbDD excludes 𝑠1, 𝑠2, 𝑠3, and 𝑠8 and the test function
fails, so ProbDD updates the probabilities of the removed elements
based on rule (3) at the end of Section 3.2. At the second iteration,
ProbDD selects four elements with the lowest probabilities, 𝑠4, 𝑠5,
𝑠6, and 𝑠7 to exclude. In this case, the test passes, so ProbDD directly
sets the probabilities of the removed elements to zero according to
rule (2). ProbDD sampled {𝑠2, 𝑠3} and {𝑠1, 𝑠8} to test at the third and
fourth iteration, respectively. They all failed the test and the prob-
abilities of the removed elements are updated accordingly. In the
remaining iterations, the probabilities of the remaining elements
have raised to a level such that only one element could be excluded
at each time, and the probability of the removed element would be
set to either 0 or 1 based on the test result. Finally, ProbDD stops
when the probability of each element is either 1 or 0, and returns
{𝑠3, 𝑠8}.

As we can see from the above process, ProbDD learns from the
history of tests: when removing 𝑠8 fails, the probability of 𝑠8 would
be increased and 𝑠8 would not be repetitively selected for removal.
Furthermore, in the above process, ProbDD returns a much smaller
result {𝑠3, 𝑠8} than ddmin. To reach this result, we need to remove
𝑠4, 𝑠5, 𝑠6, and 𝑠7, and the four elements need to be removed together,
otherwise, the error could not be reproduced. Since ddmin uses
fixed boundaries to partition subsequences, it would never remove
the four elements together. On the other hand, ProbDD does not
use fixed partitions, and could possibly test any subsequence in the
universe X.

4 PROPERTIES OF ProbDD

In this section, we discuss the efficiency, the correctness, and the
minimality of the result.

4.1 Efficiency

Theorem 4.1. Given input with size n, the asymptotic number

of tests performed by ProbDD is bounded by O(n) in the worst case.

Proof. First, there can be at most 𝑛 passed tests as each passing
test sets the probability of at least one element to 0. Second, it can
be shown that there can be at most 𝑂 (𝑛) failed tests before the
probabilities of all elements are either zero or larger than 0.5. When
the probabilities of all remaining elements are larger than 0.5, the
algorithm will test elements one by one, so there could be at most
𝑂 (𝑛) failed tests left. The details can be found in Appendix. □

Please note that this theorem implies that the ProbDD always
terminates.

4.2 Correctness

Theorem 4.2. The returned subsequence 𝑋𝑂 of ProbDD will al-

ways maintain the property, i.e., 𝜙 (𝑋𝑂) = 𝑇 .

Proof. Let 𝑋𝑘 be a subsequence where all elements with zero
probability after the 𝑘th iteration are removed and all elements

with non-zero probabilities are kept, i.e., 𝑥𝑘𝑖 = 1 ⇔ 𝑝𝑖 ≠ 0, and

𝑋 0 be such a sequence before the first iteration. We show that 𝑋𝑘

passes the test function for 𝑘 = 0 and any iteration 𝑘 during an
algorithm execution, i.e., 𝜙 (𝑋𝑘) = 𝑇 .

First, it is easy to see that 𝑋 0 is the input object and passes the
test function.

Let us assume that𝑋𝑘 passes the test function. If the test function
fails in iteration 𝑘 + 1, then only the probabilities of some elements
whose probabilities were not zero would increase, and thus 𝑋𝑘+1

=

𝑋𝑘 still passes the test function. If the test function passes, the
probabilities of the removed elements would be set to zero, and
thus 𝑋𝑘+1 is the same as the tested subsequence and passes the test
function.

Putting the above together, the above property holds. Since𝑋𝑂 is
𝑋𝑘 for the last iteration 𝑘 , we know that𝑋𝑂 passes the test function.

□

4.3 Minimality

Theorem 4.3. If monotony holds, the output of ProbDD 𝑋𝑂 is

minimal, i.e., ∀𝑋 ⊂ 𝑋𝑂 , 𝜙 (𝑋) = 𝐹 .

Proof. Let 𝑠𝑖 be the element in 𝑋𝑂 but not in 𝑋 . Since 𝑋𝑂 is the
output, we know that 𝑝𝑖 = 1. It is easy to see

𝑝𝑖

1−Π 𝑗 (1−𝑝 𝑗)
1−𝑥𝑗

= 1

only when ∀𝑘 ≠ 𝑖, 𝑝𝑘 = 0 ∨ 𝑥𝑘 = 1, i.e., there exists a failed test
on 𝑋 ′ where only 𝑠𝑖 is newly removed. Since 𝑋𝑂 is the output, we
know that 𝑋 ⊂ 𝑋𝑂 ⊆ 𝑋 ′ ∪ {𝑠𝑖 }. Since 𝑠𝑖 is not in 𝑋 , we know
𝑋 ⊆ 𝑋 ′. Since 𝜙 (𝑋 ′) = 𝐹 , by monotony we have 𝜙 (𝑋) = 𝐹 . □

Theorem 4.4. If monotony and unambiguity both hold, the out-

put of ProbDD 𝑋𝑂 is minimum, i.e., ∀𝑋, |𝑋 | < |𝑋𝑂 | ⇒ 𝜙 (𝑋) = 𝐹

Proof. By the proof of Theorem 3.3, minimum𝑋 ∗
=
⋂

𝜙 (𝑋)=𝑇 𝑋 .
Since𝜙 (𝑋𝑂) = 𝑇 , we know𝑋 ∗ ⊆ 𝑋𝑂 . Let us assume𝑋 ∗ ⊂ 𝑋𝑂 . Then
from Theorem 4.3, we know that 𝜙 (𝑋 ∗) = 𝐹 , which contradicts the
definition of 𝑋 ∗. As a result, 𝑋 ∗

= 𝑋𝑂 , i.e., 𝑋𝑂 is minimum. □

5 EVALUATION

As discussed before, many existing delta debugging approaches
are domain-specific based on the ddmin algorithm. Specifically, a
typical domain-specific delta debugging approach considers the
constraints in the domain, and applies ddmin to subsequences of
the elements such that the domain-specific constraints would not
be violated. Since our goal is to improve ddmin, we would like to
understand whether and how much ProbDD outperforms ddmin
in different application domains, i.e., whether the performance of
a domain-specific approach improves when replacing ddmin with
ProbDD. Furthermore, we would like to investigate how ProbDD
compares with ACTIVECOARSEN [20], which is the only random-
ized search algorithm that can be applied to delta debugging within
our knowledge. To sum up, our evaluation addresses the following
research questions.

• RQ1: How does ProbDD compare to ddmin in different ap-
plication domains?

• RQ2:What is the impact of the parameter in ProbDD?
• RQ3: How does ProbDD compare with ACTIVECOARSEN?

886

Probabilistic Delta Debugging ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

5.1 Experiment Setup

Application Domains. Our evaluation considers the following
two application domains, in each of which we picked the repre-
sentative delta debugging approach based on ddmin as the target
approach. We replaced the ddmin component with ProbDD in each
target approach, and compared the performance with the original
target approach with ddmin.

• Trees. The representative delta debugging approach for trees
is HDD [21], and is often applied to programs where the
abstract syntax tree (AST) of the program is available.

• C Programs. The representative debugging tool for C pro-
gram is CHISEL [13], which relies on both the grammar of
C language and the dependency relations between elements
in programs.

We chose the two domains because they are actively studied in
existing delta debugging research and there are publicly available
implementations of the representative approaches based on ddmin.

To facilitate presentation, we call the original HDD with ddmin
as d-HDD, and the version where ddmin is replaced with ProbDD
as p-HDD. Similarly, the two versions of CHISEL is called d-CHISEL
and p-CHISEL, respectively. We also use d-version and p-version if
no specific approach is referred to.

Subjects. Wemainly picked the subjects for evaluating the original
approaches in existing publications to avoid selection bias. More
specifically, we chose the following subjects.

• Trees. We used 30 subjects in the domain of trees. We used
the 20 publicly available subjects in the benchmark for com-
paring HDD and Perses [25], which are C programs trig-
gering crash and compilation bugs in GCC and Clang. The
property to be preserved is to reproduce the reported bug
without any undefined behavior. Since these subjects all fall
into the application domain of C programs, we added 10
XML reduction tasks for diversity. We crawled a corpus of
more than 1,000 XML files from repositories of XML files
publicly available on the Internet, filtered out 73 of those
that cannot be parsed, and randomly picked 10 XML files
as subjects. The property to be preserved is to keep at least
the original test coverage on an XML parser xmllint [3]. We
did not use the benchmark in the original publication of
HDD [21] because it is not publicly available.

• C Programs. We used 30 subjects in the domain of C pro-
grams. We used the benchmark for evaluating CHISEL [13],
which includes 10 subjects that are C programs to be de-
bloated to be used in embedded systems, as well as the same
20 subjects used for trees. The property for those 10 subjects
is to compile successfully, pass given test cases, and contain
specific functions. The property for those 20 subjects to keep
is the same as that used in the application domain of trees.

In total, we used 40 subjects in our evaluation, and 20 of them are
used in both application domains. The number of subjects in our
evaluation is larger than all recent publications on delta debugging
at top venues [13, 15, 16, 18, 21, 23, 25, 29, 30, 32] as far as we are
aware. We made full use of 16 cores of the server, and the whole
process of our evaluation took about 90 hours per core on average
(1,441 hours in total).

Metrics. Following the existing work [13, 21, 25], we used three
metrics to measure the effectiveness of a delta debugging approach
in the study, i.e., the size of the produced result, the processing time,
and the number of tokens deleted per second. We measured the size
of the subjects in both domains using the number of tokens. We
measured the processing time in seconds. The reduction process of
each subject has a timeout limit of 3 hours. If timed out, the size of
the produced result is the size of the smallest object in all passed
tests and the processing time is not available. When calculating
the average results, we calculated geometric means rather than
arithmetic means because different subjects diverge significantly
on the three metrics.

Process. To answer RQ1, we first recorded the original size for each
subject. Then, we applied both d- and p-version of the approaches
for each subject and recorded the size of the produced result and
the processing time. Then we calculated the number of tokens
deleted per second. What’s more, we calculated the p-value of a
paired sample Wilcoxon signed-ranked test given the size of the
produced result, the number of tokens deleted per second, and the
processing time of the subjects without timeout on the both p- and
d-version to answer whether our approach achieves significant
improvement in both effectiveness and efficiency compared to the
original approaches, respectively.

To answer RQ2, we adjusted the values of the only parameter
used in ProbDD, i.e., the initial value of probability 𝜎 . Since this
experiment is time-consuming, we sampled a subset of subjects for
this experiment. Considering the diversity of the reduction ratio
(i.e., the ratio of the smallest returned size to the original size),
we sorted the reduction ratio of all subjects and evenly selected
14 subjects with the reduction ratio from 0.005 to 0.899. These 14
subjects are xml-10, xml-5, xml-6, xml-3, clang-27747, gcc-64990,
clang-27137, gcc-65383, gcc-71626, chown-8.2, mkdir-5.2.1, date-
8.21, sort-8.16, and grep-2.19 as the ascending order of the reduction
ratio. We ran the first half of subjects in the application domain
of trees and the remaining subjects in the application domain of
C programs. We changed the initial value of probability 𝜎 to 0.01,
0.05, 0.1, 0.15, 0.2, 0.25, and 0.3, respectively. For each setting, we
measured the results using all the metrics. Since some subjects are
timed out, we do not present the results on the processing time but
use the number of tokens deleted per second as the main metric
for efficiency. In this RQ, we did not conduct experiments on all
subjects because it would take a very long time.

To answer RQ3, we selected ACTIVECOARSEN [20] as the rep-
resentative random search algorithm and used the default setting
in ACTIVECOARSEN. Then we created two versions of HDD and
CHISEL by replacing ddmin with ACTIVECOARSEN, and the re-
spective versions are called a-HDD and a-CHISEL. Then we com-
pared the a-version and the p-version in all subjects in all domains.

The results of ProbDD, CHISEL, and ACTIVECOARSEN are also
affected by randomness. To reduce the influence of randomness, we
ran all versions affected by randomness 5 times and computed the
average results. We chose 5 times because the standard deviation of
the 5 running results for each subject and each approach is already
less than 1% of their corresponding average results. In RQ1 and
RQ3, we set 𝜎 in ProbDD to 0.1.

887

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Guancheng Wang, Ruobing Shen, Junjie Chen, Yingfei Xiong, and Lu Zhang

Table 1: Comparison between ProbDD and ddmin

Summary 𝑹𝒊
p-version d-version

↑𝑹 𝒑 − 𝒗𝒂𝒍𝒖𝒆𝑹 ×𝑺 𝒑 − 𝒗𝒂𝒍𝒖𝒆𝑺 ↑𝑻 𝒑 − 𝒗𝒂𝒍𝒖𝒆𝑻𝑹𝒑 𝑺𝒑 𝑻𝒑 𝑹𝒅 𝑺𝒅 𝑻𝒅
Trees 31,533 376 9 778 928 4 2,115 59.48% 0.0000 2.25 0.0000 63.22% 0.0015

C Programs 64,782 8,791 31 874 9,935 17 1,597 11.51% 0.0012 1.82 0.0000 45.27% 0.0000
In this table and the tables in the rest of this section, 𝑅 represents the size of the results; 𝑆 represents the number of tokens deleted per seconds;𝑇 represents the processing
time in seconds; 𝑅𝑖 represents the size of the input; 𝑝 represents the p-versions; 𝑑 represents the d-versions; ↑ denotes the improvement, where ↑𝑋 = (𝑋𝑑 −𝑋𝑝)/𝑋𝑑 ; ×𝑆
denotes the speedup, where ×𝑆 = 𝑆𝑝/𝑆𝑑 . In this table, all numbers are geometric means, and the means of process time are only calculated on the subjects where both p- and
d-versions finish within the time limit.

Implementation. We introduce the implementations for both
application domains below.

• Trees. We adopted a recent implementation of HDD [1, 15]
in Python as d-HDD and implemented p-HDD and a-HDD
on top of this implementation.

• C Programs. We adopted the implementation of CHISEL
in C++ by the original authors [13] as d-CHISEL and imple-
mented p-CHISEL and a-CHISEL on top of it. In particular,
the CHISEL implementation includes components for auto-
matic dead code elimination (DCE) and dependency analy-
sis (DA), and we disabled these components by using three
command-line options, i.e., -skip_local_dep, -skip_global_dep,
and -skip_dce, due to the following reasons. First, DCE is
designed for program debloating in CHISEL and it fails most
of the tests in other domains, e.g., compiler bugs triggered
by unreachable code. Second, we found that the DA compo-
nent produces incorrect results in some cases, e.g., when a
function call is passed as a parameter, which exists in the
subjects used in our evaluation. Please note that DCE and
DA are disabled for all versions of CHISEL.

Our evaluation was performed on a Linux server with 16-core
32-thread Intel(R) Xeon(R) Gold 6130 CPU (3.7GHz), 128 Gigabyte
RAM, and the operating system of Ubuntu Linux 16.04.

5.2 Results and Analysis

5.2.1 Comparison between ProbDD and ddmin. Table 1 shows the
overall performance of the p- and d-versions in terms of the three
metrics. From Table 1, we can see that p-versions perform better
than d-versions in all metrics. On average, p-versions delete 5 and 14
more tokens per second to obtain 59.48% and 11.51% smaller results
than d-versions in the application domains of trees and C programs,
respectively. On the subjects where both p- and d-versions finish
within the time limit, p-HDD and p-CHISEL use 63.22% and 45.27%
less time, respectively. All p-values are significant (< 0.05).

Detailed Results in Each Application Domain. We then inves-
tigate the detailed results of p-versions for each subject in both
application domains. Table 2 shows the comparison results between
p- and d-versions. From Table 2, the p-versions outperform the d-
versions on 58 out of 60 subjects. Here we define the p-version
outperforms the d-version on a subject if the p-version has better
result in any of the three metrics and does not have worse result in
any of the metrics. Only on 2 subjects, mkdir-5.2.1 and grep-2.19,
the p-version performs worse than the d-version.

We analyzed the two subjects and found that, to preserve tar-
get properties, we have to keep consecutive subsequences in the
returned result. In other words, if we know the element at index

Table 2: Comparison between ProbDD and ddmin: Detailed

Data

D Subject
p-version d-version

↑𝑹 ×𝑺 ↑𝑻𝑹𝒑 𝑻𝒑 𝑺𝒑 𝑹𝒅 𝑻𝒅 𝑺𝒅

T
re
e
s

clang-22382 355 998 20.755 355 4,915 4.214 0.0% 4.9249 79.7%
clang-22704 1,540 - 16.936 1,826 - 16.909 15.7% 1.0016 -
clang-23309 1,327 - 3.456 13,782 - 2.302 90.4% 1.5009 -
clang-23353 325 1,780 16.782 344 3,932 7.592 5.5% 2.2104 54.7%
clang-25900 634 7,458 10.502 723 - 7.244 12.3% 1.4498 -
clang-26760 397 - 19.369 624 - 19.348 36.4% 1.0011 -
clang-27137 206 - 16.142 238 - 16.139 13.4% 1.0002 -
clang-27747 227 4,256 40.792 315 - 16.067 27.9% 2.5389 -
clang-31259 1,010 - 4.425 3,800 - 4.167 73.4% 1.0620 -
gcc-59903 538 - 5.282 1,550 - 5.188 65.3% 1.0181 -
gcc-60116 8,420 - 6.186 16,658 - 5.423 49.5% 1.1407 -
gcc-61383 957 - 2.916 1,636 - 2.853 41.5% 1.0220 -
gcc-61917 322 8,393 10.132 378 - 7.869 14.8% 1.2876 -
gcc-64990 1,451 - 13.656 41,104 - 9.984 96.5% 1.3677 -
gcc-65383 710 8,119 5.325 42,583 - 0.126 98.3% 42.3275 -
gcc-66186 1,010 - 4.303 46,993 - 0.045 97.9% 95.1969 -
gcc-66375 551 - 6.013 10,668 - 5.076 94.8% 1.1846 -
gcc-70127 428 - 14.295 659 - 14.274 35.1% 1.0015 -
gcc-70586 17,969 - 17.990 49,488 - 15.071 63.7% 1.1936 -
gcc-71626 179 103 57.806 179 397 14.998 0.0% 3.8544 74.1%
xml-1 30 486 11.152 170 3,731 1.415 82.4% 7.8804 87.0%
xml-2 181 2,572 2.703 181 3,612 1.925 0.0% 1.4043 28.8%
xml-3 236 2,508 3.462 236 3,378 2.571 0.0% 1.3469 25.8%
xml-4 293 2,515 3.697 325 3,768 2.459 9.8% 1.5034 33.3%
xml-5 46 509 11.493 230 2,765 2.049 80.0% 5.6086 81.6%
xml-6 177 422 18.860 200 2,346 3.383 11.5% 5.5753 82.0%
xml-7 54 382 12.421 54 807 5.880 0.0% 2.1126 52.7%
xml-8 50 273 21.000 50 921 6.225 0.0% 3.3736 70.4%
xml-9 179 2,707 1.768 195 3,240 1.472 8.2% 1.2009 16.5%
xml-10 39 431 17.629 58 822 9.220 32.8% 1.9120 47.6%

C
P
ro
g
ra
m
s

mkdir-5.2.1 8,321 1,429 18.530 8,291 1,417 18.709 -0.4% 0.9905 -0.8%
rm-8.4 7,427 3,232 11.458 7,427 4,192 8.834 0.0% 1.2970 22.9%

chown-8.2 7,445 3,704 9.834 8,286 5,297 6.718 10.1% 1.4639 30.1%
grep-2.19 114,754 - 1.197 113,155 - 1.345 -1.4% 0.8899 -
bzip2-1.05 51,123 - 1.797 64,686 - 0.541 21.0% 3.3208 -
sort-8.16 51,848 - 3.354 55,336 - 3.031 6.3% 1.1066 -
gzip-1.2.4 16,548 - 2.720 30,074 - 1.468 45.0% 1.8531 -
uniq-8.16 14,045 9,242 5.390 14,201 - 4.598 1.1% 1.1723 -
date-8.21 20,219 9,920 3.349 33,541 - 1.843 39.7% 1.8175 -
tar-1.14 58,374 - 9.715 130,328 - 3.053 55.2% 3.1825 -

clang-22382 4,028 150 113.600 4,028 453 37.616 0.0% 3.0200 66.9%
clang-22704 1,224 2,917 62.811 1,742 3,749 48.733 29.7% 1.2889 22.2%
clang-23309 7,267 1,006 31.193 7,272 2,365 13.266 0.1% 2.3513 57.5%
clang-23353 7,698 694 32.418 7,741 1,911 11.750 0.6% 2.7589 63.7%
clang-25900 2,988 1,270 59.821 3,016 2,343 32.413 0.9% 1.8456 45.8%
clang-26760 4,970 2,286 89.504 5,241 3,345 61.087 5.2% 1.4652 31.7%
clang-27137 14,400 2,907 55.087 15,373 4,995 31.865 6.3% 1.7288 41.8%
clang-27747 6,270 717 233.710 6,324 1,011 165.693 0.9% 1.4105 29.1%
clang-31259 4,166 633 70.510 4,166 1,197 37.287 0.0% 1.8910 47.1%
gcc-59903 6,602 737 69.171 7,614 1,342 37.233 13.3% 1.8578 45.1%
gcc-60116 9,453 886 74.234 9,611 1,750 37.493 1.6% 1.9799 49.4%
gcc-61383 9,702 1,109 20.511 9,932 1,265 17.800 2.3% 1.1523 12.3%
gcc-61917 13,691 947 75.679 13,691 1,607 44.597 0.0% 1.6969 41.1%
gcc-64990 6,970 882 160.953 7,532 1,891 74.775 7.5% 2.1525 53.4%
gcc-65383 5,065 397 97.927 5,065 1,509 25.763 0.0% 3.8010 73.7%
gcc-66186 6,447 622 65.971 6,447 1,196 34.309 0.0% 1.9228 48.0%
gcc-66375 5,169 854 70.631 5,169 2,243 26.892 0.0% 2.6265 61.9%
gcc-70127 12,452 1,346 105.768 12,452 2,043 69.684 0.0% 1.5178 34.1%
gcc-70586 8,383 908 224.533 8,383 1,677 121.572 0.0% 1.8469 45.9%
gcc-71626 639 14 392.429 639 33 166.485 0.0% 2.3571 57.6%

𝑖 is in 𝑋 ∗, elements at indexes 𝑖 − 1 and 𝑖 + 1 are also likely to be
in 𝑋 ∗. This contradicts with our independence assumption, and
thus p-CHISEL does not have better performance. Nevertheless,
even on the two subjects where our independence assumption does

888

Probabilistic Delta Debugging ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Trees C Programs
0

20

40

60

80

100
↑ R

Trees C Programs
0

2

4

6

8

10 xS

(a) Detailed result distribution of Table 2

Trees C Programs
0

20

40

60

80

100
↑ R

Trees C Programs
0

2

4

6

8

10 xS

(b) Detailed result distribution of Table 4
Figure 4: Detailed result distribution

not hold, the performance of p-CHISEL is only slightly worse than
d-CHISEL.

Further, we consider the values larger than 0 and 1 in the columns
↑𝑅 and ×𝑆 of Table 2, and use boxplots to show the distribution,
as shown in left and right sub-figures of Figure 4a, respectively. In
each box, the line that divides the box into two parts represents
the median of the data, the ends of the box shows the upper (Q3)
and lower (Q1) quartiles, the difference between Quartiles 1 and
3 is called the interquartile range (IQR), the extreme line shows
Q3+1.5xIQR to Q1-1.5xIQR, and the outliers are omitted.

RQ1: On average, ProbDD improves HDD and CHISEL by
deleting 5 and 14 more tokens per second to obtain 59.48% and
11.51% smaller results, respectively. On the subjects where
both versions finish within the time limit, ProbDD reduces
the execution time of HDD and CHISEL by 63.22% and 45.27%,
respectively.

5.2.2 Impact of the Parameter. We then investigate the impact of
the only parameter in p-versions, i.e., the initial probability for each
element 𝜎 , based on the selected 14 subjects in both application
domains (as presented in Section 5.1). The results are shown in
Figure 5. The left sub-figures in Figure 5a and Figure 5b show the
geometric means of the produced size, while the right sub-figures
depict the geometric means of the number of tokens deleted per
second. In each sub-figure, the blue line marks the performance of
ProbDD. Also, we used the red line to mark the performance of the
original approaches with ddmin for clear comparison.

We observe that though different 𝜎 values cause deviations in the
performance, the p-versions stably outperform the d-versions with
all studied 𝜎 values. Furthermore, the performance differences be-
tween different 𝜎 values is significantly smaller than the difference
between the p-versions and the d-versions.

RQ2: The parameter 𝜎 has a small impact on the performance
of ProbDD and ProbDD stably improves HDD and CHISEL
in all parameter values we tested.

5.2.3 Compared between ProbDD and ACTIVECOARSEN. Table 3
shows the overall comparison results between p-versions and a-
versions on all the subjects in the application domains of trees and
C programs. From this table, p-versions delete 3 and 21 more tokens
per second to obtain 58.68% and 27.03% smaller size of produced

result than a-versions on average in the application domains of
trees and C programs, respectively. On subjects where both versions
finish, the p-versions also use 58.77% and 68.65% less time. The
detailed comparison results on each subject can be found in Table 4,
and the distribution of the improvement (↑𝑅) and speedup (×𝑆)
achieved by ProbDD can be found in Figure 4b.

RQ3:On average, p-versions significantly outperform a-versions
by deleting 3 and 22 more tokens per second to obtain 58.68%
and 27.03% smaller results in the application domains of trees
and C programs, respectively. On the subjects where both ver-
sions finish within the time limit, p-versions use 58.77% and
68.65% less processing time on the two domains, respectively.

5.3 Threats to Validity

The threat to internal validity mainly lies in the correctness of
the implementation of p-versions and the experimental scripts. To
reduce this threat, we have carefully reviewed our code.

The threat to external validity mainly lies in the subjects and
the target approaches. Regarding the subjects used in our study,
we adopted the subjects used in existing publications for the two
application domains, i.e., trees and C programs. Besides, to increase
the subject diversity in the domain of trees, we additionally evalu-
ated our approach on 10 XML files, which were randomly picked
from the crawled corpus. In the future, we will evaluate ProbDD on
more subjects. Regarding the target approaches, we adopted two
representative approaches in domains of trees and C programs, i.e.,
HDD and CHISEL, as presented in Section 5.1.

The threat to construct validity mainly lies in randomness. The
randomness may impact the performance of p-versions, a-versions,
and d-CHISEL. To reduce this threat, we ran each of them on each
subject 5 times and calculated the average results as presented in
Section 5.1.

6 RELATED WORK

Delta Debugging Approaches built on ddmin. As the basic
algorithm for delta debugging, ddmin was proposed by Zeller and
Hildebrandt to minimize failure-inducing test inputs [32], which
has been described in Section 1 and 2. Further, they proposed an
extended version of ddmin, named dd, which aims to obtain a

889

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Guancheng Wang, Ruobing Shen, Junjie Chen, Yingfei Xiong, and Lu Zhang

(a) Impact of 𝜎 in trees (b) Impact of 𝜎 in C programs
Figure 5: Impact of 𝜎 for ProbDD

Table 3: Comparison between ProbDD and ACTIVECOARSEN

Summary 𝑹𝒊
p-version a-version

↑𝑹 𝒑 − 𝒗𝒂𝒍𝒖𝒆𝑹 ×𝑺 𝒑 − 𝒗𝒂𝒍𝒖𝒆𝑺 ↑𝑻 𝒑 − 𝒗𝒂𝒍𝒖𝒆𝑻𝑹𝒑 𝑺𝒑 𝑻𝒑 𝑹𝒂 𝑺𝒂 𝑻𝒂
Trees 31,533 376 9 778 910 6 1,887 58.68% 0.0000 1.5 0.0000 58.77% 0.0015

C Programs 64,782 8,791 31 874 12,597 9 2,788 27.03% 0.0000 3.33 0.0000 68.65% 0.0001

minimal difference between a passing test input and a failing test
input rather than a minimal failure-inducing test input [32].

Subsequently, some approacheswrap ddmin for different domain-
specific structures. Misherghi and Su [21] proposed HDD for more
effective delta debugging on tree-structured data that has been
described in Section 1. Inspired by HDD, modernized HDD [15],
coarse HDD [16], and HDDr [18] were proposed to further improve
the performance of HDD. For example, HDDr is a recursive variant
of HDD. Sun et al. [25] proposed Perses, which utilizes the formal
syntax of a programming language to guide reduction and always
produces syntactically valid subsequences. For each iteration of
reduction, Perses invokes ddmin to prune the nodes in the parse
tree for quantified nodes, and it proposes replacement strategies
for regular nodes. CHISEL [13], implemented based on Perses, in-
troduces dependency analysis to understand which elements need
to be removed together. CHISEL also improves ddmin, and builds a
decision tree model to prune the predefined sequences of ddmin
during the reduction process.

Different from most existing approaches that wrap ddmin for
different domains, our work aims to improve ddmin itself. Different
from ddmin, ProbDD builds a probabilistic model to guide the tests
and updates the model based on the test results. Our study has
demonstrated that ProbDD significantly improves the performance
of representative approaches built on ddmin in different application
domains by replacing ddmin with ProbDD.

Among the existing approaches, CHISEL also builds statistical
model to improve ddmin and thus is closely related to our work.
However, CHISEL still relies on the predefined sequence of at-
tempts in ddmin and only uses the statistical model to prioritize
attempts in the sequence. Different from it, ProbDD directly se-
lects elements based on the learned distribution. Our evaluation
has demonstrated that ProbDD could significantly improve the
performance of CHISEL.

Delta Debugging Approaches based on transformation tem-

plates. There are some approaches that employ transformation
templates to transform an original object. GTR [14] defines two

transformation templates for tree-structured data and can automati-
cally choose which template to use in the reduction step by learning
from a corpus of example data. C-Reduce [23] was proposed to solve
the problem of test-case minimization, which employs plenty of
source-to-source transformations for a more effective reduction on
C, C++, and OpenCL programs. Although these transformation-
template-based delta debugging approaches can further improve the
reduction effectiveness in their domains [14, 23], they suffer from
the serious efficiency problem based on the existing study [13, 25].

In this paper, we focus on solving the efficiency problem in the
existing approaches built on ddmin. Improving the transformation-
template-based approaches is future work.

Blackbox Optimization. Delta debugging is a blackbox optimiza-
tion problem. Bayesian optimization is widely used to solve black-
box optimization problems. It builds a probabilistic model and up-
dates the model with test results [22]. ProbDD can be viewed as
a Bayesian optimization algorithm specifically designed for the
delta debugging problem. Different from the classic Bayesian op-
timization algorithms that are designed for objective functions
modeled by Gaussian process regression [12], ProbDD targets the
delta debugging problemwith binary test results. Although recently
some Bayesian optimization approaches were proposed for binary
objective functions [26, 33], they are designed for specific tasks.
Furthermore, some Bayesian approaches have been proposed for
other debugging tasks, e.g., slicing [19] and fault localization [4]. To
our knowledge, there is no existing Bayesian optimization approach
that can be applied to solve the delta debugging problem.

Furthermore, heuristic search algorithms (such as the genetic
search algorithms [24]) are also widely used to solve blackbox op-
timization problems, but similar to classic Bayesian optimization,
classic heuristic search algorithms rely on continuous fitness func-
tions. Since the test results are binary, how to design an effective
fitness function to guide these algorithms is an open problem for
future research.

The only heuristic search approach that can be applied to delta
debugging within our knowledge is ACTIVECOARSEN [20]. It
aims to find a minimal abstraction in the domain of static analyses

890

Probabilistic Delta Debugging ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Table 4: Comparison between ProbDD and ACTIVE-

COARSEN: Detailed Data

D Subject
p-version a-version

↑𝑹 ×𝑺 ↑𝑻𝑹𝒑 𝑻𝒑 𝑺𝒑 𝑹𝒂 𝑻𝒂 𝑺𝒂

T
re
e
s

clang-22382 355 998 20.755 452 4,250 4.851 21.5% 4.2786 76.5%
clang-22704 1,540 - 16.936 9,342 - 16.213 83.5% 1.0446 -
clang-23309 1,327 - 3.456 2,836 - 3.316 53.2% 1.0422 -
clang-23353 325 1,780 16.782 394 7,578 3.933 17.5% 4.2672 76.5%
clang-25900 634 7,458 10.502 1,248 - 7.196 49.2% 1.4595 -
clang-26760 397 - 19.369 544 - 19.355 27.0% 1.0007 -
clang-27137 206 - 16.142 1,280 - 16.042 83.9% 1.0062 -
clang-27747 227 4,256 40.792 945 - 16.009 76.0% 2.5481 -
clang-31259 1,010 - 4.425 1,380 - 4.391 26.8% 1.0078 -
gcc-59903 538 - 5.282 1,461 - 5.196 63.2% 1.0165 -
gcc-60116 8,420 - 6.186 10,880 - 5.958 22.6% 1.0382 -
gcc-61383 957 - 2.916 6,652 - 2.389 85.6% 1.2208 -
gcc-61917 322 8,393 10.132 8,969 - 7.073 96.4% 1.4325 -
gcc-64990 1,451 - 13.656 35,791 - 10.476 95.9% 1.3035 -
gcc-65383 710 8,119 5.325 2,201 - 3.865 67.7% 1.3777 -
gcc-66186 1,010 - 4.303 1,716 - 4.237 41.1% 1.0154 -
gcc-66375 551 - 6.013 7,095 - 5.407 92.2% 1.1121 -
gcc-70127 428 - 14.295 629 - 14.277 32.0% 1.0013 -
gcc-70586 17,969 - 17.990 27,172 - 17.138 33.9% 1.0497 -
gcc-71626 179 103 57.806 204 728 8.144 12.3% 7.0978 85.9%
xml-1 30 486 11.152 70 1,116 4.821 57.1% 2.3134 56.5%
xml-2 181 2,572 2.703 263 3,408 2.016 31.2% 1.3409 24.5%
xml-3 236 2,508 3.462 236 6,971 1.246 0.0% 2.7795 64.0%
xml-4 293 2,515 3.697 314 4,288 2.163 6.7% 1.7088 41.3%
xml-5 46 509 11.493 46 1,950 3.000 0.0% 3.8310 73.9%
xml-6 177 422 18.860 377 500 15.518 53.1% 1.2154 15.6%
xml-7 54 382 12.421 54 603 7.869 0.0% 1.5785 36.7%
xml-8 50 273 21.000 50 1,669 3.435 0.0% 6.1135 83.6%
xml-9 179 2,707 1.768 207 2,900 1.641 13.5% 1.0776 6.7%
xml-10 39 431 17.629 263 505 14.602 85.2% 1.2073 14.7%

C
P
ro
g
ra
m
s

mkdir-5.2.1 8,321 1,429 18.530 8,398 - 2.445 0.9% 7.5798 -
rm-8.4 7,427 3,232 11.458 15,867 - 2.647 53.2% 4.3280 -

chown-8.2 7,445 3,704 9.834 18,120 - 2.384 58.9% 4.1245 -
grep-2.19 114,754 - 1.197 114,871 - 1.186 0.1% 1.0091 -
bzip2-1.05 51,123 - 1.797 55,790 - 1.365 8.4% 1.3166 -
sort-8.16 51,848 - 3.354 71,271 - 1.555 27.3% 2.1563 -
gzip-1.2.4 16,548 - 2.720 35,799 - 0.938 53.8% 2.9003 -
uniq-8.16 14,045 9,242 5.390 47,209 - 1.542 70.2% 3.4958 -
date-8.21 20,219 9,920 3.349 37,061 - 1.517 45.4% 2.2080 -
tar-1.14 58,374 - 9.715 132,849 - 2.819 56.1% 3.4460 -

clang-22382 4,028 150 113.600 5,626 496 31.133 28.4% 3.6488 69.8%
clang-22704 1,224 2,917 62.811 2,288 6,425 28.351 46.5% 2.2155 54.6%
clang-23309 7,267 1,006 31.193 7,937 5,553 5.530 8.4% 5.6403 81.9%
clang-23353 7,698 694 32.418 7,850 3,062 7.298 1.9% 4.4421 77.3%
clang-25900 2,988 1,270 59.821 4,462 1,971 37.797 33.0% 1.5827 35.6%
clang-26760 4,970 2,286 89.504 5,489 5,653 36.103 9.5% 2.4792 59.6%
clang-27137 14,400 2,907 55.087 14,456 6,597 24.266 0.4% 2.2701 55.9%
clang-27747 6,270 717 233.710 6,322 4,072 41.139 0.8% 5.6810 82.4%
clang-31259 4,166 633 70.510 5,894 3,089 13.890 29.3% 5.0765 79.5%
gcc-59903 6,602 737 69.171 9,292 4,378 11.030 28.9% 6.2712 83.2%
gcc-60116 9,453 886 74.234 12,786 4,505 13.860 26.1% 5.3561 80.3%
gcc-61383 9,702 1,109 20.511 9,884 4,093 5.513 1.8% 3.7205 72.9%
gcc-61917 13,691 947 75.679 14,705 4,455 15.860 6.9% 4.7718 78.7%
gcc-64990 6,970 882 160.953 9,940 2,842 48.906 29.9% 3.2911 69.0%
gcc-65383 5,065 397 97.927 9,127 1,377 25.283 44.5% 3.8732 71.2%
gcc-66186 6,447 622 65.971 8,990 2,749 14.002 28.3% 4.7116 77.4%
gcc-66375 5,169 854 70.631 6,672 3,515 16.733 22.5% 4.2211 75.7%
gcc-70127 12,452 1,346 105.768 13,725 4,407 32.015 9.3% 3.3037 69.5%
gcc-70586 8,383 908 224.533 11,625 3,010 66.656 27.9% 3.3685 69.8%
gcc-71626 639 14 392.429 699 88 61.750 8.6% 6.3551 84.1%

using heuristic search. In our evaluation, we considered ACTIVE-
COARSEN as a baseline and the results that suggest that ProbDD
outperforms ACTIVECOARSEN in improving the representative
approaches in the two domains.

Recently, Xin et al. [27] also propose a software debloating ap-
proach, DEBOP, that is based on MCMC with Metropolis-Hastings
sampling Ð a typical blackbox optimization approach. However,
DEBOP targets a software debloating problem that is different from
the standard one: instead of passing a testing function, the goal of
this problem is to maximize a set of continuous objective functions.
In other words, there is no binary test function and thus the MCMC
algorithm applies.

7 FUTUREWORK

Unlike traditional delta debugging algorithms that search with
a pre-defined order, our approach ProbDD builds a probabilistic
model to estimate the probabilities of the elements to be kept in
the produced result. A basic assumption of this model is that each
element is independently related to the property to be preserved.
However, elements may depend on each other due to structural
constraints in the target domain. For example, in a tree structure,
the existence of a child depends on the existence of its parent. In this
paper, we ensure these structural constraints by building ProbDD
into existing approaches such that these existing approaches apply
ProbDD to only the subsets that would not violate the constraints.
A more direct way to accomplish this is to directly build these
constraints in the probabilistic model. For example, in a tree of
two elements, we can use two random variables to represent the
probability of the parent and the conditional probability of the
child when the parent is present. We do not need the conditional
probability of the child when the parent is not present because we
know the probability is zero. This is a future direction.

8 CONCLUSION

In this paper, we propose a probabilistic delta debugging algorithm,
ProbDD, which builds a probabilistic model to estimate the probabil-
ity of each element to be kept in the reduced result. ProbDD selects
a subset of elements based on the probabilistic model to maximize
the gain of the next test, tests whether the subset maintains the
property, and improves the model based on the test results. Our al-
gorithm terminates when the learned probabilities are either 1 or 0.
Further, we prove the correctness of ProbDD, and analyze the min-
imality of its result and its worst-case asymptotic number of tests.
We evaluated ProbDD in two application domains, i.e., trees and C
programs. On average, after replacing ddmin with ProbDD, HDD
and CHISEL produces 59.48% and 11.51% smaller results within
the time limit, respectively. On the subjects where both versions
finish within the time limit, HDD and CHISEL with ProbDD use
63.22% and 45.27% less time, respectively. The results demonstrate
that learns from the test results based on a probabilistic model is a
promising direction and call for future work.

Our tool, benchmarks, and the appendix containing proofs for
the theorems can be found at:

https://github.com/Amocy-Wang/ProbDD

ACKNOWLEDGEMENTS

We thank the anonymous FSE reviewers for their thoughtful com-
ments and efforts towards improving this work. This work is sup-
ported by the National Key Research and Development Program
of China under Grant No. 2017YFB1001803, the National Natural
Science Foundation of China under Grant Nos. 61922003, 62002256.

REFERENCES
[1] Accessed: 2021. The implementation of modernized HDD. https://github.com/

renatahodovan/picireny
[2] Accessed: 2021. Tensorflow tutorials. https://www.tensorflow.org/guide
[3] Accessed: 2021. xmllint. http://xmlsoft.org/xmllint.html
[4] Rui Abreu, Alberto Gonzalez-Sanchez, and Arjan JC van Gemund. 2010. Ex-

ploiting count spectra for bayesian fault localization. In Proceedings of the 6th
International Conference on Predictive Models in Software Engineering. 1ś10.
https://doi.org/10.1145/1868328.1868347

891

https://github.com/renatahodovan/picireny
https://github.com/renatahodovan/picireny
https://www.tensorflow.org/guide
http://xmlsoft.org/xmllint.html
https://doi.org/10.1145/1868328.1868347

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Guancheng Wang, Ruobing Shen, Junjie Chen, Yingfei Xiong, and Lu Zhang

[5] Supratik Chakraborty, Dror Fried, Kuldeep S Meel, and Moshe Y Vardi. 2015.
From Weighted to Unweighted Model Counting. In IJCAI. 689ś695. https:
//dl.acm.org/doi/10.5555/2832249.2832345

[6] Junjie Chen, Jiaqi Han, Peiyi Sun, Lingming Zhang, Dan Hao, and Lu Zhang.
2019. Compiler bug isolation via effective witness test program generation. In
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 223ś234.
https://doi.org/10.1145/3338906.3338957

[7] Junjie Chen, Guancheng Wang, Dan Hao, Yingfei Xiong, Hongyu Zhang, and
Lu Zhang. 2019. History-guided configuration diversification for compiler test-
program generation. In 2019 34th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE). IEEE, 305ś316. https://doi.org/10.1109/ase.
2019.00037

[8] Junjie Chen, Guancheng Wang, Dan Hao, Yingfei Xiong, Hongyu Zhang, Lu
Zhang, and XIE Bing. 2018. Coverage prediction for accelerating compiler testing.
IEEE Transactions on Software Engineering (2018). https://doi.org/10.1109/tse.
2018.2889771

[9] Arpit Christi, Matthew Lyle Olson, Mohammad Amin Alipour, and Alex Groce.
2018. Reduce before you localize: Delta-debugging and spectrum-based fault local-
ization. In 2018 IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW). IEEE, 184ś191. https://doi.org/10.1109/issrew.2018.00005

[10] Holger Cleve and Andreas Zeller. 2005. Locating causes of program failures. In
Proceedings. 27th International Conference on Software Engineering, 2005. ICSE
2005. IEEE, 342ś351. https://doi.org/10.1109/icse.2005.1553577

[11] Alastair F Donaldson, Paul Thomson, Vasyl Teliman, Stefano Milizia, André Perez
Maselco, and Antoni Karpiński. 2021. Test-Case Reduction and Deduplication
Almost for Free with Transformation-Based Compiler Testing. (2021). http:
//multicore.doc.ic.ac.uk/publications/pldi-21.html

[12] Peter I. Frazier. 2018. A Tutorial on Bayesian Optimization.
arXiv:1807.02811 [stat.ML] https://arxiv.org/abs/1807.02811

[13] Kihong Heo, Woosuk Lee, Pardis Pashakhanloo, and Mayur Naik. 2018. Effective
program debloating via reinforcement learning. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security. 380ś394. https:
//doi.org/10.1145/3243734.3243838

[14] Satia Herfert, Jibesh Patra, and Michael Pradel. 2017. Automatically reducing
tree-structured test inputs. In 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 861ś871. https://doi.org/10.1109/
ase.2017.8115697

[15] Renáta Hodován and Ákos Kiss. 2016. Modernizing hierarchical delta debugging.
In Proceedings of the 7th International Workshop on Automating Test Case Design,
Selection, and Evaluation. 31ś37. https://doi.org/10.1145/2994291.2994296

[16] Renáta Hodován, Ákos Kiss, and Tibor Gyimóthy. 2017. Coarse hierarchical delta
debugging. In 2017 IEEE international conference on software maintenance and
evolution (ICSME). IEEE, 194ś203. https://doi.org/10.1109/icsme.2017.26

[17] Sunghun Kim, Thomas Zimmermann, Kai Pan, E James Jr, et al. 2006. Au-
tomatic identification of bug-introducing changes. In 21st IEEE/ACM inter-
national conference on automated software engineering (ASE’06). IEEE, 81ś90.
https://doi.org/10.1109/ase.2006.23

[18] Ákos Kiss, Renáta Hodován, and Tibor Gyimóthy. 2018. HDDr: a recursive
variant of the hierarchical delta debugging algorithm. In Proceedings of the 9th
ACM SIGSOFT International Workshop on Automating TEST Case Design, Selection,
and Evaluation. 16ś22. https://doi.org/10.1145/3278186.3278189

[19] Seongmin Lee, David Binkley, Robert Feldt, Nicolas Gold, and Shin Yoo. 2019.
MOAD: Modeling Observation-based Approximate Dependency. In 2019 19th
International Working Conference on Source Code Analysis and Manipulation
(SCAM). IEEE, 12ś22. https://doi.org/10.1109/scam.2019.00011

[20] Percy Liang, Omer Tripp, and Mayur Naik. 2011. Learning minimal abstractions.
In Proceedings of the 38th annual ACM SIGPLAN-SIGACT symposium on Principles
of programming languages. 31ś42. https://doi.org/10.1145/1926385.1926391

[21] Ghassan Misherghi and Zhendong Su. 2006. HDD: hierarchical delta debugging.
In Proceedings of the 28th international conference on Software engineering. 142ś151.
https://doi.org/10.1145/1134285.1134307

[22] Martin Pelikan, David E Goldberg, Erick Cantú-Paz, et al. 1999. BOA: The
Bayesian optimization algorithm. In Proceedings of the genetic and evolutionary
computation conference GECCO-99, Vol. 1. Citeseer, 525ś532. https://dl.acm.org/
doi/10.5555/2933923.2933973

[23] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun
Yang. 2012. Test-case reduction for C compiler bugs. In Proceedings of the 33rd
ACM SIGPLAN conference on Programming Language Design and Implementation.
335ś346. https://doi.org/10.1145/2254064.2254104

[24] Mandavilli Srinivas and Lalit M Patnaik. 1994. Genetic algorithms: A survey.
computer 27, 6 (1994), 17ś26. https://dl.acm.org/doi/10.1109/2.294849

[25] Chengnian Sun, Yuanbo Li, Qirun Zhang, Tianxiao Gu, and Zhendong Su. 2018.
Perses: syntax-guided program reduction. In Proceedings of the 40th International
Conference on Software Engineering. 361ś371. https://doi.org/10.1145/3180155.
3180236

[26] Kevin Swersky, Yulia Rubanova, David Dohan, and Kevin Murphy. 2020. Amor-
tized bayesian optimization over discrete spaces. In Conference on Uncertainty
in Artificial Intelligence. PMLR, 769ś778. http://proceedings.mlr.press/v124/
swersky20a.html

[27] Qi Xin, Myeongsoo Kim, Qirun Zhang, and Alessandro Orso. 2020. Program
debloating via stochastic optimization. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering: New Ideas and Emerging Results.
65ś68. https://doi.org/10.1145/3377816.3381739

[28] Guixin Ye, Zhanyong Tang, Shin Hwei Tan, Songfang Huang, Dingyi Fang, Xi-
aoyang Sun, Lizhong Bian, Haibo Wang, and Zheng Wang. 2021. Automated
Conformance Testing for JavaScript Engines via Deep Compiler Fuzzing. arXiv
preprint arXiv:2104.07460 (2021). arXiv:2104.07460 [cs.PL] https://arxiv.org/abs/
2104.07460

[29] Andreas Zeller. 1999. Yesterday, my program worked. Today, it does not. Why?
ACM SIGSOFT Software engineering notes 24, 6 (1999), 253ś267. https://doi.org/
10.1145/318774.318946

[30] Andreas Zeller. 2002. Isolating cause-effect chains from computer programs.
ACM SIGSOFT Software Engineering Notes 27, 6 (2002), 1ś10. https://doi.org/10.
1145/587051.587053

[31] Andreas Zeller. 2009. Why programs fail: a guide to systematic debugging. Elsevier.
https://www.elsevier.com/books/why-programs-fail/zeller/978-0-08-092300-0

[32] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and isolating failure-
inducing input. IEEE Transactions on Software Engineering 28, 2 (2002), 183ś200.
https://doi.org/10.1109/32.988498

[33] Yehong Zhang, Zhongxiang Dai, and Bryan Kian Hsiang Low. 2020. Bayesian opti-
mizationwith binary auxiliary information. InUncertainty in Artificial Intelligence.
PMLR, 1222ś1232. arXiv:1807.02811 [stat.ML] https://arxiv.org/abs/1906.07277

892

https://dl.acm.org/doi/10.5555/2832249.2832345
https://dl.acm.org/doi/10.5555/2832249.2832345
https://doi.org/10.1145/3338906.3338957
https://doi.org/10.1109/ase.2019.00037
https://doi.org/10.1109/ase.2019.00037
https://doi.org/10.1109/tse.2018.2889771
https://doi.org/10.1109/tse.2018.2889771
https://doi.org/10.1109/issrew.2018.00005
https://doi.org/10.1109/icse.2005.1553577
http://multicore.doc.ic.ac.uk/publications/pldi-21.html
http://multicore.doc.ic.ac.uk/publications/pldi-21.html
https://arxiv.org/abs/1807.02811
https://arxiv.org/abs/1807.02811
https://doi.org/10.1145/3243734.3243838
https://doi.org/10.1145/3243734.3243838
https://doi.org/10.1109/ase.2017.8115697
https://doi.org/10.1109/ase.2017.8115697
https://doi.org/10.1145/2994291.2994296
https://doi.org/10.1109/icsme.2017.26
https://doi.org/10.1109/ase.2006.23
https://doi.org/10.1145/3278186.3278189
https://doi.org/10.1109/scam.2019.00011
https://doi.org/10.1145/1926385.1926391
https://doi.org/10.1145/1134285.1134307
https://dl.acm.org/doi/10.5555/2933923.2933973
https://dl.acm.org/doi/10.5555/2933923.2933973
https://doi.org/10.1145/2254064.2254104
https://dl.acm.org/doi/10.1109/2.294849
https://doi.org/10.1145/3180155.3180236
https://doi.org/10.1145/3180155.3180236
http://proceedings.mlr.press/v124/swersky20a.html
http://proceedings.mlr.press/v124/swersky20a.html
https://doi.org/10.1145/3377816.3381739
https://arxiv.org/abs/2104.07460
https://arxiv.org/abs/2104.07460
https://arxiv.org/abs/2104.07460
https://doi.org/10.1145/318774.318946
https://doi.org/10.1145/318774.318946
https://doi.org/10.1145/587051.587053
https://doi.org/10.1145/587051.587053
https://www.elsevier.com/books/why-programs-fail/zeller/978-0-08-092300-0
https://doi.org/10.1109/32.988498
https://arxiv.org/abs/1807.02811
https://arxiv.org/abs/1906.07277

	Abstract
	1 Introduction
	2 Motivating Example
	3 Approach
	3.1 The Probabilistic Model
	3.2 Update the Model
	3.3 Select a Subsequence for Testing
	3.4 Revisiting the Motivating Example

	4 Properties of ProbDD
	4.1 Efficiency
	4.2 Correctness
	4.3 Minimality

	5 Evaluation
	5.1 Experiment Setup
	5.2 Results and Analysis
	5.3 Threats to Validity

	6 Related Work
	7 Future Work
	8 Conclusion
	References

