
GRACE TECHNICAL REPORTS

Beanbag: Operation-based Synchronization with
Intra-Relations

Yingfei Xiong, Zhenjiang Hu, Haiyan Zhao, Masato
Takeichi, Song Hui, Hong Mei

GRACE-TR-2008–04 December 2008

CENTER FOR GLOBAL RESEARCH IN
ADVANCED SOFTWARE SCIENCE AND ENGINEERING

NATIONAL INSTITUTE OF INFORMATICS
2-1-2 HITOTSUBASHI, CHIYODA-KU, TOKYO, JAPAN

WWW page: http://grace-center.jp/

テクニカル・レポートは、国内外の論文誌、Proceedings等への投稿原稿、マニュア
ル、資料、研究の中間報告です。著作権は、全て著者に属します。ただし、同一ある
いは類似の論文が外部の論文誌等で発行される場合はホームページへの掲載等を中止
することがあります。その場合、著作権者が学会等に変更される場合もあります。

The GRACE technical reports are published as a means to ensure timely dissemi-
nation of scholarly and technical work on a non-commercial basis. Copyright and all
rights therein are maintained by the authors or by other copyright holders, notwith-
standing that they have offered their works here electronically. It is understood that
all persons copying this information will adhere to the terms and constraints invoked
by each author’s copyright. These works may not be reposted without the explicit
permission of the copyright holder.

Beanbag: Operation-based Synchronization with
Intra-Relations∗

Yingfei Xiong1, Haiyan Zhao2, Zhenjiang Hu1,3,
Masato Takeichi1, Song Hui2, Hong Mei2

1Department of Mathematical Informatics
University of Tokyo, Tokyo, Japan

{Yingfei Xiong,takeichi }@mist.i.u-tokyo.ac.jp

2Key Laboratory of High Confidence
Software Technologies (Peking University)

Ministry of Education, Beijing, China
{zhhy,songhui06,meih }@sei.pku.edu.cn

3GRACE Center
National Institute of Informatics, Tokyo, Japan

hu@nii.ac.jp

December 13, 2008

Abstract

Modern development environment often involves data with complex rela-
tionships. When users update some part of the data, we need to synchronize
the update to make all data consistent.

Bidirectional transformation supports synchronization by propagating up-
dates between two replicas, from one replica to the other or vice versa. How-
ever, replicas are often constrained with intra-relations, and we may have to
propagate updates within one replica. Such kind of propagation is not well
supported by current bidirectional transformation.

In this paper we propose Beanbag, a new language for operation-based
synchronization of data with intra-relations. Beanbag treats inter-relations
and intra-relations in a unified way, and allows users to define these rela-
tions declaratively. A Beanbag program can be compiled into a synchronizer,
which takes user updates as input and produces new updates to make all data
consistent. We have implemented Beanbag in Java, applied it to several ap-
plications and tested its performance by experiments.

∗This is a bug-fix version which is slightly different from the published version

1

1 Introduction

Modern development environment often involves data with complex relationships.
For example, different diagrams in a UML model are related, and the UML model
and its generated code are related. When users update some part of the data, we
need to transform and propagate the update to other part to make all data consistent.

Figure 1: An EJB Modeling Tool

Figure 1 gives a concrete example, which depicts a simple Enterprise Jav-
aBeans (EJBs) modeling tool. The tool provides two types of editable diagrams:
the deployment diagram and the persistent diagram. The deployment view shows
how EJBs are organized into modules, while the persistent diagram shows a list
of persistent EJBs (entity beans). In Figure 1 there are three EJBs:SignOnEJB ,
UserEJB , andDepartmentEJB , all of which belong to a moduleSignOn . The
persistent attributes ofUserEJB andDepartmentEJB are true , indicating they
are entity beans and are listed in the persistent diagram. In many places the two
diagrams are related, such as the EJB names shared in the two diagrams. When
users update an EJB name in one diagram, the corresponding name in the other
diagram also need to be updated to make the two diagrams consistent. The pro-
cess of propagating updates between heterogeneous data is calledheterogeneous
synchronizationand the software components to perform such synchronization are
calledsynchronizers[ACar].

Bidirectional transformation [Ste07, FGM+07] provides support for heteroge-
neous synchronization. A bidirectional transformation contains a consistency re-
lationR ∈ A × B between two heterogeneous data formats, a forward function
f : A × B → B and a backward functiong : A × B → A [Ste07]. Given two
inconsistent replicas of data inA andB, bidirectional transformation changes one
replica according to the other, or vice versa, to make them consistency. Typical
bidirectional transformation languages include QVT Relations [Obj08] and TGGs
[KW07].

Bidirectional transformation works well when the two replicas can be freely
modified. However, in the real world many application data may also be con-
strained with intra-relations and update of one location may require updates of
other location. Two examples of intra-relations are indicated with thick arrows in
Figure 1. In the deployment diagram theSignOn module and its EJBs are con-
nected with associations, and when the module is deleted, we need to either delete

2

all EJBs, or at least, remove the invalid associations. The intra-relations in the per-
sistent diagram concerns two related module description. When one is modified,
we need to modify the other to make sure they are consistent. As bidirectional
transformation only propagates updates between the two replicas, it cannot well
handle data with intra-relations.

Intra-relations impose many new challenges and call for some non-trivial im-
provements on bidirectional transformation. We summarize the challenges as fol-
lows.

• First and foremost, intra-relations call for a new synchronization interface.
Consider the intra relation in the persistent diagram, the system needs to
know which part of the data is modified to correctly overwrite the unmodi-
fied data with the modified data, and this information is not available in the
state of data. Furthermore, the synchronization directions are not limited
to forward and backward, as the propagation along intra-relations can be of
many directions once.

• Second, intra-relations often have mutual effects with inter-relations. Con-
sider the intra-relation in the deployment diagram. If an EJB is deleted due
to the deletion of a module, we should also delete the corresponding entity
bean in the persistent diagram. The intra-relation in the persistent diagram
is more interesting. From the persistent diagram alone, the two module de-
scriptions are not related. The two descriptions are related because they cor-
respond to the same module element on the deployment diagram. Because
of such mutual effects, we need an unified way to connect intra-relations and
inter-relations together.

• Third, the complexity of intra-relations usually leads multiple options in syn-
chronization. For example, when a module is deleted in the deployment dia-
gram we have options to remove only the associations or to also remove the
child EJBs. We need provide means for users to specify these options and
therefore precisely control the synchronization behavior.

In this paper, we study the language support of synchronization with intra-
relations over dictionary-based data. We focus on dictionaries to make our lan-
guage compact. Dictionaries can be used to represent many different data struc-
tures as studied by Pierce et al. [PSG03]1, and we will show how to encode object
model like the EJB modeling tool in dictionaries.

In our study we adoptoperation-based synchronization. Traditional bidirec-
tional transformation can be classified asstate-based synchronization[PSG03], as
the current state of data are taken as input as input. Unlike the state-based way, the
operation-based synchronization takes update operations applied on data and pro-
duces new update operations to make all data consistent. In this way we address the
first challenge: the modified parts can be deduced from updates and propagation is
not restricted to a specific direction.

1Dictionaries are known as edge-labeled trees in [PSG03]

3

The result of our study is called Beanbag, a new language for operation-based
synchronization with intra-relations. The name of Beanbag is contrived from a
traditional Asia game that keeps several beanbags consistent. Our contributions
can be summarized as follows.

• We propose the Beanbag language for users to describe the consistency
relation over data. The Beanbag language treats intra-relations and inter-
relations in a unified way, and users can freely compose the relations using
logical operators like conjunction and disjunction. In addition, we provide
finer control over synchronization behavior, while keeping Beanbag program
easy to write.

• We give a clear execution semantics to convert the consistency relations de-
scribed in Beanbag to a synchronizer. The implemented synchronizer takes
user updates as input, and produces new updates to make all data consis-
tent. The synchronization satisfies the stability, preservation and consistency
properties [XLH+07], guaranteeing a correct synchronization behavior.

• We have implemented Beanbag in Java [Bea], evaluated its performance by
experiments, and evaluated its practicability by several case studies. The
experiments show that Beanbag is much faster than an incremental imple-
mentation of QVT relations[ikv], and the case studies show that Beanbag
works well in practical applications. We also discovered an extra benefit
of Beanbag during the development of applications: we can get rid of the
key attributes used in many bidirectional transformation approaches [Obj08,
BFP+08] due to the tight integration between operation-based synchronizers
and applications.

The rest of the paper is organized as follows. Section 2 gives an overview
of Beanbag while Section 3 presents detailed semantics. Section 4 describes our
implementation and the experiments we have conducted. Section 5 gives two case
studies that we have conducted and explains how we get rid of the key attribute.
Finally, Section 6 discusses related work and Section 7 concludes the paper.

2 Overview

To illustrate the features of Beanbag and give a concrete impression of what our
system can do, let us consider how to develop a synchronization tool for the EJB
example in Figure 1. To develop the tool, the only thing we need to do is to declare
the consistency relations over diagrams in the Beanbag language. The execution
semantics of Beanbag could turn the program into a synchronizer and synchronize
the diagrams through updates. The full Beanbag program used in this section can
be found in Appendix A and Appendix B.

To define the consistency relation, we first need to define the data structure
of the diagrams in Figure 1. The two diagrams consist of three types of objects:

4

module objects and EJB objects in the deployment view, and entity bean objects in
the persistent view. By assigning each object with a unique key, we can represent
the EJB objects in Figure 1 by the followingdictionary (a mapping from keys to
objects):

{1 7→{"Name" 7→"SignOnEJB",
"Persistent" 7→ false ,
"Module" 7→4},

2 7→{"Name" 7→"UserEJB",
"Persistent" 7→ true ,
"Module" 7→4},

3 7→{"Name" 7→"DepartmentEJB",
"Persistent" 7→ true ,
"Module" 7→4}}

It has three EJB objects with keys 1, 2, and 3. Each attribute of an object
("Name" , "Persistent" , or "Module") points to either a primitive value or a
key (4 in this example) to another object. It is worth noting that dictionary, though
being simple, plays an important role in our language; it not only enables concise
description of objects (and their relations) , but also provides a direct means to
access and update each object.

Similarly, we can represent modules in Figure 1 as follows (we omit the defi-
nition of the entity beans in the persistent view).

{4 7→{"Name" 7→"SignOn",
"Description" 7→"This module is ..."}

After defining the data structure by dictionaries, we step to declare the consis-
tency relation using our synchronization language Beanbag. We want to declare
two types of relations: the inter-relations between diagrams and the intra-relations
within one diagram. In Beanbag these two types are captured in a unified way.
First, we describe the top relation among the EJBs, the modules, and the entity
beans.

1 main(ejbs,modules,entitybeans) {
2 containmentRefs 〈attr="Module" 〉 (ejbs,modules);
3 for [ejb,entitybean] in 〈ejbs,entitybeans 〉 {
4 persistent(ejb,entitybean,modules) |
5 nonPersistent(ejb,entitybean) |
6 {ejb= null ;entitybean= null }
7 }
8 }

It says that (1) EJBs have a containment relation with modules (line 2) in the sense
that if a module is deleted then all EJBs belonging to the module should be deleted,
(2) for each pair of(ejb, entitybean) in (ejbs, entitybeans) respec-
tively, they have either thepersistent relation (line 4) or thenonPersistent

relation (line 5), or both of them are deleted at the same time (line 6). The relation
containmentRefs is provided by the standard library and we will see its defini-
tion in Section 3.3. Thepersistent relation andnonPersistent relation are
relations to be refined.

This small piece of code exposes some interesting features of Beanbag. First,

5

the parameters ofmain (ejb , modules andentitybeans) are all treated equally.
We do not have to specifyejb andmodules are in the same diagram nor impose
any propagation direction among them. Second, the intra-relations and the inter-
relations are treated equally. Line 2 captures the intra-relation on the deployment
diagram and the rest lines capture the inter-relations between the two diagrams.
Both of them are described using the same set of constructs. The intra-relation
on the persistent diagram is implicitly captured in thepersistent relation. Let
continue to declare thepersistent relation.

9 persistent(ejb,entitybean,modules){
10 var moduleRef,moduleName,module;
11 ejb."Persistent"= true ;
12 entitybean."EJBName"=ejb."Name";
13 entitybean."ModuleName"=moduleName;
14 moduleRef=ejb."Module";
15 findBy 〈attr="Name" 〉 (modules,moduleName,moduleRef);
16 module."Description"=entitybean."ModuleDescription";
17 module=!modules.moduleRef;
18 }

It says that the EJB should be persistent (line 11) with the same name as that of
the entity bean (line 12), while the entity bean has an module name (line 13),
and if we find out the module by the name from all modules (line 13), the result
should just be the module referred by the EJB (line 14). ThefindyBy is also
a standard library relation described in Section 3.3. The entity bean also has a
module description, which is equal to the description of the module referred by the
EJB (line 16-17). The “!” in line 17 is used to tune the synchronization behavior
and will be introduced in Section 3.3. Note here we related the module description
in the entity bean and that in the module. If several entity beans shares the same
module name, the module descriptions in these entity bean will be indirectly related
and result in the intra-relation in the persistence view.

ThenonPersistent relation is similarly defined as follows.
18 nonPersistent(ejb,entitybean) {
19 ejb."Persistent"= false ;
20 entitybean= null ;
21 }

As seen above, our synchronization program is of high modularity in the sense
that small synchronization relations can be glued to form a big one. Beanbag is
simple to use; the basic synchronization statements in Beanbag are theequality
“=” to describe primitive relation, and synchronization statements are combined
together with “;” (calledconjunction) and “|” (called disjunction), and thefor
statement to apply a relation inside dictionaries. The details about the language are
given in Section 3.3.

That is all we have to do. After the synchronization relations are given, our
system can automatically produce a synchronizer for keeping the two views con-
sistent. To be concrete, let us see how the synchronizer interacts with users in
action.

A synchronizer has two procedures:initialize andsynchronize . Before

6

synchronization, we need to initialize the synchronizer so that it knows what data
will be synchronized. Theinitialize procedure is also useful in the execution
of disjunction and the for statement, as will be seen in Section 3.3. We invoke the
initialize procedure with three initial values and three initial updates for the
three parameters ofmain .

Initial values: [{}, {}, {}]
Initial updates: [void , void , void]

The initial values are all empty dictionaries, indicating no objects at the begin-
ning. The initial updates are used to control the behavior of initialization and will
be explained in details in Section 3. Here we just passvoid, indicating no initial up-
date. After invocation, theinitialize procedure will return the following result
to indicate that we do not have to modify the initial values.

Output updates: [void , void , void]

After initialization, we use thesynchronize procedure to synchronize user
updates. Suppose users have added a new entity object. This update can be de-
scribed as follows. The dictionary structure indicates the location of updates and
“!” indicates the value at the location is replaced by the value following “!”.

Input: [void ,
void ,
{1 7→{"EJBName" 7→ !"UserEJB",

"ModuleName" 7→ !"SignOn"}}]

To synchronize the updates, we invoke thesynchronize procedure of the
synchronizer with the updates as input, and the synchronizer will produce the fol-
lowing output updates. The output updates are expected to be applied on data to
make the data consistent. In the updates an EJB object and a module object are
created and their attributes are properly set. Note the input update is also kept in
the output.

Output: [{2 7→{"Name" 7→ !"UserEJB",
"Persistent" 7→ ! true ,
"Module" 7→ !3}},

{3 7→{"Name" 7→ !"SignOn"}},
{1 7→{"EJBName" 7→ !"UserEJB",

"ModuleName" 7→ !"SignOn"}}]

Suppose users have modified the name of the EJB to"User" . The input and
output of the synchronization are as follows. The EJB name of the corresponding
entity bean is changed.

Input: [{2 7→{"Name" 7→ !"User"}, void , void }]
Output: [{2 7→{"Name" 7→ !"User"}, void ,

{1 7→{"EJBName" 7→ !"User"}}]

For another example, suppose users want to delete the module. The input and
output of the synchronization are as follows. The EJB belonging to the module is
deleted, and so does the corresponding entity bean.

Input: [void ,{3 7→ ! null }, void]
Output: [{2 7→ ! null },{3 7→ ! null },{1 7→ ! null }]

7

As discussed in Section 1, along intra-relations usually we have multiple op-
tions in synchronization. When users delete the module, we can also only remove
the associations to achieve consistency. This can be done by replacing the state-
ment in line 2 with the following statement.

nullableRefs 〈attr="Module" 〉 (ejbs, modules);

That is, we usenullableRefs to replacecontainmentRefs , andnullableRefs

is also a relation defined in the standard library. It changes theModule reference in
EJBs tonull when the referred module is deleted. As now theModule reference
can benull , we also need to change thepersistent to handlenull references.

persistent(ejb, entitybean, modules) {
var moduleRef, moduleName, module;
ejb."Persistent" = true ;
entitybean."EJBName" = ejb."Name";
{

{ejb."Module"= null ;
entitybean."ModuleName"= null ;
entitybean."ModuleDescription"= null ;} |

{moduleName=entitybean."ModuleName";
moduleName6=null ;
moduleRef=ejb."Module";
findBy 〈attr="Name" 〉 (modules,moduleName,moduleRef);
module."Description"=entitybean."ModuleDescription";
module=!modules.moduleRef;}

}
}

It says either the module reference in the EJB and the module-related attributes in
the entity bean are allnull , or, like the original one, the attributes in the entity
bean are related to the module referred by the EJB. Now if we repeat the above
steps again, the synchronizer will produce the following output which remove only
the association.

Input: [void ,{3 7→ ! null }, void]
Output: [{2 7→{"Module" 7→ ! null }},

{3 7→ ! null },
{1 7→{"ModuleName" 7→ ! null }}]

Another interesting example of multiple options in synchronization is that an
entity bean is deleted, we can either remove the corresponding EJB or just set its
persistent attribute tofalse . The current Beanbag program will set the persis-
tent attribute tofalse , but we can change this behavior by simply swapping the
two statements in line 5 and line 6. The new program will give higher priority to
deletion over thenonPersistent relation, and will delete the corresponding EJB
when an entity bean is deleted.

3 The Beanbag Language

We have seen how Beanbag works in Section 2, and this is summarized in Fig-
ure 2. A Beanbag program is compiled into a synchronizer which consists of two

8

C o m p i l e r

B e a n b a g
 P r o g r a m

S y n c h r o n i z e r

in i t ia l i ze
D a t a

U p d a t e s
U p d a t e s

s y n c h r o n i z eU p d a t e s U p d a t e s

(in i t ia l ize i ts
i n te rna l s ta te)

(upda te i t s
i n te rna l s ta te)

Figure 2: How Beanbag works

procedures. Theinitialize procedure initializes the synchronizer. It takes ini-
tial data and updates as input and produces new updates to make the input data
consistent. Thesynchronize procedure synchronizes data. It takes user updates
and produces new updates to make data consistent.

To ensure synchronizers behave in a reasonable way, we propose three prop-
erties to constrain the behavior of synchronizers. The three properties are adapted
from our previous work [XLH+07] on state-based synchronization. The first prop-
erty, stability, requires that when users modify no data item, the synchronizer
should modify no data item, either. The second property,preservation, requires
the output updates should contain the input updates. In other words, when users
modify a data item, for example, to2, the synchronizer should not modify the data
item to any other value different from2. The third property,consistency, requires
the synchronizer to produce correct updates to make all data consistent. After we
apply updates produced by a synchronizer to data, we can know the data are consis-
tent. This property is formerly defined aspropagationin our previous publication
[XLH +07].

Thesynchronize procedure satisfies all the three properties. Theinitialize

procedure satisfies preservation and consistency. It does not satisfy stability be-
cause the input data may not be consistent.

3.1 Data

Beanbag uses a small but general set of data types to represent data. In this way
our language remains compact, but many other data types can also be mapped to
our data types and synchronized by our synchronizer. Figure 3 shows the definition
of data in BNF. Theitalic symbolsare non-terminals and theSans Serif sym-
bols are terminals.STRING, NUMBERandBOOLEANare lexical tokens of common
meanings.

There are two types of data. The ruleprimitive generates unstructuredprim-

9

value ::= primitive | dictionary
primitive ::= null | STRING | NUMBER | BOOLEAN
dictionary ::= {entries}
entries ::= entry | entry, entries
entry ::= primitive−> value

Figure 3: Definition of data

update ::= void | prim update| dic update
prim update ::= !primitive
dic update ::= {updateentries}
updateentries::= updateentry | updateentry, updateentries
updateentry ::= primitive−> update

Figure 4: Definition of updates

itive values, including numbers, strings, booleans and anull value. The rule
dictionary generates structured dictionaries, which map primitive values (keys)
to other values. A key-value pair is called anentry. If a key is mapped tonull , it
means that the key does not exist in the dictionary. That is,{"a" 7→null} and{}

are both empty dictionaries. We writed.k for the value to which the dictionaryd
maps the keyk if no confusion will be caused.

Many other data structures can be mapped to this dictionary-based data types.
We have seen how to map object models to the data types in Section 2. For more
examples, a set can be mapped to a dictionary by assign each value a unique key or
using the in-memory address of each value as its key. A sequence can be mapped
to a dictionary by simulating the implementation of a linked list, that is,["a",

"b", "c"] can be represented as{"value" 7→"a" , "next" 7→{"value" 7→"b" ,
"next" 7→{"value" 7→"c"}}} . More detailed discussion on mapping different
data types to dictionaries can be found in [PSG03].

3.2 Updates

We capture users’ updates by locations of updates and results of updates. The
syntax of the language for describing updates is shown in Figure 4. The non-
terminalprimitive has been defined in Figure 3.

The syntax is similar to that of values. An update can be eitherprim update
– an update on primitive values,dic update– an update on dictionaries, orvoid
– an update indicating that nothing has been changed by users. An update on
primitive values is just to replace old value with a new value. For example, if
we apply !2 to a value1, the value1 will change to2. An update on dictio-
naries maps keys to updates, where the updates are expected to be applied on
the values mapped by the same keys. If a key does not exist in adic update,
we consider the key is mapped tovoid. For example, if we apply an update
{1 7→!null, 2 7→!"a", 3 7→{"x" 7→!"y"}} to a dictionary{1 7→"n" , 2 7→"m" ,
4 7→"z"} , we will get {2 7→"a" , 3 7→{"x" 7→"y"} , 4 7→"z"} .

If two updates change the same location to different values, we say that the two
updates conflict. For example,{1 7→!"a"} and{1 7→!"b"} conflict but{1 7→!"a"}

10

Table 1: The rules of detecting conflicts
void prim update2 dic update2

void false false false
prim update1 false result1 true
dic update1 false true result2

whereresult1 ≡ (prim update1 6= prim update2)
result2 ≡ (∃k : dic update1.k anddic update2.k conflict)

Table 2: The rules of merging updates
void prim update2 dic update2

void void prim update2 dic update2
prim update1 prim update1 prim update2 dic update2
dic update1 dic update1 prim update2 dic update3
where∀k : dic update3.k ≡ (dic update1.k mergesdic update2.k)

and{2 7→!"b"} do not. The complete rules for detecting conflicts are summarized
in Table 1. The cells in the table show whether the update from the left conflicts
with the update from the top. Here we writedic update.k for the update to which
dic updatemapsk.

In many cases, users perform a sequence of updates instead of a single one,
which requires us to merge a sequence of updates into a single update. Table 2
shows the rules for merging two updates. The left of the table shows the up-
date applied earlier, the top of the table shows the update applied later, and the
cells show the merged results. For example, merging{1 7→"a", 2 7→"b"} with
{1 7→"c", 3 7→"d"} results in{1 7→"c", 2 7→"b", 3 7→"d"} . Non-conflicting
updates are commutative under merging, e.g., merging{1 7→"a"} with {2 7→"b"}

has the same result as merging{2 7→"b"} with {1 7→"a"} .

3.3 The Beanbag Language

Every Beanbag program has two types of semantics. First, therelation semantics
defines the consistency relation over data. Second, theexecution semanticsdefines
how to propagate updates to satisfy the relations. In many cases, users only need
to know the relation semantics to understand a Beanbag program. However, if they
want to know more about how updates are synchronized, or want to write a Bean-
bag program to control the synchronization behavior, they need also to understand
the execution semantics. In this section we introduce the two types of semantics.

3.3.1 The Relation Semantics

Table 3 summarizes the relation semantics of the core language constructs by ex-
amples. The core language constructs are divided into five groups. Named relations
allow us to organize programs modularly, andmain declares the entry relation of a
program. Expressions are the primitive relations we can use in Beanbag programs,
and most of their relation semantics is as same as what we can expect from their

11

Table 3: The relation semantics of the core language constructs
Named relations

0
get 〈key="age" 〉 (d,k)

{d.key=k}

declaring a named relationget , wherekey

is a generic parameter with a default value
"age" .

1 main(d,k){get(d,k)} defining the entry relation of the program.
Expressions
2 a=b the two variables,a andb, are equal.
3 a=1 the variablea is equal to the constant 1.

4 d."k"=v
v is equal to the value to which the dictionary
d maps the constant"k" .

5 !d.k=v
v is equal to the value to which the dictionary
d maps the variablek .

6 d.!k=v
v is equal to the value to which the dictionary
d maps the variablek .

7 !d.!k=v
v is equal to the value to which the dictionary
d maps the variablek .

8 a==b the two variables,a andb, are equal.
9 a6=b the two variables,a andb, are not equal.
10 get 〈key="name" 〉 (a, b); calling a named relationget

Conjunction

11
{var c;

c=a."name";b."name"=c;}
exists c , where c=a."name" and
b."name"=c both hold.

Disjunction
12 {a= true |a= null } eithera=true or a=null

For statement

13
for [a,b] in [dictA,dictB]

{a=b}
for any keyk , we havedictA.k=dictB.k .

14
for [〈k1,v1 〉 , 〈k2,v2 〉]

in 〈d1,d2 〉
{rel(k1,v1,k2,v2);}

exits a bijective relationR over keys,
where∀ 〈k1, k2 〉 ∈ R, the inner relation
rel(k1, d1.k1, k2, d2.k2) holds.

syntax. Conjunction, disjunction and thefor statement allow us to compose small
relations using common logical operators. Conjunction represents the logical op-
erator “and”. Disjunction represents the logical operator “or”. Thefor statement
applies a relation to each sequence of entries in a sequence of dictionaries. We can
require the sequence of entries to have the same key (line 13) or allow them to be
freely matched (line 14). In addition, we can choose to capture the key component
(line 14) or not (line 13).

Some language constructs have different syntax but have the same relation se-
mantics. One example isa=b anda==b . Another example is!d.k=v , d.!k=v

and !d.!k=v . This is because for the same consistency relation, we may have
more than one way to synchronize the updates. The different language constructs
represent different ways of synchronization, which allows us to finely control the
synchronization behavior. The details of the difference will be introduced in the
next section.

12

3.3.2 The Execution Semantics

When compiled, a beanbag program is converted into a synchronizer, and this is
achieved by converting each language construct in the program into a synchro-
nizer and combining them together. The expressions are turned into primitive
synchronizers. Conjunctions, disjunctions and thefor statements are turned into
composite synchronizers where small synchronizers are glued together to form a
bigger synchronizer. Every synchronizer, either primitive or composite, has the
initialize procedure and thesynchronize procedure. In this section we de-
fine the execution semantics of Beanbag by describing how these language con-
structs are turned into synchronizers and how the two procedures of these synchro-
nizers behave.

Expressions Expressions are converted to primitive synchronizers in compila-
tion. In synchronization, these synchronizers try to produce updates that change
minimal parts on data and also satisfy the three properties.

As an example, let us consider a simple synchronizer,a=b , shown in line 2 of
Table 3. This synchronizer synchronizes variablesa andb by keeping them equal.
The variablesa andb must be declared as parameters of a named synchronizer or
declared in other outer constructs. In thesynchronize procedure, the synchro-
nizer merges the two updates on the variables and returns the merged result. For
example, if users updatea to 1 and do not modifyb, the procedure will merge
the update!1 andvoid, and returns the merged result!1 on botha andb. If the
updates on the two variables conflict, the procedure will fail and report an error. In
this way we can propagate the update on either variable to the other, i.e., deducing
a propagation direction from updates. In addition, the stability, preservation and
consistency properties are all satisfied.

The initialize procedure ofa=b is a bit more complex. Because we do not
require the input values to be consistent, we may face multiple options in synchro-
nization. When the input values are not equal, we will have two choices: using the
value ofa to overwriteb or vice versa. We allow users to customize this behavior
through the input updates. Because of the preservation property, the updated part
cannot be modified. Then users can use the input updates to mark some unmodifi-
able part and force the synchronizer to modify other part. When the input updates
on the two variables are bothvoid , the synchronizer will choose the natural order
of assignment, i.e., using the variable at the right of “=” to overwrite the variable
at the left. In the case ofa=b , a will be overwritten byb. This choice also applies
to other expressions connected by “=”, and users can make use of this feature to
further control the behavior of synchronization. Theinitialize procedure of
a=b proceeds as follows. It first merges the updates ona andb, and applies the
merged update ona. Then it updatesb to the newa and produces the result.

One interesting part is the expressions between line 5 and line 7. These expres-
sions involves three variables,d, k andv , and tries to keepv equal to the value in
the location to whichd mapsk . Because we have three variables, whenv changes,
we can propagate the update to eitherd or k , or both. We use “! ” to indicate the

13

variable to which the update is going to be propagated. The expression!d.k=v

propagates the update onv to d, that is, it usesk as a constant value and proceeds
like d."k"=v . The expressiond.!k=v propagates the update onv to k , that is, it
usesd as a constant value and tries to find a key whose corresponding value ind

equals the updatedv . When such a key cannot be found, it reports a failure. The
expression!d.!k=v propagates the update onv to bothd andk . Its behavior is
similar tod.!k=v , but when a proper key cannot be found, it inserts a new key to
the dictionary. In this way we can precisely control what to update and what not
to.

For example, suppose the current values ond, k andv are[{1="a", 2="b"} ,
1, "a"] , and the input updates ond, k andv are[void, void, "c"] . Thesynchronize

procedure of!d.k=v will return an update{1 7→"c"} on d, the synchronize

procedure ofd.!k=v will fail, and thesynchronize procedure of!d.!k=v will
return an update{3 7→"c"} on d and{!3} on k . The new key3 is generated by a
unique key generator to make sure it is different from all existing keys.

The last category of expressions is used to test conditions, as shown in line 8
and 9. In synchronization, such an expression reports a failure with no variable
changed when the condition does not hold. These expressions can be used to check
constraints on data, and are also useful in disjunctions of synchronizers.

Conjunction Line 11 of Table 3 shows conjunction of synchronizers, which
tries to establish the consistency relations of all inner synchronizers. In addition,
users can also define inner variables. In thesynchronize procedure, the input
updates on inner variables are considered asvoid. In the initialize procedure,
the input updates on inner variables are considered asvoid and the input data on
inner variables are considered asnull .

Thesynchronize procedure of conjunction works as follows: whenever the
update on a variable changes, thesynchronize procedures of the inner synchro-
nizers declared on the variable will be invoked. When no inner synchronizer can be
invoked, the procedure returns. When there are more than one inner synchronizers
that can be invoked, the one appearing earliest in the declaration will be invoked
first. As an example, the following table shows an invocation of the synchronizer
in line 11.

input updates:
a b c

void {"name" 7→!"x"} void
b changes, and we invokeb."name"=c :
void {"name" 7→!"x"} !"x"

c changes, and we invokea."name"=c :
{"name" 7→!"x"} {"name" 7→!"x"} !"x"

Next let us consider theinitialize procedure. The easiest way to imple-
ment the procedure is to adopt the similar method ofsynchronize , invoking
the initialize procedure of inner synchronizers when the values or updates on
the related variables need to be synchronized. However, this method may cause
unnecessary failures. Consider the synchronizer in line 11. Suppose the input

14

values ona andb are[{"name" 7→"x"}, {}] , and the input updates are[void,
{"name" 7→!"y"}] . The expected output updates should be[{"name" 7→!"y"} ,
{"name" 7→!"y"}] because updates have higher priority than values. However,
when we invoke theinitialize procedure ofc=a."name" , we will get an up-
date!"x" onc , and when we invokeb."name"=c , the procedure will fail because
the updates onc andb conflict.

To solve this problem, we distinguish updates on variables into two levels.
The high level is the updates propagated from input updates or the input updates
themselves (such as{"name" 7→!"y"} on b). The low level includes the updates
propagated from values (such as!"x" onc) plus the updates in the high level. The
updates in the high level can overwrite those in the low level. For each variable,
we store one update for the high level and one update for the low level. After we
distinguish the updates into two levels, the update{"name" 7→!"y"} will be on a
higher level than!"x" and will overwrite!"x" without failure.

However, if we design our synchronizers to directly support this kind of two-
level synchronization, the semantics of synchronizers would be too complex for
both users and language implementers. To keep the language simple, here we
propose a novel technique to simulate two-level synchronization using one-level
synchronization. Each time we need to invoke theinitialize procedure of an
inner synchronizer, we invoke the procedure twice to give different priorities to the
two levels. In the first invoke, we use updates on the low level and store the result
on the low level. In the second invoke, we first apply updates on the low level to
the values, and pass the new values and updates on the high level to the procedure.
The result is stored in the high level, and is also merged into the low level as a later
update.

To see how this work, let us consider the previous example again. The initial
values and updates ona andc are shown below.

values low level high level
a {"name" 7→!"x"} void void
c null void void

After the first invocation ofc=a."name" , the values and updates will be-
come:

a {"name" 7→!"x"} {"name" 7→!"x"} void
c null !"x" void

The second invocation will change no values nor updates because the input
values are consistent and the high level updates arevoid . Then we proceed to
invokeb."name"=c . Before invocation, the value and updates onb are:

b {"name" 7→!"x"} {"name" 7→!"y"} {"name" 7→!"y"}

The first invocation will fail because the updates on the low level conflict. How-
ever, in the second invocation, an update!"y" will be propagated toc because the
high level update onc is void. This update will further be merged into the low level
and result is shown below.

15

c null !"y" !"y"

b {"name" 7→!"x"} {"name" 7→!"y"} {"name" 7→!"y"}

Thenc=a."name" will be invoked again to further propagate the update toa.
In this way we simulate multi-level by invoking one-level synchronizers multiple
times.

Besides the basic expressions between line 2 and line 10, Beanbag provides
more types of expressions as syntax sugars. These expressions are translated into
the conjunction of basic expressions at the compiling time. For example, an ex-
pressionb."name"=a."name" will be translated to the code in line 11 of Table 3,
and an expressiona."k"==b."k" will be translated to{var c,d; c=a."k";

d=b."k"; c==d;} .

Disjunction Line 12 of Table 3 shows disjunction of synchronizers. Disjunc-
tion will try to establish one of the consistency relations of the inner synchronizers.
The initialize procedure of disjunction will invoke theinitialize proce-
dure of inner synchronizers in the order that they are declared, and will return
the result of the first succeeded procedure as the result of the whole disjunction.
Thesynchronize procedure of disjunction will first find the last succeeded inner
synchronizer, and invoke itssynchronize procedure. If the invocation fails, the
initialize procedure of other inner synchronizers will be invoked, still in the
order of declaration.

For example, the following code shows a synchronizer that ensures an object
reference to be valid. TheobjRef reference should either exist in theobjs dic-
tionary or be equal tonull .

nullableRef(objRef, objs){
objs.!objRef 6=null | objRef= null

}

For another example, in MOF [OMG02] there is a special reference called
containment reference, which indicates one object is contained in another object
with respect to the reference. When the referenced object is deleted, we should
also delete the contained object. This kind of reference can be simulated using the
following synchronizer.

containmentRef 〈attr 〉 (srcObj, tgtDict) {
{ var ref; ref=srcObj.attr; tgtDict.!ref 6=null ; }
| srcObj= null

}

For Statement The language constructs we have seen so far are used to syn-
chronize static data structures. Thefor statement is used to dynamically establish
consistency relations over entries in different dictionaries. Line 13 of Table 3 shows
a for statement. This statement has the same behavior asdictA=dictB over dic-
tionaries. Thefor statement first matches the entries in the two dictionaries by
key, and then applies the inner synchronizera=b to the value parts of every two
matched entries.

In thesynchronize procedure offor , the system creates a new instance of
the inner synchronizer and invokes itsinitialize procedure for newly inserted

16

pairs, and calls thesynchronize procedure of the existing inner synchronizer
for modified pairs. In theinitialize procedure offor , the system creates a
new instance of the inner synchronizer and invokes itsinitialize procedure for
every two entries.

One use of thefor statement is to filter some entries in a dictionary of objects.
For example, the following synchronizer ensures thatpersistentObjs contains
and only contains the objects whosepersistent attribute istrue in objs .

filter(objs, persistentObjs) {
for [obj, pobj] in [objs, persistentObjs] {

{obj."persistent"= true ;pobj=obj;}
| {obj."persistent"= false ;pobj= null ;}
| {obj= null ;pobj= null ;}

}
}

Because we consider a key mapped tonull is a key that does not exist in a dictio-
nary, the synchronizerpobj=null can ensure nopobj exist inpersistentObjs .
Note the last synchronizer{obj=null; pobj=null;} is always needed if we
want to handle deletions inobjs .

The two dictionaries in the above example contains homogeneous objects.
Sometimes we need to synchronize two dictionaries containing heterogeneous ob-
jects. For instance, in the EJB example we need to match a persistent EJB with an
entity bean and synchronize them. We cannot match the objects by key because
the objects are created independently and there is no corresponding relationship
between their keys. To support this kind of synchronization, we provide another
matching mode in thefor statement: matching by the inner synchronizer. Two
entries in the two dictionaries are matched if they are successfully synchronized
by the initialize procedure of the inner synchronizer. Once two entries are
matched, thefor statement will remember their trace relationship. If any of the
two entries are updated, thesynchronize procedure of the inner synchronizer
will be invoked to synchronize them. We use angle brackets around dictionary
variables instead of square brackets to indicate matching by the inner synchroniza-
tion.

So far we only usefor to synchronize two dictionaries. Thefor statement can
also be applied to more than two dictionaries or just one dictionary. In the latter
case, it just applies the inner synchronizer to all entries in the dictionary.

Sometimes we also want to use the key part of an entry in synchronization, and
it can be done by writing〈keyVar, valueVar 〉 instead of a single variable in
the binding declaration. Because we do not want users to change the key, the vari-
able bound to key will always have aprim updateto prevent further modification.
Line 14 in Table 3 shows an example of that. An important use of key binding is
to obtain the trace between two dictionaries. When entries in two dictionaries are
matched by an inner synchronizer, we may want to know which two entries are
matched. The following synchronizer shows how to do that.

for [〈k1, v1 〉 , 〈k2, v2 〉 ,trace] in 〈DictA,DictB,traceDict 〉
{trace."left"=k1;

17

trace."right"=k2;
v1=v2;}

The synchronizer uses the idea of TGGs [KW07]: when two objects are matched,
a trace object is created and referenced to the two objects. The trace objects are
stored in a dictionarytraceDict for later use.

The inner synchronizer may at times refer to some variables that are not de-
clared in thefor statement, in such cases we resynchronize all matched entries
whenever the outer variables change. For example, the following synchronizer
maintains references between two dictionaries usingnullableRef which we have
created:

nullableRefs 〈attr 〉 (srcDict,tgtDict){
for [srcObj] in [srcDict]{

{ var tgtRef;
tgtRef = srcObj.attr;
nullableRef(tgtRef, tgtDict);}

| srcObj == null
}}

Similarly, the following synchronizer maintains containment references between
two dictionaries usingcontainmentRef which we have created:

containmentRefs 〈attr 〉 (srcDict,tgtDict){
for [srcObj] in [srcDict]

{containmentRef 〈attr=attr 〉 (srcObj, tgtDict)}
}

Now we have seen all language constructs in Beanbag. As an example, let
us construct thefindBy synchronizer we have seen in the EJB example.2 The
synchronizer ensures the object to whichd mapsk have anattr attribute equal to
v , and whenv changes, the synchronizer changek to locate another object whose
attr attribute is equal to the changedv . To achieve this, we first mapd to a
dictionary d0 containing only theattr attribute, and then use!d0.!k = v to
find a key mapped to the updatedv in d0.

findBy 〈attr 〉 (d, v, k) {
var d0;
for [a, b] in [d, d0]

{b = a.attr | {a= null ;b = null ;}}
!d0.!k = v;

}

3.4 Formalization

So far our discussion on synchronizers is informal. To precisely characterize the
behavior of synchronizers, we need more formal definitions. In this subsection we
give the formal definitions of synchronizers and the three properties.

Before turning to synchronizers, we need to first define updates. Anupdate
u defined on some data setD is an idempotent functionu ∈ D → D, that is,

2Because this implementation is not efficient on memory usage, in our compiler we use a more
efficient Java-based implementation.

18

u ◦ u = u. The idempotent property allows us to apply an update twice and get the
same result.

After we express updates as functions, we can represent the merging of updates
as function compositions. However, we would expect the composite functions still
to be updates. To ensure this, we introduce a conceptupdate set. An update setU
defined on a data setD is a set of updates closed on composition, that is,∀u1, u2 ∈
U : u1 ◦ u2 ∈ U . To be simple, we assume each data typeD has a corresponding
update set, denoted byUD andvoid ∈ UD.

The conflict and preservation of updates can be tested using function composi-
tions. Two updatesu1, u2 conflict iff u1 ◦ u2 6= u2 ◦ u1. An updateu1 is preserved
in u2 iff u1 ◦ u2 = u2.

Now we proceed to define synchronizers. Asynchronizers synchronizingn
variables on data setD consists of four components:
• a consistency relations.R ⊆ Dn,
• a state sets.Θ,
• a partial function for synchronizations.synchronize∈ UnD × s.Θ → UnD ×
s.Θ,

• and a partial function for initializations.initialize ∈ UnD ×Dn → UnD × s.Θ
Given the definition of synchronizer, we can precisely define the properties to

characterize the synchronization behavior. Suppose at an arbitrary point of time,
the current state of the synchronizer isθ and the current values of the variables are
〈v1, . . . , vn〉. The three properties are defined as follows.

Property 1 (Stability)
s.synchronize(void . . . void, θ) = 〈void . . . void, θ〉
Property 2 (Preservation)
s.synchronize(u1 . . . un, θ) = 〈u′1 . . . u′n, θ′〉 =⇒
∀i ∈ {1 . . . n} : ui ◦ u′i = u′i

s.initialize(u1 . . . un, d1 . . . dn) = 〈u′1 . . . u′n, θ′′〉 =⇒
∀i ∈ {1 . . . n} : ui ◦ u′i = u′i

Property 3 (Consistency)
s.synchronize(u1 . . . un, θ) = 〈u′1 . . . u′n, θ′〉 =⇒
〈u′1(v1), u′2(v2) . . . u′n(vn)〉 ∈ s.R

s.initialize(u1 . . . un, d1 . . . dn) = 〈u′1 . . . u′n, θ′′〉 =⇒
〈u′1(d1), u′2(d2) . . . u′n(dn)〉 ∈ s.R
These properties form a starting point of reasoning the behavior of synchroniz-

ers and a specification for implementing the synchronizers. All our experiments
show that Beanbag satisfies these three properties. However, to formally prove the
three properties we need formal semantics of all synchronizers, which is beyond
the scope of this paper.

19

4 Implementation and Performance Evaluation

We have implemented a compiler for Beanbag. After compilation, the language
will be translated to a Java program. There are two ways for users to use the Java
program: 1) they can run it in command line and interact with the synchronizer
using the syntax in Figure 3 and Figure 4, or 2) they can integrate this program into
their Java project and interact with the synchronizer through Java method calls.

Our implementation uses incremental propagation to ensure a short synchro-
nization time. We mainly apply the incremental techniques in two places. One
is in conjunction, where we invoke a synchronizer only when a related variable is
updated. The other one is in thefor construct, where we synchronize entries only
when they are updated by users.

To test how our incremental strategies work in practice, we experiment with the
EJB program in Section 2. We also implement a similar program in QVT relations
[Obj08] for comparison. This program captures the inter-relations between the two
diagrams. QVT relations is an state-based incremental synchronization language
and is also the standard of model transformation. The compiler of QVT relations
that we use is medini QVT v1.4.0 [ikv], and our experiments are carried out on a
laptop with 2 GHz Intel(R) Core(TM) Duo processor and 2 GB RAM.

The basic idea of our experiments is to carry small updates on a large set of
data and see how efficient the synchronization can be. We first generate a large
number of EJBs and modules, where every 10 EJBs belong to a module and the
attributes are randomly assigned. Then we synchronize to get a consistent set of
entity beans.

We carry three sets of experiments, each consisting of experiments on different
number of EJBs. In the first set of experiment we randomly choose five entity
beans and change their names. In the second set we delete five entity beans. In the
third set we insert five entity beans3.

In all experiments the two synchronization programs produce correct results
and the time taken to synchronize is shown in Figure 5. Some sets of experiments
take quite close time and their lines overlap in the figure. To be fair, we exclude
the time during which medini QVT loads and saves XMI files, and only use the
in-memory evaluation time reported by medini QVT.

The modification and deletion in Beanbag takes very short time and remains
almost constant when the data size increases. The insertion has a liner increase
with the size of data . The reason is that we need to compare the name of the
inserted entity bean with the names of all modules to find out which module the
inserted entity bean belongs to. On the other hand, the time of medini QVT is
much longer than Beanbag and is mainly related to the number of EJBs. This is
probably because QVT relations works in a state-based way. When synchronizing,

3In fact, we have carried the fourth set of experiments: inserting five new EJBs. However, medini
QVT ran extremely slow in these experiments. It took dozens of minutes to finish one synchroniza-
tion. We believe this is caused by some implementation defects of medini QVT and do not include
this set of experiments in paper.

20

Figure 5: Synchronization time

medini QVT has to re-check whether all applied rules are still valid and the number
of rules is related to the number ofEJB objects.

In summary, the experiments show that the incremental strategy in Beanbag
can ensure efficient synchronization over large models. The synchronization time
is much shorter than a state-based incremental synchronization tool and should be
satisfactory for practical use.

5 Applications

In software engineering, there exist many applications that Beanbag can be applied
to. For example, synchronizing multi-views in visual language editors [GHZL06],
integration of heterogeneous tools [Tra05], synchronizing software architecture
and runtime system [HMY06], and etc. We have successfully applied Beanbag
to several case studies. In this section we describe two of them.

EJB Modeling Tool In the first case study we investigate the practicability of
Beanbag by constructing a fully functional EJB modeling tool described in Sec-
tion 1, and Figure 1 is actually a screen snapshot of the tool we have constructed.
The main components of the tool are editing components generated by Eclipse
Graphical Modeling Framework (GMF) [Ecl08] and a synchronization component
generated from the program in Section 2 by Beanbag, and we only write a few
hundred lines of Java code to glue them together.

GMF is a framework for generating graphical editors. Given a model defini-
tion, a view definition and their mappings, GMF generates a graphical view that
reads from and writes to the model. GMF can generate multiple views for one
model, but in a quite limited way: the views and the model cannot be structurally
different, and multiple views cannot be edited at the same time. As the two views
in the EJB modeling tool are structurally different (one hierarchical and one flat),
the tool cannot be directly generated by GMF.

Therefore we discard the usual way of generating two views for one model.

21

D e p l o y m e n t
M o d e l

D e p l o y m e n t
V i e w

r e f r e s h

u p d a t e

P e r s i s t e n t
M o d e l

P e r s i s t e n t
V i e w

r e f r e s h

u p d a t e

U p d a t e L i s t e n e r

B e a n b a g
S y n c h r o n i z e r

M o d e l U p d a t e r

[U p d a t e s]

[s y n c h r o n i z e d u p d a t e s]

a p p l y
a p p l y

Figure 6: The architecture of the EJB tool

Instead, we generate two editors, each with an independent model. The two mod-
els can be structurally different and their consistency is maintained by a Beanbag
synchronizer. On the interface side, the two editors are both integrated into Eclipse
and act like one application.

The architecture of our implementation is shown in Figure 6. When users up-
date a model through the view, we capture the updates by an update listener. When
the two views need to be synchronized (when users explicitly request synchroniza-
tion or, more automatically, whenever users update a model), we pass the updates
to the synchronizer. After synchronization, a model updater updates the models
according to the output.

One issue of implementing the update listener and the model updater is how
to relate the uniquely generated keys (refer to Section 2) to objects in memory.
To achieve it, we keep a bijective mapping between the keys and the in-memory
addresses of objects. Because the generated keys are just integers, we can easily
save the mapping with models using the serialization support of GMF, ensuring
that the object addresses are always valid.

This small technique has great value in practice. To identify objects in state-
based synchronization, users are often required to designate some key attributes
[Obj08, BFP+08] whose values are unique among all instances. However, based
on our experience, many application data do not have a suitable candidate to be a
key attribute [YKW+08]. On the other hand, as operation-based synchronizers are
tightly integrated into the system, we can directly use the in-memory address and
get rid of the key attribute.

Class to RDBMS It should be interesting to see how Beanbag can tackle tra-
ditional bidirectional transformation problems. In the second case study, we apply
Beanbag to the well-known “Class to RDBMS” transformation [BRST05]. As far
as we know, there is yet no proposal claimed for bidirectionalization of the full
transformation in the literature.

Figure 7 shows the meta models of the transformation. In the class meta model,
a class consists of attributes, where the type of an attribute can either be primitive
or another class. There are also associations and parent references between classes.
In the RDBMS data model, a table consists of columns and foreign keys, where the

22

C l a s s

 i s _ p e r s i s t e n t : b o o l

C lass i f i e r

 n a m e : S t r i n g

P r i m i t i v e D a t a T y p e s

A s s o c i a t i o n

 n a m e : S t r i n g
p a r e n t

At t r i bu te

 i s _ p r i m a r y : b o o l
 n a m e : S t r i n g

T a b l e

 n a m e : S t r i n g

F K e y

C o l u m n

 t ype : S t r i ng
 n a m e : S t r i n g

p k e yt a b l e

e n c l o s i n g T a b l e

r e f e r e n c e

c o l

e n c l o s i n g C l a s s

d e s t

s r c

t y p e

C l a s s M e t a M o d e l

R D B M S M e t a M o d e l

Figure 7: Meta models for Class2RDBMS

type of a column is represented by string.
“Class to RDBMS” is originally described as a unidirectional transformation

converting a class model to a relational database (RDBMS) model. To also propa-
gate the updates on RDBMS model back to the class model, we change a few trans-
formation rules so that the correspondence between the two models is clearer. In
our rules, each class corresponds to a table. Each attribute corresponds to a column
if its type is primitive, and to a foreign key if its type is a class. A parent reference
corresponds to a foreign key if it is notnull . Each association also corresponds to
a foreign key. Note this is only a high level outline of the rules. The actual rules are
much more complicated involving attribute mapping and synchronization behavior
specification.

We have successfully implemented the above rules in Beanbag and have tested
it with 65 different updates. Beanbag works well in all tests. Our implementation
can be found in Appendix C.

Our implementation captures not only the inter-relations between the two mod-
els but also the intra-relations within the models, and Beanbag ensures these rela-
tions will be composed together and work together well. For example, if a class
on the class model is deleted, then not only its corresponding table but also the
attributes of the class and their corresponding columns and foreign keys are all
deleted. Furthermore, attributes whose type is the deleted class have their types set
to null and the corresponding column types are set to"" . Parent references that
refer to the deleted class are set tonull and the corresponding foreign keys are
deleted.

23

6 Related Work

6.1 Bidirectional Transformation

The mainstream work of heterogeneous synchronization is bidirectional transfor-
mation. Typical work includes lens and similar composition-based approaches
[FGM+07, LHT07], QVT and similar pattern-based approaches [Obj08, KW07],
and etc.

It would be interesting to see whether existing bidirectional transformation lan-
guages can support intra-relations without redesign. First, existing bidirectional
transformation languages are mainly of state-based semantics, and thus cannot sup-
port propagating updates inside a model directly. Although some work on TGGs
[GW06] has used operation-based way to increase performance, the semantics is
still state-based.

One idea in QVT is to use local applications to handle intra-relations (for ex-
ample, MOF can handle the containment reference between objects), and let bidi-
rectional transformation focus on inter-relations. This approach works on small
examples, but becomes impractical when we consider more complex cases involv-
ing mutual effects between intra-relations and inter-relations. A local propagation
may affect some inter-relations and require updates on the other model. When we
invoke the bidirectional transformation to propagate updates on the other model,
it may result in another local propagation in the other model and we may further
need more invocations of bidirectional transformation. It is in general difficult to
know how many round-trips are needed. Moreover, we have to write and maintain
several programs: the local applications and the transformation program. Each
time we change one program, we have to make sure all programs consistent. This
actually runs back into the situation where heterogeneous synchronization research
tries to avoid.

Another idea is to divide the data into smaller pieces which do not have inner
constraint, and to write several bidirectional transformation programs to propagate
updates among them. This approach works in some cases, but it requires extra
work to divide and re-unite the data, which is sometimes not easy. Furthermore, it
is also unclear how to invoke the bidirectional transformation programs in a proper
order to propagate a specific update.

To sum up, as we could not find a satisfactory solution that can improve ex-
isting bidirectional transformation languages to handle intra-relations, we design
Beanbag, a new language which handles intra-relations and inter-relations in a uni-
fied way.

Many aspects of Beanbag are inspired by bidirectional transformation research.
For example, the composition of synchronizers is inspired by lens [FGM+07], and
the recording of states is inspired by QVT [Obj08] and some previous discussion
[Tra08]. On the other hand, we have made a lot of improvements over bidirectional
transformation to support intra-relations: our semantics is operation-based, rather
than state-based; the conjunction in Beanbag allows free composition of inner rela-

24

tions, and has much more freedom than sequential composition in lens; we design
the initialize procedure, which replaces thecreate function in lens and the
object creation semantics in QVT to allow synchronization of no predefined direc-
tion.

6.2 Other related work

Some researchers focus on the consistency of multi-views in development envi-
ronments, which is a typical application of Beanbag. Liu and et al. [LHG07]
uses a spreadsheet-like mechanism to propagate updates among objects. How-
ever, the updates can be propagated only in one direction. Some other work
[GHM98, FGH+94] provides general frameworks for view consistency, where
users manually write code for propagating updates in each direction. On the other
hand, our approach only requires users to describe the consistency relation in the
Beanbag language and they automatically get the ability of propagating updates in
all necessary directions.

Another branch of related work is about the constraint satisfaction problem
[Tsa93] and the transformation approach based on constraint solvers [CS03]. This
type of work tries to find a set of values to satisfy a logic expression (in our context,
the consistency relation over data). Compared to them, the language constructs in
Beanbag are not as declarative as logical expressions, but each has a clear execution
semantics, so that we can directly propagate the updates without exploring a state
space, ensuring the efficiency of synchronization.

7 Conclusion and Future Work

In this paper we have proposed Beanbag, a language for operation-based synchro-
nization with intra-relations, and have applied it to several applications. Beanbag
capture intra-relations and inter-relations in a unified way, and keeps data consis-
tent through propagating updates.

Several issues still need attention before Beanbag can be widely used. Here we
discuss two issues. The first one is memory consumption. The current implemen-
tation buffers a lot of data to achieve incremental synchronization, which cause an
overhead on memory consumption. Nevertheless, much of the consumption can
probably be reduced by object sharing. We leave this engineering task for future
work.

The second issue is conflict reporting. The current synchronizers only report
the existence of conflicts. A more preferable way is to report the updated location
causing the conflicts so that users know where to solve the conflicts. This can be
possibly achieved by extending an update with a source location, which records
the original location from which the update is transformed. We plan to further
investigate this issue and design an algorithm for keeping the source locations of
updates through propagation.

25

Acknowledgment

The research was supported in part by a grant from Japan Society for the Promotion
of Science (JSPS) Grant-in-aid for Scientific Research (A) 19200002, the National
Natural Science Foundation of China under Grant No. 60528006 and the National
High Technology Research and Development Program of China (863 Program)
under Grant No. of 2006AA01Z156.

References

[ACar] Michal Antkiewicz and Krzysztof Czarnecki. Design space of hetero-
geneous synchronization. InProc. 2nd GTTSE, to appear.

[Bea] The Beanbag website. http://code.google.com/p/
synclib/ .

[BFP+08] Aaron Bohannon, J. Nathan Foster, Benjamin C. Pierce, Alexandre
Pilkiewicz, and Alan Schmitt. Boomerang: Resourceful lenses for
string data. InProc. 35th POPL, 2008.

[BRST05] Jean B́ezivin, Bernhard Rumpe, Andy Schürr, and Laurence Tratt.
Model transformations in practice workshop. InSatellite Events at
MoDELS, pages 120–127, 2005.

[CS03] Compuware and Sun. XMOF queries, views and transformations on
models using MOF, OCL and patterns.http://www.omg.org/
docs/ad/03-08-07 , 2003.

[Ecl08] Eclipse Consortium. The Eclipse Graphical Modeling Framework.
http://www.eclipse.org/modeling/gmf/, 2008.

[FGH+94] A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B. Nuseibeh.
Inconsistency handling in multiperspective specifications.IEEE Trans.
Softw. Eng., 20(8):569–578, 1994.

[FGM+07] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Ben-
jamin C. Pierce, and Alan Schmitt. Combinators for bidirectional tree
transformations: A linguistic approach to the view-update problem.
ACM Trans. Program. Lang. Syst., 29(3):17, 2007.

[GHM98] John Grundy, John Hosking, and Warwick B. Mugridge. Inconsis-
tency management for multiple-view software development environ-
ments.IEEE Trans. Softw. Eng., 24(11):960–981, 1998.

[GHZL06] John C. Grundy, John G. Hosking, Nianping Zhu, and Na Liu. Gener-
ating domain-specific visual language editors from high-level tool spec-
ifications. InProc. 21st ASE, pages 25–36, 2006.

26

[GW06] Holger Giese and Robert Wagner. Incremental model synchronization
with triple graph grammars. InProc. 9th MoDELS, pages 543–557,
2006.

[HMY06] Gang Huang, Hong Mei, and Fu-Qing Yang. Runtime recovery and ma-
nipulation of software architecture of component-based systems.Auto-
mated Software Eng., 13(2):257–281, 2006.

[ikv] ikv++ technologies. medini QVT homepage.http://projects.
ikv.de/qvt .

[KW07] Ekkart Kindler and Robert Wagner. Triple graph grammars: Concepts,
extensions, implementations, and application scenarios. Technical Re-
port tr-ri-07-284, University of Paderborn, June 2007.

[LHG07] Na Liu, John Hosking, and John Grundy. Maramatatau: Extending a
domain specific visual language meta tool with a declarative constraint
mechanism. InProc. VL/HCC, 2007.

[LHT07] Dongxi Liu, Zhenjiang Hu, and Masato Takeichi. Bidirectional inter-
pretation of XQuery. InProc. PEPM, pages 21–30, 2007.

[Obj08] Object Management Group. MOF query / views / transforma-
tions specification 1.0.http://www.omg.org/docs/formal/
08-04-03.pdf , 2008.

[OMG02] OMG. MetaObject Facility specification.http://www.omg.org/
docs/formal/02-04-03.pdf , 2002.

[PSG03] Benjamin C. Pierce, Alan Schmitt, and Michael B. Greenwald. Bring-
ing Harmony to optimism: A synchronization framework for heteroge-
neous tree-structured data. Technical Report MS-CIS-03-42, University
of Pennsylvania, 2003.

[Ste07] Perdita Stevens. Bidirectional model transformations in QVT: Semantic
issues and open questions. InProc. 10th MoDELS, pages 1–15, 2007.

[Tra05] Laurence Tratt. Model transformations and tool integration.Journal of
Software and Systems Modelling, 4(2):112–122, May 2005.

[Tra08] Laurence Tratt. A change propagating model transformation language.
Journal of Object Technology, 7(3):107–126, March 2008.

[Tsa93] Edward Tsang. Foundations of Constraint Satisfaction. Academic
Press, 1993.

[XLH +07] Yingfei Xiong, Dongxi Liu, Zhenjiang Hu, Haiyan Zhao, Masato
Takeichi, and Hong Mei. Towards automatic model synchronization
from model transformations. InProc. 22nd ASE, pages 164–173, 2007.

27

[YKW +08] Yijun Yu, Haruhiko Kaiya, Hironori Washizaki, Yingfei Xiong, and
Zhenjiang Hu. Enforcing a security pattern in stakeholder goal models.
In Proc. 4th QoP Workshop, 2008.

28

Appendix

A Library Relations in Beanbag

findBy 〈attr 〉 (d, v, k) {
var d0;
for [a, b] in [d, d0]

{b = a.attr | {a= null ;b = null ;}}
!d0.!k = v;

}

findValueBy 〈attr 〉 (d, attr, k, v) {
findBy 〈attr=attr 〉 (d, attr, k);
v = !d.k;

}

findByNoChangeD 〈attr 〉 (d, v, k) {
var d0;
for [a, b] in [d, d0]

{b = a.attr | {a= null ;b = null ;}}
d0.!k = v;

}

containmentRef 〈attr 〉 (srcObj, tgtDict){
{

var ref;
ref = srcObj.attr;
!tgtDict.ref 〈〉 null ;

}
| srcObj = null

}

containmentRefMaintainer 〈attr 〉 (srcDict, tgtDict) {
for [srcObj] in [srcDict]

containmentRef 〈attr=attr 〉 (srcObj, tgtDict)
}

nullableRef(objRef, objs) {objs.!objRef 〈〉 null | objRef = null }

nullableRefMaintainer 〈attr 〉 (obj, tgtDict) {
{

var tgtRef;
tgtRef = obj.attr;
nullableRef(tgtRef, tgtDict);

}
| obj == null

}

B The Beanbag Program for the EJB Modeling Tool

include "lib.sync"

persistent(ejb, entitybean, modules) {

29

var moduleRef, moduleName, module;
ejb."Persistent" = true ;
entitybean."EJBName" = ejb."Name";

moduleName=entitybean."ModuleName";
moduleRef=ejb."Module";

findBy 〈attr="Name" 〉 (modules,moduleName,moduleRef);
module."Description"=entitybean."ModuleDescription";
module=!modules.moduleRef;

}

nonPersistent(ejb, entitybean) {
ejb."Persistent" = false ;
entitybean = null ;

}

main(ejbs, modules, entitybeans) {
containmentRefMaintainer 〈attr="Module" 〉 (ejbs, modules);
for [ejb, entitybean] in 〈ejbs, entitybeans 〉 {

persistent(ejb, entitybean, modules) |
nonPersistent(ejb, entitybean) |
{ejb = null ; entitybean = null ;}

}
}

C The Beanbag Program for Class2Relation

include "lib.sync"

assocs2attrs(assocs, attrs, orig_attrs) {
for [assoc, attr, orig_attr] in 〈assocs, attrs, orig_attrs 〉 {

{orig_attr = null ; assoc = null ; attr = null } |
{assoc = null ; attr = orig_attr; orig_attr 〈〉 null ;} |
{

orig_attr = null ;
attr."enclosingClass" = assoc."src";
attr."type" = assoc."dest";
attr."name" = assoc."name";
attr."is_primary" = false ;

}
}

}

classes2tables(classes, tables, traces) {
for [〈classid, class 〉 , 〈tableid, table 〉 , trace]
in 〈classes, tables, traces 〉 {

{
table."name" = class."name";
trace."class" = classid;
trace."table" = tableid;

} |
{ class = null ; table = null ; trace = null ; }

}
}

30

nullableFindBy 〈attr 〉 (d, v, k) {
findByNoChangeD 〈attr=attr 〉 (d, v, k) |
{ v = null ; k = null }

}

inTrace 〈attr1, attr2 〉 (v1, v2, trace) {
var key;
nullableFindBy 〈attr=attr1 〉 (trace, v1, key);
nullableFindBy 〈attr=attr2 〉 (trace, v2, key);

}

isPrimitiveType(attr, classifiers) {
var attrTypeRef, type;
attrTypeRef = attr."type";
type = classifiers.!attrTypeRef;
type."__type" == "primitive";

}

isClassType(attr, classifiers) {
var attrTypeRef, type;
attrTypeRef = attr."type";
type = classifiers.!attrTypeRef;
type."__type" == "class";

}

attrType2columnType(attrTypeRef, columnType, classifiers) {
{

var type, typeName, ref;
{

findValueBy 〈attr="name" 〉
(classifiers, columnType, ref, type)

| {ref= null ;columnType= null ;}
}
ref = attrTypeRef;
type."__type" = "primitive";

} |
{ attrTypeRef = null ; columnType = null ; }

}

filterClassAttrs(attrs, pattrs, classifiers) {
for [attr, pattr] in [attrs, pattrs] {

{pattr = attr; isPrimitiveType(attr, classifiers)} |
{pattr = null ; isClassType(attr, classifiers)} |
{attr = null ; pattr = null ;}

}
}

attrs2columns(attrs, columns, a2cTraces, c2tTraces, classifiers) {
var primitiveAttrs;
filterClassAttrs(attrs, primitiveAttrs, classifiers);
for [〈attrid, attr 〉 , 〈columnid, column 〉 , 〈traceid, trace 〉]
in 〈primitiveAttrs, columns, a2cTraces 〉 {

{attr = null ; column = null ; trace = null ;} |

31

{
var columnType, attrType, classRef, tableRef;
columnType = column."type";
attrType = attr."type";
attrType2columnType(attrType, columnType, classifiers);

column."name" = attr."name";
classRef = attr."enclosingClass";
tableRef = column."table";
inTrace 〈attr1="class", attr2="table" 〉

(classRef, tableRef, c2tTraces);

trace."attr" = attrid;
trace."column" = columnid;

}
}

}

columnRef2table(columnRef, table, columns, tables) {
var column, tableRef;
column = columns.!columnRef;
tableRef = column."table";
table = !tables.tableRef;

}

attrs2prims(attrs, a2cTraces, columns, tables, classifiers) {
for [〈attrid, attr 〉] in 〈attrs 〉 {

{
var table, columnid;
attr."is_primary" = false ;
isPrimitiveType(attr, classifiers);
inTrace 〈attr1="attr", attr2="column" 〉

(attrid, columnid, a2cTraces);
columnRef2table(columnid, table, columns, tables);
table."pkey" 〈〉 columnid;

} |
{

var table, columnid;
attr."is_primary" = true ;
isPrimitiveType(attr, classifiers);
inTrace 〈attr1="attr", attr2="column" 〉

(attrid, columnid, a2cTraces);
columnRef2table(columnid, table, columns, tables);
table."pkey" = columnid;

} |
{

attr."is_primary" = false ;
isClassType(attr, classifiers);

} |
attr = null

}
}

noNullPKey(tables) {

32

for [table] in [tables] {
table."pkey" 〈〉 null | table = null

}
}

filterPrimitiveAttrs(attrs, pattrs, classifiers) {
for [attr, pattr] in [attrs, pattrs] {

{pattr = attr; isClassType(attr, classifiers);} |
{pattr = null ; isPrimitiveType(attr, classifiers);} |
{attr = null ; pattr = null ;}

}
}

attrs2fkeys(attrs, fkeys, c2tTraces, tables, classifiers) {
var classAttrs;
filterPrimitiveAttrs(attrs, classAttrs, classifiers);
for [〈attrid, attr 〉 , 〈fkeyid, fkey 〉] in 〈classAttrs, fkeys 〉 {

{attr = null ; fkey = null ;} |
{

var typeTableRef, attrType, classRef,
tableRef, name, table;

typeTableRef = fkey."reference";
attrType = attr."type";
inTrace 〈attr1="class", attr2="table" 〉

(attrType, typeTableRef, c2tTraces);

name = attr."name";
fkey."name" = name;
name 〈〉 "__super";

classRef = attr."enclosingClass";
tableRef = fkey."table";
inTrace 〈attr1="class", attr2="table" 〉

(classRef, tableRef, c2tTraces);

fkey."col" = table."pkey";
table = !tables.typeTableRef;

} |
{

attr = null ;
fkey."name" == "__super";

}
}

}

filterNonSuperFKeys(fkeys, superFKeys) {
for [fkey, super] in [fkeys, superFKeys] {

{fkey = super; fkey."name" == "__super";} |
{super = null ; fkey."name" 〈〉 "__super"} |
{fkey = null ; super = null ;}

}
}

supers2fkeys(classes, fkeys, tables, c2tTrace) {

33

var supers;
filterNonSuperFKeys(fkeys, supers);
for [〈classid, class 〉 , 〈fkeyid, fkey 〉] in 〈classes, supers 〉 {

{
var generalClassRef, generalTableRef, tableRef, table;
generalClassRef = class."parent";
generalClassRef 〈〉 null ;
generalTableRef = fkey."reference";
inTrace 〈attr1="class", attr2="table" 〉

(generalClassRef, generalTableRef, c2tTrace);
fkey."name" = "__super";
tableRef = fkey."table";
inTrace 〈attr1="class", attr2="table" 〉

(classid, tableRef, c2tTrace);
table."pkey" = fkey."col";
table = !tables.generalTableRef;

} |
{

class."parent" = null ;
fkey = null ;

} |
{

class = null ;
fkey = null ;

}
}

}

typeMapper 〈type 〉 (generalObjs, specializedObjs) {
for [general, specialized] in [generalObjs, specializedObjs] {

{general."__type" = type; specialized = general;} |
{general."__type" 〈〉 type; specialized = null ;} |
{general = null ; specialized = null ;}

}
}

main(classifiers, attrs, assocs, tables, columns, fkeys) {
var allattrs, classTableTrace, attrColumnTrace, classes;
typeMapper 〈type="class" 〉 (classifiers, classes);
nullableRefMaintainer 〈attr="parent" 〉 (classes, classes);
assocs2attrs(assocs, allattrs, attrs);
containmentRefMaintainer 〈attr="enclosingClass" 〉

(allattrs, classifiers);
nullableRefMaintainer 〈attr="type" 〉 (allattrs, classifiers);
classes2tables(classes, tables, classTableTrace);
attrs2columns(allattrs, columns, attrColumnTrace,

classTableTrace, classifiers);
attrs2prims(allattrs, attrColumnTrace, columns,

tables, classifiers);
noNullPKey(tables);
attrs2fkeys(allattrs, fkeys, classTableTrace,

tables, classifiers);
supers2fkeys(classes, fkeys, tables, classTableTrace);

}

34

