
Precise Condition Synthesis for
Program Repair

Yingfei Xiong1, Jie Wang1, Runfa Yan2,
Jiachen Zhang1, Shi Han3, Gang Huang1, Lu Zhang1

1Peking University

2University of Electronic Science and Technology of China

3Microsoft Research Asia

Test-Based Program Repair

Fault Localization

Patch Generation

Patch Validation

Input: A program and a test suite, with at least a failed test
Output: A patch that makes the program pass all tests

GenProg, PAR, SemFix, Nopol, DirectFix, SPR, QACrashFix, Prophet, Angelix, …

“Generate-
Validate”

Framework

Precision

• The problem of weak test suites [Qi-ISSTA15]
• Test suites in real world projects are often too weak to

guarantee patch correctness

• Precision =
#𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑅𝑒𝑝𝑎𝑖𝑟𝑒𝑑 𝐷𝑒𝑓𝑒𝑐𝑡𝑠

#𝐴𝑙𝑙 𝐷𝑒𝑓𝑒𝑐𝑡𝑠 𝑤𝑖𝑡ℎ 𝑃𝑎𝑡𝑐ℎ𝑒𝑠

• Precision of existing approaches1

• jGenProg 18.5%2

• Nopol 14.3%2

• Prophet 38.5%3

• Angelix 35.7%3

1. If multiple patches are generated for one defect, only the fist is considered
2. Evaluated on Defects4J benchmark
3. Evaluated on ManyBugs benchmark

Goal of This Talk

• Goal: to repair programs with a high precision

• Targeted defect class: condition bugs

lcm = Math.abs(a+b);
+ if (lcm == Integer.MIN_Value)
+ throw new ArithmeticException();

Missing boundary checks

- if (hours <= 24)
+ if (hours < 24)

withinOneDay=true;
Conditions too weak or too strong

Condition bugs are common

ACS System

• ACS = Accurate Condition Synthesis

• Two sets of templates for repair

• Inserting one of the following statement before the last
executed statement

• if ($C) throw ${Expected Exception};

• if ($C) return ${Expected Output};

Oracle Returning

• Changing the condition located by predicate switching

• if ($D) => if ($D || $C)

• if ($D) => if ($D && $C)

Condition Modifying

Need to
synthesize
condition $C

Challenge – Many incorrect
conditions pass the tests

Test 1 (Passed):
Input: a = 1, b = 50
Oracle: lcm = 50

Test 2 (Failed):
Input: a = Integer.MIN_VALUE, b = 1
Oracle: Expected(ArithmeticException)

Correct condition:
lcm == Integer.MIN_VALUE

Incorrect conditions:
• a != 1
• b == 1
• lcm != 50
• …

Idea: Rank the Conditions

• Rank potential conditions by their probabilities of being
correct

• Validate the conditions one by one
• Stop validating when the probability is too low

Condition1
95%

Condition2
85%

Condition3
75%

Validate: fail Validate: pass

Idea: Rank the Conditions

Condition1
95%

Condition2
85%

Condition3
75%

Validate: fail Validate: fail Stop

• Rank potential conditions by their probabilities of being
correct

• Validate the conditions one by one
• Stop validating when the probability is too low

Ranking Conditions is Difficult

• The number of potential conditions is large

• Cannot enumerate the conditions

• Difficult to perform statistics: not enough
samples for each condition

Solution: Divide-and-Conquer

lcm == Integer.MIN_VALUE

a != 1

b == 1

lcm != 50

Variables Predicates

Step 1: Rank variables
Step 2: Rank predicates for each variable

Enumerable
Allows

statistics
Enables more refined

ranking techniques

Ranking Method 1:
Rank Variables by Data-Dependency

• Locality of variable uses: recently assigned
variables are more likely to be used

• Rank variables by data-dependency
• lcm = Math.abs(mulAndCheck(a/gdc(a, b), b))

• Consider only variables in the first two levels

lcm

a b Level 2

Level 1

Ranking Method 2:
Filter Variables by JavaDoc

Only variable “initial” is considered when
throwing IllegalArgumentException

Ranking Method 3:
Rank Predicates by Context
• The predicates tested on the variables are related to its context

• Approximate the conditional probabilities by querying GitHub

• Consider only the predicates whose probabilities are larger than
a threshold

Vector v = …;
if (v == null) return 0;

int hours = …;
if (hours < 24)

withinOneDay=true;

int factorial() {
…
if (n < 21) {

…

Variable Type

Variable Name

Method Name

Evaluation: Performance of ACS

Dataset: Four projects from Defects4J benchmark:
• Time, Lang, Math, Chart
• In total 224 defects

Conclusion

• Can programs be automatically repaired with a high
precision?
• Yes, at least as high as 78.3%

• How can programs be repaired with a high
precision?
• Rank the patches by their probabilities of correctness

• Stop when the probability is too low

• How can we rank them?
• Divide-and-conquer with refined ranking techniques

Thank you！

