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Test-Based Program Repair

Fault Localization

Patch Generation

Patch Validation

Input: A program and a test suite, with at least a failed test
Output: A patch that makes the program pass all tests

GenProg, PAR, SemFix, Nopol, DirectFix, SPR, QACrashFix, Prophet, Angelix, …

“Generate-
Validate” 

Framework



Precision

• The problem of weak test suites [Qi-ISSTA15]
• Test suites in real world projects are often too weak to 

guarantee patch correctness

• Precision = 
#𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑅𝑒𝑝𝑎𝑖𝑟𝑒𝑑 𝐷𝑒𝑓𝑒𝑐𝑡𝑠

#𝐴𝑙𝑙 𝐷𝑒𝑓𝑒𝑐𝑡𝑠 𝑤𝑖𝑡ℎ 𝑃𝑎𝑡𝑐ℎ𝑒𝑠

• Precision of existing approaches1

• jGenProg 18.5%2

• Nopol 14.3%2

• Prophet 38.5%3

• Angelix 35.7%3

1. If multiple patches are generated for one defect, only the fist is considered
2. Evaluated on Defects4J benchmark
3. Evaluated on ManyBugs benchmark



Goal of This Talk

• Goal: to repair programs with a high precision

• Targeted defect class: condition bugs

lcm = Math.abs(a+b);
+ if (lcm == Integer.MIN_Value)
+   throw new ArithmeticException();

Missing boundary checks

- if (hours <= 24)
+ if (hours < 24)

withinOneDay=true;
Conditions too weak or too strong

Condition bugs are common



ACS System

• ACS = Accurate Condition Synthesis

• Two sets of templates for repair

• Inserting one of the following statement before the last 
executed statement

• if ($C) throw ${Expected Exception};

• if ($C) return ${Expected Output};

Oracle Returning

• Changing the condition located by predicate switching

• if ($D) => if ($D || $C)

• if ($D) => if ($D && $C)

Condition Modifying

Need to 
synthesize 
condition $C



Challenge – Many incorrect 
conditions pass the tests

Test 1 (Passed):  
Input: a = 1, b = 50
Oracle: lcm = 50

Test 2 (Failed): 
Input: a = Integer.MIN_VALUE, b = 1
Oracle: Expected(ArithmeticException)

Correct condition: 
lcm == Integer.MIN_VALUE

Incorrect conditions:
• a != 1
• b == 1
• lcm != 50
• …



Idea: Rank the Conditions

• Rank potential conditions by their probabilities of being 
correct

• Validate the conditions one by one
• Stop validating when the probability is too low

Condition1
95%

Condition2
85%

Condition3
75%

Validate: fail Validate: pass



Idea: Rank the Conditions

Condition1
95%

Condition2
85%

Condition3
75%

Validate: fail Validate: fail Stop

• Rank potential conditions by their probabilities of being 
correct

• Validate the conditions one by one
• Stop validating when the probability is too low



Ranking Conditions is Difficult

• The number of potential conditions is large

• Cannot enumerate the conditions

• Difficult to perform statistics: not enough 
samples for each condition



Solution: Divide-and-Conquer

lcm == Integer.MIN_VALUE

a != 1

b == 1

lcm != 50

Variables Predicates

Step 1: Rank variables
Step 2: Rank predicates for each variable

Enumerable
Allows 

statistics
Enables more refined 

ranking techniques



Ranking Method 1:
Rank Variables by Data-Dependency

• Locality of variable uses: recently assigned 
variables are more likely to be used

• Rank variables by data-dependency
• lcm = Math.abs(mulAndCheck(a/gdc(a, b), b))

• Consider only variables in the first two levels

lcm

a b Level 2

Level 1



Ranking Method 2:
Filter Variables by JavaDoc

Only variable “initial” is considered when 
throwing IllegalArgumentException



Ranking Method 3:
Rank Predicates by Context
• The predicates tested on the variables are related to its context

• Approximate the conditional probabilities by querying GitHub

• Consider only the predicates whose probabilities are larger than 
a threshold

Vector v = …;
if (v == null) return 0;

int hours = …;
if (hours < 24)

withinOneDay=true;

int factorial() {
…
if (n < 21) {

…

Variable Type

Variable Name

Method Name



Evaluation: Performance of ACS

Dataset: Four projects from Defects4J benchmark:
• Time, Lang, Math, Chart
• In total 224 defects



Conclusion

• Can programs be automatically repaired with a high 
precision?
• Yes, at least as high as 78.3%

• How can programs be repaired with a high 
precision?
• Rank the patches by their probabilities of correctness

• Stop when the probability is too low

• How can we rank them?
• Divide-and-conquer with refined ranking techniques



Thank you！


