
Learning to Prioritize Test Programs
for Compiler Testing

Junjie Chen1,2, Yanwei Bai1,2, Dan Hao1,2‡, Yingfei Xiong1,2†‡, Hongyu Zhang3‡, Bing Xie1,2
1Key Laboratory of High Confidence Software Technologies (Peking University), MoE

2Institute of Software, EECS, Peking University, Beijing, 100871, China
{chenjunjie,byw,haodan,xiongyf,xiebing}@pku.edu.cn

3The University of Newcastle, NSW 2308, Australia, hongyu.zhang@newcastle.edu.au

Abstract—Compiler testing is a crucial way of guaranteeing
the reliability of compilers (and software systems in general).
Many techniques have been proposed to facilitate automated
compiler testing. These techniques rely on a large number of
test programs (which are test inputs of compilers) generated by
some test-generation tools (e.g., CSmith). However, these compiler
testing techniques have serious efficiency problems as they usually
take a long period of time to find compiler bugs. To accelerate
compiler testing, it is desirable to prioritize the generated test
programs so that the test programs that are more likely to trigger
compiler bugs are executed earlier. In this paper, we propose
the idea of learning to test, which learns the characteristics of
bug-revealing test programs from previous test programs that
triggered bugs. Based on the idea of learning to test, we propose
LET, an approach to prioritizing test programs for compiler
testing acceleration. LET consists of a learning process and a
scheduling process. In the learning process, LET identifies a set
of features of test programs, trains a capability model to predict
the probability of a new test program for triggering compiler
bugs and a time model to predict the execution time of a test
program. In the scheduling process, LET prioritizes new test
programs according to their bug-revealing probabilities in unit
time, which is calculated based on the two trained models. Our
extensive experiments show that LET significantly accelerates
compiler testing. In particular, LET reduces more than 50% of
the testing time in 24.64% of the cases, and reduces between
25% and 50% of the testing time in 36.23% of the cases.

I. INTRODUCTION

Compiler is one of the most fundamental software tools and
almost all software systems rely on it. Therefore, it is vitally
important to guarantee the reliability of compilers. Compiler
testing is an effective and widely-recognized way of ensuring
the correctness of compilers [1].

Over the years, many techniques [2], [1], [3], [4], [5] have
been proposed to facilitate automated compiler testing. These
techniques rely on some test-generation tools (e.g., CSmith) to
generate a large number of test programs (which are test inputs
of compilers). Compiler bugs can be detected by running the
generated test programs. However, compiler testing still suffers
from the serious problem of efficiency. For example, Yang et
al. [2] spent three years on detecting 325 C compiler bugs,
and Le et al. [1] spent eleven months on detecting 147 C
compiler bugs. That is, with existing techniques, compiler

†Corresponding author.
‡Sorted in the alphabet order of the last names.

testing consumes an extremely long period of time to find
only a small number of bugs. Therefore, it is very necessary
to accelerate compiler testing.

Since only a subset of test programs are able to trigger
compiler bugs [3], [2], intuitively, compiler testing can be
accelerated by running these test programs earlier. In other
words, test prioritization may be adopted to accelerate com-
piler testing. However, existing test prioritization approaches
can hardly be used to accelerate compiler testing due to the
following reasons. The dominant prioritization approaches rely
on structural coverage information (e.g., statement coverage
and branch coverage) [6], [7], [8], which is collected through
regression testing [9], [10]. However, most test programs used
in compiler testing are generated on the fly by random test
generation tools like CSmith, thus the structural coverage
information of these test programs is not available. In other
words, these prioritization approaches based on structural cov-
erage cannot be applied to accelerate compiler testing (more
discussion in Section V-A). Recently, researchers proposed
some input-based prioritization approaches [11], [12], which
rely on only test inputs (i.e., test programs in compiler testing)
and do not require structural coverage information. However,
our experimental results (more details in Section IV-A) show
that the existing input-based approaches [11], [12] can hardly
accelerate compiler testing because of their low efficiency
and effectiveness. In summary, the existing test prioritization
approaches cannot accelerate compiler testing.

To accelerate compiler testing, in this paper, we present an
idea of learning to test, which learns the characteristics of bug-
revealing test programs to prioritize new test programs. That is,
by learning from the existing test programs that trigger bugs,
we model the relationship between the characteristics of the
test programs and the discovery of compiler bugs. We then
use the model to help us prioritize new test programs that
are more likely to trigger bugs quickly. Based on this idea,
we develop LET (short for learning to test), a learning-to-
test approach to accelerating compiler testing. Given a set of
new test programs, before using a compiler testing technique
to test compilers, LET prioritizes these test programs so that
programs that have higher chance to trigger bugs in unit time
are executed earlier. In particular, in this paper, we target at C
compilers because of the following reasons. First, the quality

of C compilers is very important since many safety-critical
software systems are written in C. Second, many different tools
and techniques are available for C compiler testing, allowing
us to evaluate our approach in different settings.

More specifically, in our work, we study many existing
compiler bugs, and identify a set of features on test programs
that are related to bug detection. Using the set of features,
we train two models from the existing test programs: (1)
a capability model that predicts the probability of a new
test program to detect a bug, and (2) a time model that
predicts the execution time of a new test program. Given a
set of randomly generated test programs, LET prioritizes the
programs based on the descendant order of their bug-revealing
probabilities in unit time, which is calculated by dividing
the predicted bug-revealing probability by the corresponding
predicted execution time. In this way, our approach accelerates
existing compiler testing techniques, leading to more efficient
detection of compiler bugs.

We evaluate LET using two compiler testing techniques
(DOL [3] and EMI [1]), two subjects (GCC and LLVM), and
two application scenarios (cross-compiler and cross-version
scenarios). The evaluation results show that, in terms of time
spent on detecting each bug, LET substantially accelerates
compiler testing in all settings: LET reduces more than 50%
of the testing time in 24.64% of the cases, and reduces
between 25% and 50% of the testing time in 36.23% of the
cases. We also compare LET with two recent input-based
test prioritization approaches, i.e., TB−G [12] and ARP [11].
The experimental results show that LET is more effective and
stable than TB−G and ARP for accelerating compiler testing.

To sum up, the major contributions of this paper are as
follows:
• The idea of “learning to test”, which learns from existing

test programs to accelerate future test execution.
• The development of LET, a learning-to-test approach to

prioritizing test programs for accelerating C compiler
testing.

• An extensive experimental study confirming the effective-
ness of our approach.

II. APPROACH

Figure 1 presents the overview of our approach, which
contains an offline learning process (Section II-A) and an
online scheduling process (Section II-B).

A. Learning Process

The key insight of our approach is that programs with
certain language features or combinations of language features
are inherently difficult to compile or optimize, and such
programs are more likely to trigger bugs in compilers. If
we can correctly identify these features, we should be able
to predict the probability of a test program to trigger bugs
and thus execute them earlier. We illustrate this with an
example. When implementing C compilers, compiling structs
is usually complex and error-prone, as the compiler needs
to correctly align structs based on the requirement of the

underline operating system, and also needs to find an optimal
alignment for efficient space usage. As a matter of fact, there
are a large number of bug reports in GCC repository related
to structs. For example, Figure 2 shows a bug report1 for
GCC (bug ID is 20127), where “volatile” in the struct is
not properly treated when performing tree-optimization—the
optimization that manipulates GIMPLE trees. From the bug
report we can see several features of the code pieces related
to the discovery of the bug, for example, the existence of both
struct and violatile, and the number of times a volatile variable
is written. The former relates to the existence of program
elements (existence features) and the latter relates to how these
elements are used (usage features). We identify a large set of
existence and usage features and design methods to obtain
them from generated programs. We further use a machine
learning algorithm to train a prediction model based on the
identified features to predict the probability of a test program
to trigger a bug. Moreover, in order to get the bug-revealing
probability in unit time, we also use a machine learning
algorithm to train a regression model to predict the execution
time of each test program. We use the same identified features
when training the regression model. In this paper, we call the
former model as the capability model and the latter model
as the time model. In short, our learning process has three
components: identifying features, training a capability model
and training a time model.

1) Identifying Features: The identified features are divided
into two types. The first type of features, existence features, are
concerned with whether certain types of elements exist in the
target program. Intuitively, some bugs occur only on certain
specific programming elements, thus the existence of these
programming elements can serve as features to characterize
test programs triggering bugs. For example, bugs in loop
optimization occur when test programs have loop statements.
More concretely, existence features are defined as four sets:
EXIST = STMT ∪ EXPR ∪ V AR ∪OP , where
• STMT is the set of all statement types in C language,
• EXPR is the set of all expression types in C language,
• V AR is the set of all variable types in C language, and
• OP is the set of all operation types in C language.

When there exist at least a program element belonging to the
associated type exists, the feature is set to one, otherwise it is
set to zero.

The second type of features, usage features, are concerned
with how the elements in a program are used. Intuitively,
certain bugs may only be triggered when the program elements
are used in a specific manner. For example, a bug concerning
pointers may only be triggered when the pointer has pointed to
muliple addresses, i.e., the size of its alias set must be larger
than a threshold. In this paper we utilize a characteristic of
the random test generation tool CSmith [2], one of the most
widely-used random C program generator. When generating
a program, CSmith records a set of usage features from
the program, such as the size of alias set, the depth of

1https://gcc.gnu.org/bugzilla/show bug.cgi?id=20127.

Extracting
features

Extracting
features

Feature
selection

Training

Training Existing test
programs

New test
programs

Training
set

Testing
set

Capability
model

Time
model

Bug-revealing
probabilities

Execution time

Ranking
Execution order

Bug-revealing
probabilities
in unit time

Learning Process Scheduling Process

in u

ng

Processed
training

set

Fig. 1: Overview of LET

 1 typedef struct{
 2 volatile int a;
 3 volatile int b;
 4 } s;
 5 int main (void){
 6 s x = {0, 1};
 7 s y = {2, 3};
 8 x = y;
 9 y = x;
10 return x.a + y.a;
11 }

Description:
The bug occurs in the "tree-optimization"
part of GCC. The code does not treat
volatile struct members as volatile,
because SRA creates new variables and
then goes and makes them renamed.

Fig. 2: An example of GCC bug report

pointer dereference, etc. To save the feature collection time,
we directly use the usage features collected by CSmith for
our offline training. More concretely, we use the following
features:

• Address features, e.g., the number of times the address
of a struct or a variable is taken.

• Struct bitfield features, e.g., the times of a struct with
bitfields on LHS/RHS, and the number of non-zero, zero,
const, violate, full bitfields.

• Pointer dereference features, e.g., the times of a pointer
is dereferenced on LHS/RHS, and the depth of pointer
dereference.

• Pointer comparison features, e.g., the number of times
a pointer is compared with NULL, with the address of
another variable, or with another pointer.

• Alias set features, e.g., the size of alias sets.
• Jump features, e.g., the times of forward jumps and

backward jumps.
• Used variable features, e.g., the percentage of a fresh-

made variable (i.e. the variable defined and used in the
same statement) is used and the percentage of an existing
variable is used.

Currently, we use only the preceding two types of features
due to the tradeoff between acceleration effectiveness and
cost. Intuitively, the more features we use in training, the
better prioritization results we may get. However, besides
the learning process, in the scheduling process LET also
needs to extract the values of these features for new test
programs. Since the scheduling process is conducted online,
it is necessary to control its cost. Therefore, LET uses only
these easy-to-extract features.

2) Training a Capability Model: We collect a set of test
programs generated by existing test program generation tools,
some of which trigger bugs whereas the others do not. Each
test program is taken as a training instance whose label is
true/false (triggering bugs or not). For each test program, we
extract the values of the identified features through program
analysis2. Based on the set of training instances (including
their features and labels), LET first conducts feature selection
so as to filter useless features, and then normalizes them
in order to adjust values measured on different scales to a
common scale, and finally builds a capability model through
machine learning. Finally, the capability model outputs the
probability of a test program triggering bugs.
• Feature Selection. LET conducts feature selection by

calculating the information gain ratio of each feature. Infor-
mation gain ratio is a ratio of information gain to the intrinsic
information, which is usually a good measure for identifying
the contribution of a feature and is able to reduce the bias
towards multi-valued features in existing feature selection
metrics [13]. After calculating the information gain ratio of
each feature, LET filters the useless features, i.e., the features
whose information gain ratios are zero.
• Normalization. Since the features are either numeric

type or Boolean type (i.e., 0 or 1), LET normalizes each
value of these features into the interval [0, 1] using min-max
normalization [14]. Supposed the set of new test programs
to be scheduled is denoted as T = {t1, t2, . . . , tm} and the
set of features is denoted as F = {f1, f2, . . . , fs}, we use a
variable xij to represent the value of the feature fj for the
test program ti before normalization and use a variable x∗ij
to represent the value of the feature fj for the test program
ti after normalization (1 ≤ i ≤ m and 1 ≤ j ≤ s). The
normalization formula is as follows:

x∗ij =
xij −min({xkj |1 ≤ k ≤ m})

max({xkj |1 ≤ k ≤ m})−min({xkj |1 ≤ k ≤ m})

• Building the Capability Model. After feature selection
and normalization, we adopt a machine learning algorithm,

2As our approach is implemented to accelerate compiler testing by using
the test programs generated by CSmith [2], we directly extract the values of
features (including the two types of features) from each test program during
the test-generation process of CSmith.

Sequential Minimal Optimization (abbreviated as SMO) algo-
rithm [15], to build the capability model. The SMO algorithm
is a support vector machine algorithm, which speeds up
standard support vector machines by breaking a very large
quadratic programming optimization problem into a series of
smallest possible quadratic programming optimization prob-
lems [15].

3) Training a Time Model: We collect a set of test programs
and record the execution time of each test program. The exe-
cution time of a test program includes the time for compiling
the program, the time for running the program and obtaining
its result, and the time for any oracle checks necessarily to
be performed. We use the previous version of the compiler
under test to obtain the execution time. Each test program is
taken as a training instance whose label is its execution time.
Similar with training the capability model, we also extract the
values of the identified features and then normalize the set
of training instances. Based on the set of normalized training
instances, LET builds a regression model (i.e., the time model)
using Gaussian processes since their labels are in a continuous
domain. Gaussian process uses lazy learning and a measure
of the similarity between points (i.e., the kernel function) to
predict the value for an unseen point from the training set [16].

B. Scheduling Process

Based on the learned capability model and time model, LET
schedules the execution order of new test programs through
the scheduling process. Initially, LET extracts the values of
the aforementioned features from each new test program, and
uses the two models to predict the bug-revealing probability
and execution time for each test program, respectively. Then,
LET calculates the bug-revealing probability in unit time for
each test program, by dividing the bug-revealing probability
(predicted by the learned capability model) with the execution
time (predicted by the learned time model). Finally, LET
prioritizes new test programs based on the descendent order
of their bug-revealing probabilities in unit time.

III. EXPERIMENTAL STUDY

In the study, we address the following research questions.
• RQ1: How effective is LET in accelerating C compiler

testing?
• RQ2: How does LET perform when being applied to dif-

ferent compiler testing techniques (i.e., DOL and EMI)?
• RQ3: How does LET perform in different application

scenarios (i.e., cross-compiler and cross-version scenar-
ios)?

• RQ4: Can the major components of LET (i.e., feature
selection and time model) contribute to the overall effec-
tiveness?

More specifically, RQ1 investigates overall acceleration
effectiveness of LET by comparing it with two existing
prioritization approaches, RQ2 investigates the effectiveness
of LET on accelerating different compiler testing techniques,
RQ3 investigates two application scenarios which differ in
the subjects used in the learning process and the scheduling

TABLE I: Subject statistics
Subject LOC Usage
GCC-4.3.0 3,343,377 Learning
GCC-4.4.3 4,727,209 Scheduling
LLVM-2.6 684,114 Learning & Scheduling
LLVM-2.7 795,152 Scheduling
Open64-5.0 6,078,400 Learning

process (more details referred to Section III-B). Furthermore,
for LET, its key part is to train a capability model using the
identified features from existing test programs. To improve the
effectiveness of its key part, there are two important comple-
mentary parts: feature selection and time model. Therefore,
RQ4 studies whether feature selection and time model make
contributions to the effectiveness of LET, respectively.

A. Subjects and Test Programs

In this experimental study, we use three mainstream open-
source C compilers, namely GCC, LLVM, and Open64 for the
x86 64-Linux platform.

The statistics of these compilers are presented in Table I,
where the last column presents whether the corresponding
compiler is used in training the capability model (marked
as Learning) or is used in testing the approach (marked as
Scheduling). Note that we always use the previous version to
train the time model. The subjects we use are not the newest
versions, because it is easier for us to collect enough bugs on
the old versions to perform statistical analysis. We only use
Open64 in the learning process because it has no available bug
reports, making it impossible to measure the number of bugs
detected. More discussion can be found at III-E.

The test programs we use in both learning and scheduling
processes are C programs randomly generated by CSmith [2],
which is commonly used in the literature of C compiler
testing [1], [3]. The programs generated by CSmith are always
valid and do not require external inputs, and the output of any
program is the checksum of the non-pointer global variables
of the program at the end of program execution. To avoid
imbalance data problem in building a capability model, for
each subject used in the learning process, we randomly collect
the same number of test programs triggering bugs and test
programs not triggering bugs3.

B. Application Scenarios

We consider two application scenarios of LET in this study.
Cross-compiler scenario: LET learns a capability model

from one compiler and applies the capability model to pri-
oritize test programs for another compiler. To evaluate LET
in this scenario, we use Open64-5.0 in the learning process
and use GCC-4.4.3 as well as LLVM-2.6 respectively in the
scheduling process, and use GCC-4.3.0 in the learning process
and use LLVM-2.6 in the scheduling process.

Cross-version scenario: LET learns a capability model
from one version of a compiler and applies the capability
model to prioritize test programs for its later versions. To

3For Open64-5.0 and GCC-4.3.0, we use 1000 failed test programs and
1000 passed test programs. For LLVM-2.6, we use 800 failed test programs
and 800 passed test programs because CSmith do not generate enough failed
test programs.

evaluate LET in this scenario, we use GCC-4.3.0 in the
learning process and GCC-4.4.3 in the scheduling process, and
use LLVM-2.6 in the learning process and LLVM-2.7 in the
scheduling process. In particular, in this scenario, all the bugs
used in the learning process have already been resolved and
closed before the versions used in the scheduling process.

C. Baseline Approach

Random order approach (RO), which randomly selects an
execution order of new test programs, is taken as the baseline
in our study. RO demonstrates the effectiveness of compiler
testing without any accelerating approaches.

D. Independent Variables

We consider three independent variables in the study.
1) Compiler Testing Techniques: In this study, we consider

two compiler testing techniques to accelerate, i.e., Different
Optimization Level (DOL) [3] and Equivalence Modulo Inputs
(EMI) [1].

DOL is an effective compiler testing technique, which
determines whether a compiler contains bugs by comparing
the results produced by the same test program with different
optimization levels (i.e., -O0, -O1, -Os, -O2 and -O3) [3].
Given an execution order decided by a prioritization approach,
we compile and execute test programs under different op-
timization levels, and determine whether the test program
triggers a bug by comparing their results.

EMI is first proposed by Le et al. [1], which generates some
equivalent variants for any given test program and determines
whether a compiler contains bugs by comparing the results
produced by the original test program and its variants4. Given
an execution order decided by a prioritization approach, we
generate eight variants for each original test program by
randomly deleting its unexecuted statements as EMI did, and
then compile and execute each pair of a test program and its
variants under the same optimization level (i.e., -O0, -O1, -Os,
-O2 and -O3). Finally, we compare the corresponding results
to determine whether a bug is detected by them.

2) Compared Prioritization Approaches: We implement
two latest input-based test prioritization approaches for com-
parison.

Token-vector based prioritization (TB−G) [12], which is
the first test case prioritization approach for compilers. TB−G
regards each test program as text and transforms each test
program into a text-vector by extracting corresponding tokens
from text, and then prioritizes test programs based on the
distance between the text-vector and the origin vector (0, 0,
. . . , 0). As an existing study [12] reveals, TB−G is the most
cost-effective strategy among a set of studied techniques.

Adaptive random prioritization (ARP), which selects the
test input that has the maximal distance to the set of already
selected test inputs [11]. Although ARP is not proposed to
accelerate compiler testing, in our study, we adopt it for
compiler testing by treating a test program as a test input and

4In fact, EMI has three instantiations, namely Orion [1], Athena [17], and
Hermes [18]. In our paper, EMI refers to Orion.

calculating the distance between test programs using their edit
distance.

3) Variants of LET: In our study we explore the impact of
some parts (i.e., feature selection and time model) of LET on
compiler testing acceleration, thus we implement the following
variants of LET.

LET−A, which removes the feature selection process (de-
scribed in Section II-A2) from LET. That is, LET−A uses all
identified features to train the capability model, and then trains
a time model, and finally prioritizes new test programs based
on their bug-revealing probabilities in unit time.

LET−B, which removes the time model (as described in
Section II-A3) from LET. That is, LET−B conducts feature
selection to filter useless features, and then uses the processed
training set to build a capability model, and finally prioritizes
new test programs based on only their bug-revealing probabil-
ities.

To implement LET, LET−A and LET−B, we use Weka
3.6.12 [19], which is a popular environment for data mining.
We use the SMO algorithm implemented by Weka to build the
capability model, choosing Puk kernel with omega = 1.0 and
sigma = 0.7. We use the Gaussian process implemented also
by Weka to build the time model, choosing Puk kernel with
omega = 3.3 and sigma = 0.5. The parameter values are
decided by a preliminary study that we conduct on a small
dataset. Other parameters in these two algorithms are set to
the default values provided by Weka.

E. Dependent Variables

An important issue is how we measure the number of
bugs detected by a test suite. If two test programs both fail,
there may be two bugs, or the two test programs may trigger
the same bug. To solve this problem, we use the Correcting
Commits technique used in previous work [3]. That is, given
a failed test program, we determine in which future commit
the bug is corrected, i.e., the test program passes since that
commit. If two bugs are corrected by the same commit, we
assume the two bugs are the same bug.

The dependent variable considered in our study is the time
spent on detecting k bugs, where 1 ≤ k ≤ n and n is the total
number of bugs detected when executing all test programs
in our study. This dependent variable is used to measure the
effectiveness of LET. Note that we do not use the average
percentage of detected faults (abbreviated as APFD) [20],
[21], [12], because developers usually care more about the
time spent in compiler testing rather than the number of test
programs used in compiler testing.

For ease of presentation, we use Formula 1 to calculate the
corresponding speedup on detecting k bugs, where TRO(k)
represents the time spent on detecting k bugs through RO (i.e.,
without any accelerating approaches), and TACC(k) repre-
sents the time spent on detecting k bugs using a prioritization
approach (i.e., LET, LET−A, LET−B, TB−G, or ARP).

Speedup(k) =
TRO(k)− TACC(k)

TRO(k)
(1)

Since all the accelerating approaches (e.g., LET, TB−G and
ARP) studied in this paper consume extra time on scheduling
test programs5, the time spent on detecting k bugs includes
the scheduling time.

F. Experimental Process

For compilers under test, we generate 100,000 C programs
using CSmith, which serve as the new test programs to be
scheduled.

First, we apply RO to the test programs and feed the
scheduled test programs to the two compiler testing techniques
respectively. During the process, we record the execution time
of each test program and which test programs triggered which
bugs, then calculate the time spent on detecting each bug. The
results of RO demonstrate the compiler testing results without
using any accelerating approaches. To reduce the influence of
random selection, we apply RO 10 times and calculate the
average results.

Next, we apply LET to each compiler under test in two
application scenarios by using two compiler testing techniques.
During this process, we also calculate the time spent on
detecting each bug. Following the same procedure we apply
LET−A and LET−B.

Finally, we apply TB−G and ARP to the new test programs
of compilers under test and feed the prioritized test programs
to the two compiler testing techniques respectively, calculating
the time spent on detecting each bug.

The experimental study is conducted on a workstation with
eight-core Intel Xeon E5620 CPU with 24G memory, and
Ubuntu 14.04 operating system.

G. Threats to Validity

The threats to internal validity mainly lie in the imple-
mentations of our approach, the compared approaches and
the compiler testing technique EMI. To avoid implementation
errors, at least two authors of this paper review the source
code. Furthermore, in implementing EMI, we use the same
tools (i.e., LibTooling Library of Clang6 and Gcov7) as Le et
al. [1] did in their implementation.

The threats to external validity mainly lie in compilers and
test programs. To reduce the threat resulting from compilers,
we use all the C compilers that have been used in the literature
on compiler testing [2], [1], [3]. In the future, we will use
more compilers and versions as subjects. To reduce the threat
resulting from test programs, we use C test programs randomly
generated by CSmith as the prior work did [1], [2], [3].
However, these test programs are not necessarily representative
of C programs generated by other tools. In the future, we will
further use more other test generation tools.

The threats to construct validity lie in how the results
are measured. In measuring acceleration effectiveness, we

5In our approach, the extra time refers to only the time spent on the
scheduling process described in Section II-B because the learning process
is conducted offline.

6http://clang.llvm.org/docs/LibTooling.html.
7http://ltp.sourceforge.net/coverage/gcov.php.

use Correcting Commits to automatically identify duplicated
bugs [3]. As Correcting Commits relies on developers’ edition,
different bugs may be regarded as the same one. However, it
may not be a big threat because developers do not tend to fix
many of bugs in one commit to guarantee software quality [3].

H. Verifiability

The replication package of the experiments is available at
our project website8. The package includes the tool and the
data for reproducing the experiments. It also includes the
detailed experimental results. The tool is open source, allowing
one to verify the details of the experiments. The detailed
results allow one to verify the result analysis without rerunning
the experiments. The tool also enables further studies on
different subjects and different experimental settings.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. RQ1: Acceleration Effectiveness

Table II presents the acceleration results of LET and TB−G
in terms of the time spent on detecting bugs. In this table,
Column “Scenarios” presents the application scenarios, and
the subject before an arrow is used in the learning process,
whereas the subject behind the arrow is used in the scheduling
process, Column “Bug” presents the number of detected bugs,
Column “RO” presents the average time spent on detecting
the corresponding number of bugs, Columns “∆LET” and
“∆TB−G” present the difference between the time spent on
detecting the corresponding number of bugs using LET/TB−G
and using RO. If the difference is less than zero, the corre-
sponding approach accelerates compiler testing because the
used accelerating approach (LET or TB−G) spends less time
than RO on detecting the corresponding number of bugs.
• Overall Effectiveness Table II shows that the values in

Column “∆LET” are mostly smaller than zero. Moreover, the
absolute values that are smaller than zero are far larger than
the absolute values that are larger than zero in most cases,
e.g., in the scenario Open64-5.0 → GCC-4.4.3 using DOL,
the absolute values that are smaller than zero includes 6.38
and 4.92 but the absolute values that are larger than zero are
only 0.08 and 0.17. Furthermore, as the testing proceeds, the
time spent on testing will become larger, and the absolute
saving of LET will become larger even if the relative speedup
stays the same. Overall, LET does accelerate compiler testing.

We also analyze the distribution of speedups achieved by
LET9. The results are shown in Figure 3. In this figure, the x-
axis represents the scope of speedups and the y-axis represents
the frequency in which speedups occur corresponding scopes.
From the left bar for each scope in this figure, we can see that
in more than 88.41% cases LET accelerates compiler testing,
and the speedups of LET are mostly in the range from 25% to
50% (medium acceleration) and secondly in the range more
than 50% (high acceleration). That is, LET does accelerate
compiler testing to a great extent.

8https://github.com/JunjieChen/let.
9For each k and each setting, we calculate the speedup of LET using

Formula 1. We then analyze these speedups together.

TABLE II: Time spent on bug detection (* 104 seconds)
Scenarios Bug DOL EMI Scenarios Bug DOL EMI

RO ∆LET ∆TB−G RO ∆LET ∆TB−G RO ∆LET ∆TB−G RO ∆LET ∆TB−G

Open64-5.0
→
GCC-4.4.3

1 0.02 0.00 0.40 0.18 -0.14 2.43

GCC-4.3.0
→
GCC-4.4.3

1 0.02 0.02 0.39 0.29 0.64 2.32
2 0.15 -0.07 0.28 0.70 -0.65 3.18 2 0.32 -0.07 0.11 0.78 1.78 3.09
3 0.60 -0.03 1.30 2.77 -2.69 5.89 3 0.89 -0.56 1.01 1.43 1.45 7.24
4 1.02 -0.39 1.80 4.18 -3.88 4.48 4 1.90 -1.12 0.91 2.98 0.58 5.68
5 1.72 -0.87 1.20 6.76 -5.37 1.90 5 2.36 -1.17 0.56 5.13 0.67 3.53
6 3.00 -1.88 0.00 9.22 -7.57 -0.56 6 2.93 -1.51 0.08 9.35 -3.55 -0.69
7 4.68 -1.90 -0.16 10.49 -8.84 -1.04 7 3.96 -2.48 0.55 12.21 -1.24 -2.76
8 5.25 -1.58 -0.53 14.52 -12.86 -4.83 8 4.82 -1.84 -0.10 14.66 -3.05 -4.98
9 7.72 -3.33 -2.08 19.74 -18.09 -3.23 9 6.31 -2.15 -0.66 19.35 -0.88 -2.83
10 8.66 -4.19 -1.65 24.55 -22.40 -4.77 10 7.58 -3.07 -0.57 23.25 -3.90 -3.47
11 10.46 -3.80 -0.23 28.64 -25.31 2.08 11 9.67 -5.15 0.56 27.26 -7.48 3.46
12 12.22 -3.43 2.08 32.97 -25.39 0.19 12 12.11 -6.73 2.19 29.69 -9.91 3.47
13 14.23 -4.92 0.71 40.55 -31.96 -2.34 13 14.73 -6.85 0.21 36.02 -13.73 2.19
14 16.11 -6.38 0.14 49.30 -40.07 -5.35 14 17.47 -6.47 -1.22 40.54 -18.24 3.42
15 18.06 -4.19 3.22 55.36 -45.33 -10.45 15 18.92 -4.34 2.37 48.86 -16.01 -3.95
16 19.40 -0.57 2.06 61.76 -46.45 -14.32 16 21.08 -5.62 0.38 53.90 -11.08 -6.45
17 22.18 0.17 3.75 72.24 -38.93 -23.53 17 24.37 -4.31 1.55 58.08 -11.64 -9.37
18 23.59 0.08 2.67 74.82 -23.50 -23.74 18 26.39 -4.37 -0.13 61.69 -15.26 -10.61
19 28.01 -1.09 3.42 79.83 -17.15 -28.75 19 29.63 -4.99 1.80 76.52 -23.99 -25.44
20 32.16 -3.09 1.16 90.34 -20.48 -33.80 20 32.08 -6.77 1.24 78.96 -21.61 -22.42
21 — — — 100.05 -30.15 -32.63 21 — — — 88.59 -28.98 -21.17
22 — — — 106.20 -15.76 -37.37 22 — — — 107.05 -34.01 -38.22
23 — — — 115.80 -25.36 -43.80 23 — — — 115.04 -35.63 -43.04

Open64-5.0
→

LLVM-2.6

1 0.35 -0.15 1.08 3.32 -1.96 -0.23

GCC-4.3.0
→

LLVM-2.6

1 0.35 -0.06 1.08 3.32 -0.29 -0.23
2 1.06 -0.09 0.69 8.56 -4.79 -4.02 2 1.06 -0.73 0.69 8.56 -3.76 -4.02
3 2.60 -0.14 -0.29 16.08 -7.37 -5.21 3 2.60 -1.54 -0.29 16.08 -11.28 -5.21
4 4.33 -1.66 -1.05 23.25 -11.27 -4.36 4 4.33 -2.87 -1.05 23.25 -3.97 -4.36
5 5.23 -2.33 -0.91 33.23 -9.46 -13.16 5 5.23 -1.63 -0.91 33.23 -13.95 -13.16
6 6.83 -1.92 -2.43 47.86 6.67 3.88 6 6.83 -0.01 -2.43 47.86 -23.19 3.88
7 8.73 -3.43 1.66 56.30 6.17 11.63 7 8.73 1.12 1.66 56.30 -29.80 11.63
8 9.97 -3.26 0.82 66.83 14.21 5.84 8 9.97 3.11 0.82 66.83 -27.50 5.84
9 13.37 -6.65 -1.14 86.07 -5.03 -9.40 9 13.37 -0.06 -1.14 86.07 -38.23 -9.40
10 16.33 -7.62 1.38 94.70 -11.19 -18.03 10 16.33 -0.53 1.38 94.70 -43.85 -18.03
11 20.25 -1.60 -2.05 — — — 11 20.25 -0.84 -2.05 — — —
12 22.87 2.60 -1.71 — — — 12 22.87 -2.85 -1.71 — — —
13 25.45 4.46 -1.72 — — — 13 25.45 -5.07 -1.72 — — —
14 30.76 0.16 -3.19 — — — 14 30.76 -9.60 -3.19 — — —

LLVM-2.6
→

LLVM-2.7

1 1.35 -0.69 0.21 3.19 -0.38 -0.47
—

– — — — — — —
2 — — — 22.95 -20.14 -13.30 – — — — — — —
3 — — — 61.84 -23.14 -3.70 – — — — — — —

0.0

0.1

0.2

0.3

0.4

< -50 [-50,-25) [-25,-10) [-10,0) [0,10) [10,25) [25,50) > 50

Scope of Speedups (%)

F
re

q
u

en
cy

LET
TB-G

Fig. 3: Speedup distribution of LET

• Comparison with TB−G Table II shows that the val-
ues in Column “∆LET” are smaller than those in Column
“∆TB−G” in most cases, thus LET spends less time on
detecting the same number of bugs than TB−G in most cases.
Besides, the former are mostly smaller than zero, whereas the
latter are often larger than zero. Therefore, LET performs more
stable than TB−G in accelerating compiler testing.

Similarly, we also analyze the distribution of speedups
(calculated by Formula 1) achieved by TB−G, whose results
are also shown in Figure 3. From the right bar for each scope in
this figure, in about 54.35% cases TB−G accelerates compiler
testing and in 45.65% cases it decelerates compiler testing.
Moreover, the speedups achieved by TB−G are mostly in
the range from 10% to 25% (low acceleration) and then the
range from -10% to 0%. In particular, in only 0.72% cases the

speedups achieved by TB−G are in the range more than 50%
(high acceleration). Therefore, LET performs much better and
more stable than TB−G in accelerating compiler testing.

To learn whether LET outperforms TB−G significantly,
we perform a paired sample Wilcoxon signed-rank test (at
the significance level 0.05), whose results are shown in Ta-
ble III. Since the number of bugs detected in LLVM-2.7
using either DOL or EMI is quite small during the corre-
sponding testing periods in our study10, we cannot perform
this statistical test on those settings. In this table, Rows
“p-value” represent the p-value of the respective scenarios,
which reflect the significance in statistics. The p-values with
(:) denote that LET outperforms TB−G significantly in the
corresponding setting. Besides, Row “Mean(%)” represents the
mean speedups between LET and TB−G, which is calculated
by adapting Formula 1 where TRO(k) refers to the time
spent on detecting k bugs through TB−G and TACC(k)
refers to the time spent on detecting k bugs through LET.
From this table, LET outperforms TB−G in all settings and
mean improvements range from 12.16% to 79.97%, and LET
outperforms TB−G significantly at five settings. Therefore,
LET outperforms TB−G significantly in majority cases.

In conclusion, LET does perform much better and more
stable than TB−G in accelerating compiler testing.

10DOL detects only one bug and EMI detects only three bugs.

TABLE III: Statistical analysis between LET and TB−G

Scenarios
Open64-5.0 Open64-5.0 GCC-4.3.0 GCC-4.3.0
→ → → →
GCC-4.4.3 LLVM-2.6 GCC-4.4.3 LLVM-2.6

DOL Mean(%) 50.91 29.48 51.25 29.59
p-value 0.000(:) 0.358 0.000(:) 0.217

EMI Mean(%) 79.91 12.16 24.56 32.84
p-value 0.015(:) 0.625 0.012(:) 0.020(:)

TABLE IV: Comparison between Different Compiler Testing
Techniques and Application Scenarios

Summary Techniques Scenarios
DOL EMI Cross-compiler Cross-version

Mean(%) 30.91 50.81 47.85 27.69
p-value 0.000(:) 0.000(:) 0.000(:) 0.000(:)

• Comparison with ARP In our experiment, ARP does not
accelerate compiler testing at all, which is consistent with the
existing study [12]. In particular, with ARP, DOL detects only
one bug of GCC-4.4.3 in 30∗104 seconds (i.e., about the total
execution time of all test programs using DOL) and detects
no bugs of LLVM-2.6 or LLVM-2.7 by DOL in the same
period. ARP performs even worse on EMI, because with ARP
no bug is detected in GCC-4.4.3, LLVM-2.6 and LLVM-2.7
in 100∗104 seconds (i.e., about the total execution time of all
test programs using EMI). The reason ARP performs worse on
accelerating compiler testing is that it spends too much time on
calculating the edit distance between test programs whenever
selecting a new test program. Therefore, although ARP does
not rely on structural coverage information and is reported to
achieve acceptable effectiveness in general software [11], it
cannot be applied to accelerate C compiler testing.

B. RQ2: Impact of Compiler Testing Techniques

To answer RQ2, we statistically analyze all the experimental
results of LET for each compiler testing technique ignoring
the impact of subjects and application scenarios. The analysis
results are given by the first three columns of Table IV, where
row “Mean(%)” presents the mean speedups of LET and the
row “p-value” presents the p-values of the paired sample
Wilcoxon signed-rank test between LET and RO.

From this table, LET accelerates compiler testing signif-
icantly regardless of using either DOL or EMI. Moreover,
the acceleration effectiveness of LET using any of DOL
and EMI is quite obvious, namely, their mean speedups are
30.91% and 50.81% respectively. Therefore, LET achieves
great effectiveness for accelerating different compiler testing
techniques.

C. RQ3: Impact of Application Scenarios

To answer RQ3, we also statistically analyze the results
of LET for each application scenario ignoring the impact of
subjects and compiler testing techniques. The analysis results
are given by the latter two columns of Table IV. From this
table, in either the cross-compiler scenario or the cross-version
scenario, LET accelerates compiler testing significantly. More-
over, the acceleration effectiveness of LET in any of the two
application scenarios is quite obvious, namely, their mean
speedups are 47.85% and 27.69% respectively. This is an
evidence to demonstrate the soundness of LET. That is, LET

0.0

0.1

0.2

0.3

0.4

< 0 [0,10) [10,25) [25,50) > 50

(a). LET v.s. LET-A

LET
LET-A

0.0

0.1

0.2

0.3

0.4

< 0 [0,10) [10,25) [25,50) > 50

(b). LET v.s. LET-B

LET
LET-B

Fig. 4: Comparison between LET and its variants with respect
to the distribution of speedups

accelerates compiler testing no matter which compiler or
version is used to train the models.

D. RQ4: Contributions of Major Components of LET

Figures 4 presents the comparison between LET and its
variants (i.e., LET−A and LET−B). In these figures, the x-
axis represents the scope of speedups and the y-axis represents
the frequency in which speedups occur corresponding scopes.
From Figure 4(a), the number of deceleration cases by LET−A
is larger than that by LET. That is, LET is more stably effective
than LET−A. Moreover, the speedups of LET−A are mostly
in the range from 25% to 50% and the range less than 0%, but
the speedups of LET are mostly in the range from 25% to 50%
and the range more than 50%. That is, LET performs better
than LET−A. Therefore, feature selection does improve the
acceleration effectiveness of LET by filtering useless features.

Furthermore, we identified the features that contribute more
to bug detection through the analysis of information gain ratio.
These features include the number of times a non-volatile is
written, the maximum expression depth, the existence of struct
type, the number of struct whose depth is one, etc. Some
features are expected, such as the existence of struct type,
which is consistent with the example presented in Figure 2.
However, some features are a bit surprising to us, such as the
number of struct whose depth is one. Intuitively, test programs
with larger depth of struct tend to be more complex, thus they
are more likely to detect compiler bugs. But our evaluation
finds that, when the depth of struct is one, it is more likely
to detect compiler bugs. We will investigate the relationship
between features and bug-triggering ability in our future work.

Similarly, from Figure 4(b), the number of deceleration
cases by LET−B is larger than that by LET. That is, LET is
more stably effective than LET−B. Furthermore, although the
speedups of both LET and LET−B are mostly in the range
from 25% to 50% and the range more than 50%, the total
frequency in those scopes of LET, i.e., 60.87%, is larger than
that of LET−B, i.e., 57.25%. Moreover, the frequencies in the
range from 10% to 25% and the range from 0% to 10% of
LET is also larger than those of LET−B respectively. That
is, LET performs better than LET−B. Therefore, training a
time model also does improve the acceleration effectiveness of
LET by prioritizing test programs based on their bug-revealing
probabilities in unit time.

Overall, feature selection and time model actually improve
the prioritization effectiveness, and make contributions to the
acceleration effectiveness of LET.

V. DISCUSSION

A. Coverage-based Prioritization Doesn’t Work

In this paper, we did not investigate existing coverage-
based prioritization approaches because they can hardly be
applied to accelerate compiler testing. Typically, coverage-
based prioritization schedules the execution order of tests for
the project under test by utilizing the coverage information
of its previous version. That is, coverage-based prioritization
approaches are proposed based on a hypothesis that many
tests designed for the previous version can be reused to detect
bugs for the current version. However, this hypothesis may
not hold in compiler testing. To verify this hypothesis, we
conduct a preliminary study on GCC using DOL. In particular,
we randomly generate 20,000 test programs by using CSmith
and run these programs on GCC-4.3.0, recording the bugs
detected by DOL. Then we search the subsequent versions
of GCC-4.3.0 to find its closest version (i.e., GCC-4.4.0) that
fixes all the detected bugs. To verify whether the 20,000 test
programs are still useful in detecting bugs for new versions,
we run these test programs on GCC-4.4.3, which is a later
version of GCC-4.4.0, and find no bug at all. On the contrary,
we generate another 20,000 new test programs using CSmith
and find that 295 new programs reveal 11 bugs in GCC-
4.4.3. Comparing the bugs detected by 20,000 old programs
and 20,000 new programs in GCC-4.4.3, we can tell that, in
compiler testing, new test programs may outperform old test
programs. Similarly, Le et al. [1] also demonstrated new test
programs perform better than the regression test suite using
EMI. Moreover, there are mature program generation tools like
CSmith, which can generate a large number of test programs
efficiently. Therefore, practical compiler testing usually uses
new test programs rather than reuse old test programs. Besides,
existing compiler testing techniques [2], [1], [3] also use new
test programs to test compilers.

For new test programs, it is difficult to acquire their cover-
age information from a previous compiler version. Moreover,
we can hardly collect such coverage information without
running the new test programs. Therefore, coverage-based
prioritization can hardly be applied to accelerate compiler
testing and we do not compare with these approaches in this
study.

B. Training Efficiency of LET

LET needs to train two models: a capability model and a
time model. To train a capability model, LET uses a fixed
previous version of a compiler or another compiler so as to
reduce the cost of retraining a capability model. That is, in
practical usage, when a capability model has been trained, it
can be used to test a series of versions or compilers. From
the results of our study, when a capability model is trained
from GCC-4.3.0, LET accelerates the testing of GCC-4.4.3
and LLVM-2.6 using the capability model; when a capability
model is trained from Open64-5.0, LET also accelerates the
testing of GCC-4.4.3 and LLVM-2.6 using the capability
model. That is, the trained capability model is indeed robust.

In particular, even if we need to retrain a capability model, the
cost is very small compared with the testing time we reduce.
In our experiments, training a capability model takes less than
two minutes, while the trained model on average reduced about
44 hours in test execution time.

To train a time model, LET uses the previous version of
the version under test as the training version in order to
make the prediction results more accurate. We assume frequent
retraining on time model because the cost of retraining is even
smaller than that of the capability model: to train a capability
model, we need at least a set of programs triggering bugs,
but to train a time model, the training programs and their
labels can be collected when testing the previous version.
Furthermore, the retraining cost of a time model is also less
than two minutes. On the other hand, even if a time model
is not available, LET-B still significantly accelerates compiler
testing.

C. Potential Applications

We believe that the general concept of learning to test
proposed in this paper has many potential application areas.

First, besides the compiler testing techniques used in the
evaluation, LET can be applied to accelerate other com-
piler testing techniques, e.g., Randomized Differential Testing
(RDT) [22] by feeding the prioritized test programs to these
techniques. Second, besides C compilers, LET can be applied
to compilers of other languages (e.g., Java). In fact, as long as
testers identify relevant features, our learning-to-test approach
can be applied to compilers of other languages directly.
Finally, our learning-to-test approach can be also applied
to other types of complex software besides compilers, e.g.,
browsers, operating systems and image processing software.
Like C compilers, the inputs of complex software tend to
be complex too (e.g., images for image processing software),
whose complexity provides an opportunity for us to identify
different characteristics that are related to detected bugs from
them, thus our learning-to-test approach can be applied to test
other types of complex software.

VI. RELATED WORK

A. Compiler Testing

Compiler testing is difficult because the test inputs of
compilers are programs, and the generated programs must
strictly meet complex specifications (e.g., C99 specification
for C programs). Moreover, compiler testing suffers from the
test oracle problem as it is hard to tell the expected outputs
of a compiler given some test programs [3], [1], [23], [24],
[25]. In the literature, there are two main aspects on compiler
testing, namely generating test programs and addressing the
test oracle problem.

For test program generation, random test program gener-
ation is a main generation technique [26], [27], [25], [28],
[29], [30], [31], [32]. For example, Yang et al. [2], [33]
proposed and implemented a tool, called CSmith, to randomly
generate C programs without undefined behaviors for testing C
compilers, and Regehr et al. [34] proposed test case reduction

for C compiler bugs. Zhao et al. [35] developed an integrated
tool (JTT), which automatically generates programs to test
UniPhier, an embedded C++ compiler. Lidbury et al. [25]
developed CLsmith based on CSmith to generate programs
to test OpenCL compilers, and Pflanzer et al. [36] proposed
test case reduction for OpenCL.

To address the test oracle problem of complex software
systems (including compilers), McKeeman et al. [22] coined
the term of differential testing, which is a form of random
testing. In particular, differential testing needs two or more
comparable compilers and determines whether some compilers
have bugs by comparing the results produced by these com-
pilers, which has been widely used to detect various compiler
defects [5], [37], [4]. Le et al. [1], [17], [18] proposed to
generate some equivalent variants for each original C program,
which determines whether a compiler has bugs by comparing
the results produced by the original program and its variants.
This technique is called Equivalence Modulo Inputs, which has
three instantiations: Orion [1], Athena [17], and Hermes [18].
Tao et al. [38] proposed to test compilers by constructing
metamorphic relations, e.g., the equivalent relation. Boussaa et
al. [39] proposed NOTICE, a component-based framework for
non-functional testing of compilers according to user require-
ments. Furthermore, Chen et al. [3] conducted an empirical
study to compare mainstream compiler testing techniques (i.e.,
RDT, DOL and EMI), and Sun et al. [40] conducted a study
to analyze the characteristics of the bugs in GCC and LLVM.

Different from these approaches, our work addresses an-
other important problem in compiler testing, i.e., the test
efficiency problem. It is time-consuming to detect compiler
bugs, which is a common problem of the existing compiler
testing techniques. As the efficiency problem is quite serious
to compiler testing, our work targets at accelerating compiler
testing.

B. Test Prioritization

In the literature, there is a considerable amount of research
on test prioritization [6], [21], [7], [41], [42], [43], [44], [45],
[46], [47], [48], [49], [50], [9], which can be mainly classified
into four groups. The first group focuses on the criterion used
in test prioritization, including structural coverage criterion [6],
[7], [8], [51], the probability of exposing faults [52], dataflow
coverage [53] and system model coverage [54]. The second
group focuses on the algorithms used in test prioritization,
including greedy algorithms (i.e., total and additional strate-
gies [6]) and many meta heuristics algorithms [21], [55].
The third group focuses on the evaluation of existing test
prioritization techniques [6], [56], [57], [58], [59], [60], [61],
including measurement on the effectiveness of test prioriti-
zation techniques and the influence of some factors in test
prioritization. The fourth group focuses on constraints that
affect test prioritization, e.g., time constraints [57], and the
work in this group investigates the influence of the constraints
and prioritization techniques specific to some constraints [41],
[62], [63], [59], [64]. In this group, time-aware prioritization
approaches [59], [64], [65] also utilize execution time of test

cases. They use the execution time collected from a previous
version in regression testing, while our work predicts the
execution time of new test programs for the current version
by training a time model.

Similar to existing work on test prioritization, our work
targets at prioritizing test cases that are more likely to re-
veal bugs so as to accelerate compiler testing. However, as
discussed in Section V-A, most test prioritization approaches
are based on coverage information and cannot be applied
to accelerate compiler testing. Recently, Jiang et al. [11]
proposed an adaptive random prioritization technique, which
prioritizes the execution order of test cases based on only
test inputs rather than coverage information. This approach
is motivated by adaptive random testing [66], [67], which is
a test generation technique to spread the test inputs evenly
in the input domain. Chen et al. [12] proposed a text-vector
based prioritization approach, which transforms each test case
into a text-vector by extracting corresponding tokens. The two
approaches may be adopted to accelerate compiler testing, but
in our study their acceleration effectiveness is not satisfactory
and in many cases they even decelerate compiler testing. In this
paper, we propose a learning-to-test approach to accelerating
compiler testing, which achieves good and stable acceleration
performance.

C. Software Defect Prediction

There is a large amount of research on software defect
prediction [68], [69], [70], [71], [72], [73], [74], [75], [76],
[77], [78], [79], which predicts defect-prone programs (and
code modules) by training classifiers based on the features
extracted from historical defective code. Different from defect
prediction, our work targets at predicting the bug-revealing
probabilities of test programs, not the defect-proneness of test
programs themselves.

VII. CONCLUSION

In this paper, we propose the idea of learning to test, which
utilizes the characteristics of existing test cases that trigger
bugs. Based on this idea, we develop LET, a learning-to-test
approach to accelerating C compiler testing. This approach
has two processes: learning and scheduling. In the learning
process, LET identifies a set of features of bug-revealing test
programs and trains a capability model and a time model. In
the scheduling process, LET ranks new test programs based on
the two models. We evaluate our approach using two compiler
testing techniques (i.e., DOL and EMI), two subjects (i.e.,
GCC and LLVM) and two application scenarios (i.e., cross-
compiler scenario and cross-version scenario). Our experimen-
tal results demonstrate that LET accelerates C compiler testing
significantly in all settings.

VIII. ACKNOWLEDGMENT

This work is supported by the National Key R&D Pro-
gram of China under Grant No.2016YFB1000801, and the
National Natural Science Foundation of China under Grant
No. 61672047, 61522201, 61421091, 61272089.

REFERENCES

[1] V. Le, M. Afshari, and Z. Su, “Compiler validation via equivalence
modulo inputs,” in Proceedings of the 35th Conference on Programming
Language Design and Implementation, 2014, p. 25.

[2] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding
bugs in c compilers,” in Proceedings of the 32nd Conference on
Programming Language Design and Implementation, 2011, pp. 283–
294.

[3] J. Chen, W. Hu, D. Hao, Y. Xiong, H. Zhang, L. Zhang, and B. Xie, “An
empirical comparison of compiler testing techniques,” in Proceedings of
the 38th International Conference on Software Engineering, 2016, pp.
180–190.

[4] V. Le, C. Sun, and Z. Su, “Randomized stress-testing of link-time
optimizers,” in Proceedings of the 2015 International Symposium on
Software Testing and Analysis, 2015, pp. 327–337.

[5] C. Sun, V. Le, and Z. Su, “Finding and analyzing compiler warning de-
fects,” in Proceedings of the 38th International Conference on Software
Engineering, 2016.

[6] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Test case
prioritization: an empirical study,” in Proceedings of the International
Conference on Software Maintenance, 1999, pp. 179–188.

[7] S. Elbaum, A. Malishevsky, and G. Rothermel, “Prioritizing test cases
for regression testing,” in Proceedings of the International Symposium
on Software Testing and Analysis, 2000, pp. 102–112.

[8] J. A. Jones and M. J. Harrold, “Test-suite reduction and prioritization
for modified condition/decision coverage,” in Proceedings of the Inter-
national Conference on Software Maintenance, 2001, pp. 92–101.

[9] D. Hao, L. Zhang, and H. Mei, “Test-case prioritization: achievements
and challenges,” Frontiers of Computer Science, vol. 10(5), pp. 769–777,
2016.

[10] J. Chen, Y. Bai, D. Hao, L. Zhang, L. Zhang, and B. Xie, “How do
assertions impact coverage-based test-suite reduction?” in Proceedings
of the 10th International Conference on Software Testing, Verification
and Validation, 2017, to appear.

[11] B. Jiang and W. K. Chan, “Input-based adaptive randomized test case
prioritization: A local beam search approach,” Journal of Systems and
Software, vol. 105, pp. 91–106, 2015.

[12] J. Chen, Y. Bai, D. Hao, Y. Xiong, H. Zhang, L. Zhang, and B. Xie,
“Test case prioritization for compilers: A text-vector based approach,”
in Proceedings of the 9th International Conference on Software Testing,
Verification and Validation, 2016, pp. 266–277.

[13] J. Dai and Q. Xu, “Attribute selection based on information gain ratio in
fuzzy rough set theory with application to tumor classification,” Applied
Software Computing, vol. 13, no. 1, pp. 211–221, 2013.

[14] Y. K. Jain and S. K. Bhandare, “Min max normalization based data
perturbation method for privacy protection,” International Journal of
Computer & Communication Technology, vol. 2, no. 8, pp. 45–50, 2011.

[15] J. C. Platt, “Fast training of support vector machines using sequential
minimal optimization,” Advances in kernel methods, pp. 185–208, 1999.

[16] C. E. Rasmussen, “Gaussian processes in machine learning,” in Ad-
vanced lectures on machine learning, 2004, pp. 63–71.

[17] V. Le, C. Sun, and Z. Su, “Finding deep compiler bugs via guided
stochastic program mutation,” in Proceedings of the 2015 International
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, 2015, pp. 386–399.

[18] C. Sun, V. Le, and Z. Su, “Finding compiler bugs via live code mu-
tation,” in Proceedings of International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, 2016, pp. 849–
863.

[19] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The weka data mining software: an update,” ACM SIGKDD
explorations newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[20] D. Hao, L. Zhang, L. Zang, Y. Wang, X. Wu, and T. Xie, “To be
optimal or not in test-case prioritization,” IEEE Transactions on Software
Engineering, vol. 42, no. 5, pp. 490–505, 2015.

[21] Z. Li, M. Harman, and R. Hierons, “Search algorithms for regression
test case prioritisation,” IEEE Transactions on Software Engineering,
vol. 33, no. 4, pp. 225–237, 2007.

[22] W. M. McKeeman, “Differential testing for software,” Digital Technical
Journal, vol. 10, no. 1, pp. 100–107, 1998.

[23] J. Chen, Y. Bai, D. Hao, L. Zhang, L. Zhang, B. Xie, and H. Mei,
“Supporting oracle construction via static analysis,” in Proceedings of

the 31st International Conference on Automated Software Engineering,
2016, pp. 178–189.

[24] A. F. Donaldson and A. Lascu, “Metamorphic testing for (graphics)
compilers,” in Proceedings of the 1st International Workshop on Meta-
morphic Testing, 2016, pp. 44–47.

[25] C. Lidbury, A. Lascu, N. Chong, and A. F. Donaldson, “Many-core com-
piler fuzzing,” in Proceedings of the 36th Conference on Programming
Language Design and Implementation, 2015, pp. 65–76.

[26] K. V. Hanford, “Automatic generation of test cases,” IBM Systems
Journal, vol. 9, no. 4, pp. 242–257, 1970.

[27] R. L. Sauder, “A general test data generator for cobol,” in Proceedings
of the 1962 spring joint computer conference, 1962, pp. 317–323.

[28] F. Sheridan, “Practical testing of a c99 compiler using output compari-
son,” Software: Practice and Experience, vol. 37, no. 14, pp. 1475–1488,
2007.

[29] C. Lindig, “Random testing of c calling conventions,” in Proceedings of
the 6th international symposium on Automated analysis-driven debug-
ging, 2005, pp. 3–12.

[30] E. Nagai, H. Awazu, N. Ishiura, and N. Takeda, “Random testing of c
compilers targeting arithmetic optimization,” in Workshop on Synthesis
And System Integration of Mixed Information Technologies, 2012, pp.
48–53.

[31] E. Nagai, A. Hashimoto, and N. Ishiura, “Scaling up size and number of
expressions in random testing of arithmetic optimization of c compilers,”
in Workshop on Synthesis And System Integration of Mixed Information
Technologies, 2013, pp. 88–93.

[32] M. H. Pałka, K. Claessen, A. Russo, and J. Hughes, “Testing an opti-
mising compiler by generating random lambda terms,” in Proceedings
of the 6th International Workshop on Automation of Software Test, 2011,
pp. 91–97.

[33] Y. Chen, A. Groce, C. Zhang, W.-K. Wong, X. Fern, E. Eide, and
J. Regehr, “Taming compiler fuzzers,” in Proceedings of the 34th
Conference on Programming Language Design and Implementation,
vol. 48, no. 6, 2013, pp. 197–208.

[34] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang, “Test-case
reduction for c compiler bugs,” in Proceedings of the 33rd Conference
on Programming Language Design and Implementation, vol. 47, no. 6,
2012, pp. 335–346.

[35] C. Zhao, Y. Xue, Q. Tao, L. Guo, and Z. Wang, “Automated test
program generation for an industrial optimizing compiler,” in 2009 ICSE
Workshop on Automation of Software Test, 2009, pp. 36–43.

[36] M. Pflanzer, A. F. Donaldson, and A. Lascu, “Automatic test case
reduction for opencl,” in Proceedings of the 4th International Workshop
on OpenCL, 2016, p. 1.

[37] Y. Chen, T. Su, C. Sun, Z. Su, and J. Zhao, “Coverage-directed
differential testing of jvm implementations,” in PLDI, 2016, pp. 85–99.

[38] Q. Tao, W. Wu, C. Zhao, and W. Shen, “An automatic testing approach
for compiler based on metamorphic testing technique,” in Proceedings
of the 2010 Asia Pacific Software Engineering Conference, 2010, pp.
270–279.

[39] M. Boussaa, O. Barais, B. Baudry, and G. Sunyé, “Notice: A frame-
work for non-functional testing of compilers,” in Proceedings of the
2016 IEEE International Conference on Software Quality, Reliability &
Security, 2016.

[40] C. Sun, V. Le, Q. Zhang, and Z. Su, “Toward understanding compiler
bugs in gcc and llvm,” in ISSTA, 2016, pp. 294–305.

[41] H. Park, H. Ryu, and J. Baik, “Historical value-based approach for
cost-cognizant test case prioritization to improve the effectiveness of
regression testing,” in Proceedings of the International Conference on
Secure Software Integration and Reliability Improvement, 2008, pp. 39–
46.

[42] V. Jagannath, Q. Luo, and D. Marinov, “Change-aware preemption
prioritization,” in Proceedings of the 2011 International Symposium on
Software Testing and Analysis, 2011, pp. 133–143.

[43] P. Tonella, P. Avesani, and A. Susi, “Using the case-based ranking
methodology for test case prioritization,” in Proceedings of the 22nd
International Conference on Software Maintenance, 2006, pp. 123–133.

[44] B. Busjaeger and T. Xie, “Learning for test prioritization: an industrial
case study,” in Proceedings of the 24th International Symposium on
Foundations of Software Engineering, 2016, pp. 975–980.

[45] H. Srikanth, S. Banerjee, L. Williams, and J. Osborne, “Towards the
prioritization of system test cases,” Software Testing, Verification and
Reliability, vol. 24, no. 4, pp. 320–337, 2014.

[46] Á. Beszédes, T. Gergely, L. Schrettner, J. Jász, L. Langó, and
T. Gyimóthy, “Code coverage-based regression test selection and priori-
tization in webkit,” in Proceedings of the 2012 28th IEEE International
Conference on Software Maintenance, 2012, pp. 46–55.

[47] X. Qu, M. B. Cohen, and K. M. Woolf, “Combinatorial interaction
regression testing: A study of test case generation and prioritization,”
in Proceedings of the 2007 IEEE International Conference on Software
Maintenance, 2007, pp. 255–264.

[48] J. A. Jones and M. J. Harrold, “Test-suite reduction and prioritization for
modified condition/decision coverage,” IEEE Transactions on Software
Engineering, vol. 29, no. 3, pp. 195–209, 2003.

[49] Q. Luo, K. Moran, and D. Poshyvanyk, “A large-scale empirical com-
parison of static and dynamic test case prioritization techniques,” in
Proceedings of 24th ACM SIGSOFT International Symposium on the
Foundations of Software Engineering, 2016, p. to appear.

[50] Q. Gao, J. Li, Y. Xiong, D. Hao, X. Xiao, K. Taneja, L. Zhang, and
T. Xie, “High-confidence software evolution,” Science China Informa-
tion Sciences, vol. 59(7), pp. 071 101:1–071 101:19, 2016.

[51] H. Mei, D. Hao, L. Zhang, L. Zhang, J. Zhou, and G. Rothermel, “A
static approach to prioritizing junit test cases,” Transactions on Software
Engineering, vol. 38, no. 6, pp. 1258–1275, 2012.

[52] S. Elbaum, A. Malishevsky, and G. Rothermel, “Test case prioritization:
a family of empirical studies,” IEEE Transactions on Software Engi-
neering, vol. 28, no. 2, pp. 159–182, 2002.

[53] L. Mei, Z. Zhang, W. K. Chan, and T. H. Tse, “Test case prioritization
for regression testing of service-oriented business applications,” in
Proceedings of the International World Wide Web Conference, 2009,
pp. 901–910.

[54] B. Korel, L. Tahat, and M. Harman, “Test prioritization using system
models,” in Proceedings of the International Conference on Software
Maintenance, 2005, pp. 559–568.

[55] B. Jiang, Z. Zhang, W. K. Chan, and T. H. Tse, “Adaptive random test
case prioritization,” in Proceedings of Automated Software Engineering,
2009, pp. 257–266.

[56] M. Qu, M. B. Cohen, and K. M. Woolf, “Combinatorial interaction
regression testing: a study of test case generation and prioritization,” in
Proceedings of the International Conference on Software Maintenance,
2007, pp. 255–264.

[57] S. Elbaum, A. Malishevsky, and G. Rothermel, “Incorporating varying
test costs and fault severities into test case prioritization,” in Proceedings
of the International Conference on Software Engineering, 2001, pp. 329–
338.

[58] A. Malishevsky, J. R. Ruthruff, G. Rothermel, and S. Elbaum, “Cost-
cognizant test case prioritization,” Department of Computer Science and
Engineering, University of Nebraska, Tech. Rep., 2006.

[59] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S. Roos,
“Time aware test suite prioritization,” in Proceedings of the International
Symposium on Software Testing and Analysis, 2006, pp. 1–11.

[60] H. Do and G. Rothermel, “Using sensitivity analysis to create simplified
economic models for regression testing,” in Proceedings of the Interna-
tional Symposium on Software Testing and Analysis, 2008, pp. 51–62.

[61] ——, “An empirical study of regression testing techniques incorporating
context and lifecycle factors and improved cost-benefit models,” in Pro-
ceedings of the Symposium on the Foundations of Software Engineering,
Nov. 2006, pp. 141–151.

[62] S.-S. Hou, L. Zhang, T. Xie, and J. Sun, “Quota-constrained test-
case prioritization for regression testing of service-centric systems,” in
Proceedings of the International Conference on Software Maintenance,
2008, pp. 257–266.

[63] J. M. Kim and A. Porter, “A history-based test prioritization technique
for regression testing in resource constrained environments,” in Proceed-
ings of the International Conference on Software Engineering, 2002, pp.
119–129.

[64] L. Zhang, S. Hou, C. Guo, T. Xie, and H. Mei, “Time-aware test-case
prioritization using integer linear programming,” in Proceedings of the
International Symposium on Software Testing and Analysis, 2009, pp.
213–224.

[65] D. You, Z. Chen, B. Xu, B. Luo, and C. Zhang, “An empirical study
on the effectiveness of time-aware test case prioritization techniques,” in
Proceedings of the 2011 ACM Symposium on Applied Computing, 2011,
pp. 1451–1456.

[66] T. Y. Chen, H. Leung, and I. Mak, “Adaptive random testing,” in
Advances in Computer Science-ASIAN 2004. Higher-Level Decision
Making, 2005, pp. 320–329.

[67] T. Y. Chen, F.-C. Kuo, R. G. Merkel, and T. Tse, “Adaptive random
testing: The art of test case diversity,” Journal of Systems and Software,
vol. 83, no. 1, pp. 60–66, 2010.

[68] A. E. Hassan, “Predicting faults using the complexity of code changes,”
in Proceedings of the 31st International Conference on Software Engi-
neering, 2009, pp. 78–88.

[69] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking clas-
sification models for software defect prediction: A proposed framework
and novel findings,” Transactions on Software Engineering, vol. 34,
no. 4, pp. 485–496, 2008.

[70] X.-Y. Jing, S. Ying, Z.-W. Zhang, S.-S. Wu, and J. Liu, “Dictionary
learning based software defect prediction,” in Proceedings of the 36th
International Conference on Software Engineering, 2014, pp. 414–423.

[71] T. Lee, J. Nam, D. Han, S. Kim, and H. P. In, “Micro interaction
metrics for defect prediction,” in Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of
Software Engineering, 2011, pp. 311–321.

[72] A. Meneely, L. Williams, W. Snipes, and J. Osborne, “Predicting failures
with developer networks and social network analysis,” in Proceedings
of the 16th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2008, pp. 13–23.

[73] F. Zhang, Q. Zheng, Y. Zou, and A. E. Hassan, “Cross-project defect
prediction using a connectivity-based unsupervised classifier,” in Pro-
ceedings of the 38th International Conference on Software Engineering,
2016, pp. 309–320.

[74] R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis of
the efficiency of change metrics and static code attributes for defect
prediction,” in Proceedings of the 30th International Conference on
Software Engineering, 2008, pp. 181–190.

[75] T. T. Nguyen, T. N. Nguyen, and T. M. Phuong, “Topic-based defect
prediction,” in Proceedings of the 33rd International Conference on
Software Engineering, 2011, pp. 932–935.

[76] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano, “On the relative
value of cross-company and within-company data for defect prediction,”
Empirical Software Engineering, vol. 14, no. 5, pp. 540–578, 2009.

[77] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for
eclipse,” in Proceedings of the Third International Workshop on Pre-
dictor Models in Software Engineering, 2007.

[78] S. Wang, T. Liu, and L. Tan, “Automatically learning semantic features
for defect prediction,” in Proceedings of the 38th International Confer-
ence on Software Engineering, 2016, pp. 297–308.

[79] Y. Ma, G. Luo, X. Zeng, and A. Chen, “Transfer learning for cross-
company software defect prediction,” Information and Software Tech-
nology, vol. 54, no. 3, pp. 248–256, 2012.

