
Tare: Type-Aware Neural Program Repair
Qihao Zhu†, Zeyu Sun ‡, Wenjie Zhang†, Yingfei Xiong*† and Lu Zhang†

†Key Laboratory of High Confidence Software Technologies, Ministry of Education (Peking University);
School of Computer Science, Peking University, 100871, P. R. China

‡Zhongguancun Laboratory, 100871, P. R. China
{zhuqh,szy ,zhang wen jie,xiongyf,zhanglucs}@pku.edu.cn

Abstract—Automated program repair (APR) aims to reduce
the effort of software development. With the development of deep
learning, lots of DL-based APR approaches have been proposed
using an encoder-decoder architecture. Despite the promising
performance, these models share the same limitation: generating
lots of untypable patches. The main reason for this phenomenon
is that the existing models do not consider the constraints of code
captured by a set of typing rules.

In this paper, we propose, Tare, a type-aware model for neural
program repair to learn the typing rules. To encode an individual
typing rule, we introduce three novel components: (1) a novel type
of grammars, T-Grammar, that integrates the type information
into a standard grammar, (2) a novel representation of code,
T-Graph, that integrates the key information needed for type
checking an AST, and (3) a novel type-aware neural program
repair approach, Tare, that encodes the T-Graph and generates
the patches guided by T-Grammar.

The experiment was conducted on three benchmarks, 393 bugs
from Defects4J v1.2, 444 additional bugs from Defects4J v2.0, and
40 bugs from QuixBugs. Our results show that Tare repairs 62, 32,
and 27 bugs on these benchmarks respectively, and outperforms
the existing APR approaches on all benchmarks. Further analysis
also shows that Tare tends to generate more compilable patches
than the existing DL-based APR approaches with the typing rule
information.

Index Terms—program repair, neural networks

I. INTRODUCTION

Automated program repair (APR) aims to generate patches
automatically and has been extensively studied in the past
decade. Due to the large search space of patches and the
weak test suites [1], many recent APR tools adopt deep-
learning-based (DL-based) approaches: learning from existing
patches or source code to generate more probable patches
using a neural network [2]–[10]. A newest trend is syntax-
guided generation [4], [6]: the space of the patches is defined
by a context-free grammar, and the generation of a patch is
reduced into a sequence of generation steps, each choosing a
grammar rule for expanding a non-terminal; the neural network
is used to estimate the probabilities of the grammar rules for
each step, and the beam search algorithm [11] is used to
greedily select patches with large probabilities. In this way,
the generated program is ensured to be syntactically correct.
For example, Recoder [6], the state-of-the-art APR approach,
builds a grammar for edit operations, which integrates the Java
grammar for ensuring syntactic correctness, and generates such
operations as patches using a syntax-guided generator.

*Corresponding author.

However, programming languages come with many con-
straints beyond a context-free grammar. For example, a vari-
able must be used after declaration, the type of an argument
should be compatible with the type of a parameter, etc. In
modern programming languages, these constraints are uni-
formly captured by the type system, in the form of a set
of typing rules. Since the neural models are not aware of
the typing rules, syntax-guided generators may generate many
patches leading to untypable code, called untypable patches.
Though these untypable patches can be easily filtered out by
a compiler, having these patches generated inevitably reduces
the performance of the APR approaches. On the one hand, the
beam search algorithm greedily selects a set of candidates (i.e.,
partially generated patches) with the largest probabilities at
each generation step. A neural network unaware of types may
assign higher probabilities to candidates leading to untypable
patches, which may exclude the candidate leading to the
correct patch from the selected candidates. On the other hand,
filtering untypable patches requires time, and fewer typable
patches may be validated within the time limit. Based on
our experiments with existing syntax-guided generators, the
typable rate of the generated patches is only about 30% -
40%, and the correct patch is often excluded from the result
set by the untypable candidates.

A direct idea is to filter out the candidates that would not
lead to a typable patch immediately at each step, as the existing
approach [12]. While this approach is feasible, its effectiveness
is limited. For example, let us assume that in a generation step
we are generating a statement. Since assignments are very
common, a neural network unaware of types may estimate a
high probability for the grammar rule Stmt → Var = Exp.
However, if the local variables and fields are all of Boolean
type, it is actually uncommon to assign an expression to a
Boolean variable. Filtering cannot solve this problem because
assigning to a Boolean variable is still feasible, though being
less likely. Thus, it is important for the neural network to
learn the typing rules and consider types during the probability
estimation.

In this paper, we aim to enable the neural network to learn
the typing rules and be aware of types during inference. We
make the following assumptions: a computation procedure
can be learned by a neural network if (1) the computation
procedure is simple, and (2) the training input should not
contain too much irrelevant information to overwhelm the
neural network. In existing approaches, only faulty programs

and their corresponding patches are used as training set, and
to generate typable patches, the neural network has to learn
the whole type system from the training set, which is probably
too complex for a neural network to learn.

Our insight here is that, while learning the whole type
system is too complex, an individual typing rule is often not
complex and is eligible to learn. For example, let us consider
the following simplified typing rule for assignment.

Γ ⊢ v : D Γ ⊢ t : C C <: D

Γ ⊢ v = t : Void

This rule states that, given a variable v whose type is D
according to a typing context Γ which records the types of
variables from their definitions, an expression t whose type
is C, if C is a subtype of D, we know that the assignment
v = t is well typed, represented by the type Void. To enable
a neural network to learn this typing rule, we need to make
the neural network aware of the input and output of the typing
rule. Basically, there are three relations in the input and the
output: (1) a typing relation : between a sub-AST, e.g., an
expression or a statement, and a type, (2) the typing context
relation Γ between a user-defined element, e.g., a variable,
and a type and (3) the subtyping relation <: between types.
We need to make the three relations available to the neural
network. However, the three relations are huge, and directly
encoding them would overwhelm the neural network.

We observe that, to type check a patch, we only need the
part of the relations associated with the elements in the input
program. For example, if a patch copies to an expression t′

to replace t in v = t, we only need the type of t′, the type
of v, and the subtyping relation between the two types. Our
first technical contribution is a novel graph representation,
T-Graph, that captures both the AST of a program as well as
the part of the three typing relations that are associated with
the program. We attach attributes to the nodes in T-Graph to
represent the types of the related elements and define several
types of edges to represent the typing relations between these
elements. Thus, T-Graph represents the key information to
enable a neural network to learn the typing rules.

While a complete program can be easily converted into a
T-Graph, in the syntax-guided generation [13] we also need to
encode the partially generated program for inferring the gram-
mar rule for the next non-terminal. Such partial programs often
have ambiguous types and cannot be converted to T-Graph.
For example, given a partial program Var = Exp1 + Exp2,
where Var, Exp1, Exp2 are non-terminals yet to be further
generated, we do not know the types of Var because both
strings and numeric values can be added in Java. To address
this problem, our second technical contribution is a novel
form of context-free grammars, T-Grammar, that integrates
the type information into standard grammars. Basically, we
attach a type to each non-terminal symbol to form a set
of new symbols and refine the original grammar with a
grammar carrying type information. For example, instead of
the production rule Exp → Exp + Exp, T-Grammar has the
production rules such as ExpNumeric → ExpNumeric+ExpNumeric

and ExpString → ExpString + ExpString, where Numeric is a
super type for numeric values. In this way, when the neural
network predicts a grammar rule, it also predicts its types,
enabling the construction of T-Graph from partial programs.
To ensure all correct patches can be covered, we ensure that
T-Grammar is an upper approximation of the type system, i.e.,
all typable programs are within the language of T-Grammar.

Based on T-Grammar and T-Graph, our third technical
contribution is a novel type-aware neural program repair
approach, Tare, for the Java programming language. Tare is
built upon Recoder [6], one of the state-of-the-art DL-based
APR approaches. We change the grammar in Recoder into a
T-Grammar, and replace the neural components of Recoder
encoding ASTs with neural components encoding T-Graphs.
To encode T-Graph, which is a heterogeneous graph with
attributes, we combine two neural layers previously designed
for encoding tables [14] and word sequences [15] as a novel
neural component.

Our empirical contribution is a set of experiments eval-
uating the performance of Tare. The experiment is conducted
on three widely-used benchmarks in the existing work. There
are in total 877 bugs, including 393 bugs from Defects4J v1.2,
444 additional bugs from Defects4J v2.0, and 40 bugs from
Quixbugs. Tare successfully repairs 62 bugs on Defects4J v1.2,
which outperforms all the existing APR approaches. On the
other two benchmarks, Tare also achieves best performance
over all the existing APR approaches, 32 bugs with 33.3%
improvement (8 bugs) on Defects4J v2.0 and 27 bugs with
42.1% (8 bugs) improvement on Quixbugs. Furthermore, we
investigate the improvement of Tare on the ranking of the
correct patch and compilable rate of generated patches and find
that: (1) Tare achieves 44.7% improvement over Recoder on
the former metric, and the improvement is higher in complex
programs. (2) Tare outperforms the existing DL-based APR
approaches in compilable rate with an improvement of 9.3-
13.5 percentage points. These results show that Tare has better
effectiveness and generalizability than the existing APR tools.

II. OVERVIEW

A. Motivating Example

In this section, we present a real-world example to motivate
our approach. Figure 1 shows a bug, Cli-25 from the widely-
used benchmark Defects4J. For better illustration, we simplify
the program by renaming some variables. In this example, an
assignment statement is incorrect, and the correct patch is to
replace the right-hand side with a constant value 1.

There are different ways to implement a DL-based APR
for fixing this bug. Let us assume there is a fault localization
approach that correctly localizes the faulty line of code. One
way is to take the faulty line and the surrounding context
(e.g., the faulty method or the faulty file) as input, and train a
neural network to produce a fixed line of code as output [2]–
[4], [8]. Another way is to make a more refined change: train a
neural network to first predict which part needs to be replaced
(the right-hand side of the assignment statement in this case),
and then predict what new content should be generated [6]. A

boolean loc0; double loc1; double loc2;
if(loc2 > loc1)

Untypeable Patches of Syntax-Guided Generator
loc1 = false/loc0/loc3;
double loc3 = 0;

Grammar Rule List:
[Assignment -> L-Expr AssignOp R-Expr, L-Expr -> loc1,
AssignOp -> =, R-Expr -> 1]
T-Grammar Rule List:
[AssignmentNumeric -> L-ExprNumeric AssignOpNumeric R-ExprNumeric,
L-ExprNumeric -> loc1, AssignOpNumeric-> =, R-ExprNumeric-> 1]

R-Expr

Assignment

1

L-Exp

①

② ③ ④

Assignment

R-ExprL-Expr AssignOp

BOperationloc1

Operandl

=

OperandrOperator

AssignOp

loc1 =

⑤

loc2 - 1
AST of the Faulty Statement

AST of the Human-Written Patch

Fig. 1: An Example in Defects4J (Cli-25)

syntax-guided generator [12], [15] repeatedly selects grammar
rules to expand non-terminals in an AST to generate code.
For example, to generate the fixed line of the human-written
patch, a syntax-guided generator starts with the non-terminal
Assignment, and generates the grammar rule list shown in
the central part of Figure 1. Here we assume that the syntax-
guided generator always expands the leftmost, lowermost non-
terminal first.

To generate the list, a neural network is used to estimate
the probabilities of the grammar rules to be used in each step
and the beam search algorithm is used to find the rule list
with the largest probability. The algorithm keeps a pool of
candidate (partial) ASTs up to a predefined size n (called
beam width). Initially the pool contains one AST with only
the root symbol Assignment. In each iteration, the algorithm
picks the candidate with the highest probability in the pool
and returns the candidate if it is complete. Otherwise, the
algorithm selects an unexpanded non-terminal in the AST
and asks the neural network to estimate the probabilities. The
neural network takes the generated partial AST, the position of
the non-terminal to be expanded, and the context code as input,
and produces the probabilities of the grammar rules to expand
the non-terminal as output. For example, in the last step of
the generation, the neural network takes the AST of the partial
program loc1 = R-Expr, the position of R-Expr, and the
context code as input, and estimates the probabilities of all
grammar rules for expanding R-Expr. Finally, the algorithm
calculates the probabilities of all expanded candidates, and
keeps n most probable ones in the pool from these newly
expanded candidates and the unselected existing candidates.

When types are not considered, the neural network may
incorrectly assign high probabilities to untypable candidates
or candidates leading to untypable patches, excluding correct
patches from the pool. Figure 1 shows some examples of
untypable patches generated, which either replace the right-

Fig. 2: Subtyping Lattice of the Abstract Types

hand side with literals of incorrect types, or variables that are
either undeclared, or of incorrect types.

B. Novel Components of Tare

As mentioned in the introduction, Tare introduces three
novel components to guide the neural network to be aware
of types. We introduce them one by one.

T-Grammar. As mentioned, T-Grammar refines the original
grammar by introducing types. In T-Grammar, a non-terminal
has the form NT , where N is a non-terminal in the original
grammar, and T is a type, indicating that NT generates all
sub ASTs of type T generable by N . However, since modern
programming languages such as Java have a huge number of
types, directly using these types would form too many non-
terminals overwhelming the neural network. To avoid this,
we use abstract types instead of concrete types of the target
programming language. In our current implementation in Java,
we use five types as shown in Figure 2, where General

is the type of everything, Null is the type for the special
literal null, Numeric, String and Boolean are the types of
numeric, string, and Boolean expressions, respectively.

We extend the type system of Java programming language
to ensure every sub-AST of a typable program has an abstract
type. We also convert the original grammar rules into T-
Grammar rules such that all typable programs that can be gen-
erated by the original grammar rules can still be generated by
the T-Grammar rules. For example, the central part of Figure 1
shows a list of T-Grammar rules corresponding to the original
grammar rule list. By attaching types, T-Grammar rules also
exclude some untypable programs. For example, there is no
grammar rule ExpGeneral → ExpGeneral + ExpGeneral, because
+ can only be used with either numeric values or string values,
and thus this avoids the generation of 1+true for instance.

By simply replacing the grammar with the corresponding T-
Grammar in a syntax-guided generator, we force the generator
to produce types for the partial AST, and also prevent some
of the untypable programs not in the space of T-Grammar.

T-Graph. Existing syntax-guided generators treat programs
either as a list of grammar rules or as a list of tokens. T-
Graph represents the program in a graph with important type
information attached. As described in Introduction, T-Graph
preserves the three typing relations of the input program:
(1) the typing relation between a sub-AST and a type, (2)
the typing context relation between a user-defined element
and a type, and (3) the subtyping relations between types.

Figure 3 shows an example of T-Graph of the faulty statement.
In T-Graph, nodes are connected through different types of
edges, and may also contain attributes. The difference between
attributes and the ID of the node is that the value of the
attribute is available to the neural network while ID is only
used to distinguish different nodes. Because we use an adjacent
matrix to represent the edges, we allow only one type of edges
between a pair of two variable nodes.

As shown in the figure, we assign each node in the AST
with a type attribute to represent the typing relation. For
example, the node OperandrNumeric has an assigned attribute,
Numeric. Here the type attribute still uses abstract type but
not concrete types because we may need to encode partially
generated AST, where the concrete types cannot be inferred.
While the abstract type attribute seems to be duplicated with
the type attached to the non-terminal, it is still important to
have this attribute because (1) the terminals does not have the
type annotation, and (2) when the non-terminals are encoded
in a neural network through one-hot encoding, the original
symbol and the attached type are not distinguishable. This
attribute helps preserve the type information.

To represent the typing context relation, we introduce ad-
ditional nodes (shown in ellipses), named variable nodes, for
the user-defined elements (e.g. variables and parameters) in
the context. For example, there are three variables nodes in
the graph, which represent “loc0”, “loc1”, and “loc2”. There
is an orange line between the use of a variable and the variable
node, and each variable also has an attribute of its type. In this
way, we associate each use of a variable with its type. Here
we use the concrete types because the variable definitions are
obtained from the context but not generated.

Finally let us consider the subtyping relation between types.
Since the subtyping relation is mainly used to determine
whether the value of type A could be assigned to a variable
of type B or not, we introduce three types of edges between
variables to capture whether an assignment is possible. The
bidirectional InCompatible edge indicates that the value of
neither variable can be assigned to the other variable. The
unidirectional Compatible edge indicates the source variable
can be assigned to the target variable. The bidirectional
SameType edge indicates the two variables are of the same
type. For example, “loc1” and “loc2” have the SameType edge
while “loc1” and “loc0” have the InCompatible edge. Please
note that Compatible is not equivalent to subtyping because the
autoboxing mechanism in Java allows assignments between
two types that do not have the subtyping relation, e.g., from
Integer to int. In other words, having two Compatible edges
between two variable nodes in different directions is different
from having a bidirectional SameType edge.

T-Graph Encoder. T-Graph is not the first graph repre-
sentation of code for neural processing. Multiple existing
approaches [16]–[18] have used a graph to represent code and
a graph neural network (GNN) to encode the graph. However,
T-Graph differs in two aspects compared with the graphs
used in existing approaches. (1) The graphs used in existing
approaches are homogeneous, in the sense that the edges

Assignment_N

R-Expr_NL-Expr_N AssignOp_N

1=

Numeric

Numeric

L-Expr_N AssignOp_N

loc1 =

Assignment_N
Numeric

Numeric Numeric
R-Expr_N

BOperation_N

Operandl_N

Numeric

NumericNumeric

Numeric

Numeric

Numeric

Numeric

loc1 loc2 loc0

Operator_N Operandr_N

Numeric

Numeric Numeric Numeric

loc1
Numeric

loc2
Numeric

-
Numeric

1
Numeric

double double Boolean
T-Graph of Patches

T-Graph of Faulty Statement

Anode-Anode
Vnode-Anode

SameType

Anode
Vnode

InCompatible

R-Expr_N R-ExprNumeric

loc3

double

Anode-Vnode

Fig. 3: T-Graph of the Example

Assignment

R-ExprL-Expr AssignOp

1loc1 =

L-Expr_N AssignOp_N

loc1 =

Assignment_N

Numeric

Numeric Numeric
R-Expr_N

1

Numeric

NumericNumericNumeric

Fig. 4: T-AST of the Faulty Statement in the Motivating
Example

only have one type. However, a T-Graph is heterogeneous,
where the edges have different types. (2) The graphs in
existing approaches do not have attributes on nodes, while
the nodes in a T-Graph have attributes. GNN supports neither
the heterogeneous edges nor the attributes of nodes. Therefore,
we have to find a new way to encode the graph.

To encode a T-Graph, we adapt two neural components
from existing approaches on encoding tables [14] and word
sequences [15] to process heterogeneous graph and graph
with attributes, respectively. First, we adapt the relation-
aware attention layer proposed by Wang et al. [14] to encode
heterogeneous graphs. Different from the GNNs, this layer
computes the node embedding with not only the embedding
of the neighbors but also the corresponding edge embedding,
and thus different types of edge have different influences.
Second, we adapt the gating layer proposed by Sun et al.
[15] to combine the attributes of each node. It first converts
the attributes into real-value vectors and then integrates these
vectors with the corresponding node embeddings. Combining
these two layers as well as a standard linear layer, we have
an encoder for T-Graph. By replacing the existing encoders
for (partial) code in a syntax-guided code generator with the
T-Graph encoder, we guide the syntax-guided generators to
learn typing-rules and be ware of types during inference.

III. T-GRAMMAR

A. Abstract type system

As mentioned, we use an abstract type system instead of
the original concrete type system so as not to overwhelm the
neural network. Formally, an abstract type system consists of
a set of abstract types, a subtyping relation between abstract
types, and a type inference procedure, which, given an AST
of a typable program in the original type system, assigns an
abstract type to each sub-AST. We have introduced in Section
2 our abstract type system for Java, whose types and the
subtyping relation are shown in Figure 2. Below we discuss
several implications of this definition.

First, the definition requires that all typable programs in
the original type system are still typable in the abstract type
system. One way is to make the abstract type system an
abstraction of the original type system, by designing a function
mapping the original types to the abstract types. Yet more
refined types are also possible. For example, in our abstract
type system, the Null type is a refinement of the original type
system, where in Java null is typed as other nullable types
based on the context.

Second, the definition requires that every sub-AST has a
type, even for those does not have a type in the target language.
For example, the non-terminal AssignOp (appeared in the
motivating example) could generate assignment operators such
as =, +=, and /=, which do not have a type in Java. A
standard way to handle this is to give all such sub-ASTs the
type General, but more refined types can be assigned for
specific cases. In our current abstract type system, we assign
type T to an operator if all of its operands have type T . For
example, operator += has type String in statement s+="a",
has type Numeric in statement a+=1, but would never have
type Boolean in any statement.

Third, the definition requires that each sub-AST is assigned
only one type. In a classic type system, because of the
existence of the subtyping relation, an expression usually has
multiple types, a minimal type (e.g., String) and all its super
types (e.g., Object). From the perspective of a classic type
system, this requirement is equivalent to requiring that all sub-
ASTs have a minimal type. It is easy to see that our abstract
type system for Java satisfies this property: (1) The null

literal has the minimal type Null. (2) There is no intersection
between the types Numeric, Boolean, and String except for
the null literal, and thus for any sub-AST other than null

that has one of the three types, the type is also minimal. (3)
All other sub ASTs have the minimal type of General.

We call an AST with abstract type attached a T-AST.
Figure 4 shows an example T-AST.

B. T-Grammar and its properties

Based on the abstract type system, we proceed to define
T-Grammar. T-Grammar attaches types to the non-terminals
in the original grammar, and modifies the grammar rules to
(1) include all typable programs, and (2) exclude untypable
programs as many as possible. Formally, let G = (N,Σ, R, S)

a context-free grammar where N is a set of non-terminals, Σ
is a set of terminals, R is a set of grammar rules, S is a start
symbol. Let T be an abstract type system. A T-Grammar based
on G and T is a tuple (NT ,Σ, RT , S), where NT and RT

are the smallest sets satisfying the following conditions.
(1) For any nonterminal n in N and any abstract type t in

T , we have nt ∈ NT .
(2) For any original grammar rule N → A1 A2 . . . Ak

in R, if there exists an application of the original rule in
any typable program, where the sub-ASTs corresponding to
N,A1, A2, . . . , Ak in this application have the abstract types
T, T1, T2, . . . , Tk, respectively, we have that the grammar
rule NT → A1

T1
A2

T2
. . . Ak

Tk
in RT . Here Ai can be

a non-terminal or a terminal. We define Ai
T as Ai when

Ai is a terminal. For example, there are grammar rules
AssignOpString → += and AssignOpNumeric → += because
+= can be typed as String or Numeric as analyzed above,
but there is no grammar rule AssignOpBoolean → +=.

(3) S is included in NT . For any abstract type t in T ,
S → St is included in RT .

We observe that this T-Grammar includes all typable pro-
grams in the original grammar. This is because (1) all the
original typable programs are still typable in the abstract type
system, (2) the second rule considers all possible applications
of a grammar rule in all typable programs, and (3) the third
rule ensures to generate the start symbol of any type.

The converted T-Grammar also excludes some untypable
programs, as we consider only the minimal abstract types
when converting the grammar rules. For example, there is no
grammar rule AssignOpGeneral → /=, as operator /= is only
applicable to Numerics.

IV. T-GRAPH

In this section, we will formally introduce the detailed
structure of T-Graph. T-Graph can be defined as a tuple
G = ⟨V, E , ϕ⟩, where V denotes the vertexes in the graph,
E ⊆ V × V denotes the edges representing the relations and
ϕ : E −→ R denotes an edge mapping function where R
denotes the sets of the predefined edge types. We define the
T-AST of the faulty code as Gast = ⟨Vast, East⟩, and the user-
defined elements in the context as Vvar. We also use the T-
Graph of the faulty statement in Figure 3 to better illustrate
this process.

A. Node

We first introduce the composition of the nodes in G. The
nodes of G mainly consist of two types of nodes, AST nodes
and variable nodes. Formally, the set of the nodes can be
defined as V = Vast ∪ Vvar.

1) AST Node: The first part of the nodes comes from Vast,
the nodes of Gast. We name this type of node as Anode. We
preserve the name of the nodes in T-AST as the ID in T-
Graph. Each Anode has two attributes in our design. First, to
represent the type information of each renamed symbol, each
Anode also has a type attribute. Second, since several syntax-
guided generators [4], [6] allow to copy a subtree of the faulty

TABLE I: Edges in T-Graph

Information Node x Node y Edge Label Description

Syntax Anode Anode

Parent-Child x is the Parent node of y
Child-Parent x is the child node of y
Left-Sibling x is the left sibling node of y
Right-Sibling x is the right sibling node of y

Context Anode Vnode Declaration-Var x is the declaration of y
Use-Var x uses variable y

Context Vnode Anode Var-Declaration y is the declaration of x
Var-Use y uses variable x

Type Vnode Vnode
Same-Type x has the same type as y
Compatible-Type x is unidirectional compatible with y
InCompatible-Type x is unidirectional incompatible with y

method, we also assign each AST node a Boolean copyable
attribute, indicating whether the AST depends on variable in
the local context and cannot be copied to other places. As
shown in Figure 3, the nodes represented as rectangles are the
AST nodes and are connected by several directed edges.

2) Variable Node: The second part of the nodes is variable
nodes, Vvar, named as Vnode. Each Vnode represents a user-
defined element (i.e. variable and parameter) in the context. We
use the name of the variable as the ID in T-Graph. Each Vnode
has two attributes. The first attribute indicates whether this
variable can be accessed from the faulty location. The second
attribute is the type of the variable. As shown in Figure 3, the
nodes shown as ellipses are the variable nodes and represent
the local variables in the context. Each node also is attached
with a corresponding type attribute.

B. Edges

To represent the relations of the typing rule, we define
a set of the predefined edge types, R. Each edge has a
type in R to represent the relation. There are four subsets
of edges, Anode-Anode, Vnode-Anode, Anode-Vnode, and
Vnode-Vnode. Formally, the set of the edges can be defined
as E = EA-A ∪ EA-V ∪ EV-A ∪ EV-V. Table I shows the detailed
information of these edges.

1) Anode-Anode: The first subset is the original edges
in T-AST, which contains grammatical constraints of the
code. Since the edges in the tree are directed, we define
four edge types to represent these relations. As shown in
Table I, they are Parent-Child, Child-Parent, Left-Sibling,
and Right-Sibling, respectively. The former two denote
the depth information while the latter two denote the
breath information. Formally, these edges can be defined
as Eplus

ast = {⟨via, vja⟩|via is the left or right sibling of vja ∨
⟨via, vja⟩ ∈ East∨⟨vja, via⟩ ∈ East}. As shown in Figure 3, Anode
“L-Expr N” and Anode “loc1” has the edges (Parent-Child,
Child-Parent) between them in Figure 4.

Except these edges, inspired by existing work [19], [20],
we also integrate G with the data flow graph (DFG) of
the program. The graph represents the dependency between
the variables, in which nodes represent variables and edges
represent where the value of each variable comes from. Such
code structure provides crucial code semantic information for
the model to extract the constraints in the code. We define
the DFG of the program as Gdfg = ⟨Vdfg, Edfg⟩, especially
Vdfg ⊆ Vast. Since DFG is a directed graph, we define two
types of edges for G. If node x has a directed edge pointing

to node y, x will have a Variable-Use edge connecting to
y in G. In the meantime, y will have a Variable-Def edge
connecting to x. Formally, these edges can be defined as
Eplus

dfg = {⟨via, vja⟩|⟨via, vja⟩ ∈ Edfg∨⟨vja, via⟩ ∈ Edfg}. Finally, the
edges between Anodes can be defined as EA-A = Eplus

ast ∪ Eplus
dfg .

For example, the edges between Anode “loc1” and Anode
“loc2” denote that the variable “loc1” use the value of the
variable “loc2” after this assignment, which come from the
DFG of the faulty statement.

2) Vnode-Anode: This subset of edges represents the re-
lations between AST nodes and variables in the context.
We assume that the root of the subtree of the declaration
statement of variable y is x. Then, x will have a Var-
Declaration edge connecting to y in G. Similarly, x has
a Use-Var connecting to y when the terminal x in T-AST
uses variable y. Formally, this subset can defined as EV-A =
{⟨via, v

j
var⟩|via declares or uses variable vjvar}. As shown in

Figure 3, Vnode “loc1” has an edge pointing to Anode “loc1”
since the Anode uses the corresponding variable.

3) Anode-Vnode: This subset of edges is the reverse of
Vnode-Anode. Thus, the set can be defined as EA-V =
{⟨vivar, vja⟩|⟨via, v

j
var⟩ ∈ EV-A}. As shown in Figure 3, Anode

“loc1” also has an edge pointing to Vnode “loc1”.
4) Vnode-Vnode: This type represents the subtyping re-

lations between variables. Specifically, for all variables, we
define three types of relations: (1) the variables have the same
type, (2) the variables have unidirectional compatible types
but not the same type (3) the variables are unidirectional
incompatible. Thus, each two variable nodes are connected by
one of these edges. As Figure 3 shown, there are 6 edges con-
necting variables nodes in the graph, which contain the type
compatible information between these variables. Formally,
the set can be defined as EV-V = {⟨vivar, v

j
var⟩|⟨vivar, v

j
var⟩ ∈

Vvar × Vvar ∧ i ̸= j}.

V. T-GRAPH ENCODER

In this section, we will introduce the detailed structure of
the proposed T-Graph encoder, which is shown in Figure 5. As
shown, the encoder consists of a relation-aware attention layer
and a gating layer to process T-Graph. First, T-Graph will be
converted into three parts, node sequence, attribute sequence,
and relation matrix, for the encoder during preprocessing.
Then, the relation-aware attention layer integrates the node
embeddings with the relation matrix to learn the typing relation
in the faulty code. Finally, the gating layer incorporates the
attribute embeddings with the corresponding node embeddings
processed by the first layer. We will first describe the detail
of the preprocessing for T-Graph.

Preprocessing. To encode the graph-shaped input, it first
needs to be converted into sequences with a linearization
method. Here, we adopts Pre-order Traversal [21] lineariza-
tion for Tare, which significantly shortens the length of the
sequences. Under this setting, T-Graph G is represented as
three sequences.

• Node traverse sequence. To encode the node tokens, we
first adopt the node traverse sequence to represent the

Embedding Layer

Relation-Aware Attention

Gating Layer

b1 … bn …v1 vn
an+1ana1 an+m……

e1,1 e1,m+n

e1,m+ne1,m+n

e1,m+n em+n,m+n

…
…

…
… ……

Attribute Sequence

Node Sequence

T-Graph Relation
Matrix

Linear Layer

V
Relation EmbeddingAttriute Embedding

Syntax-Guided Generator

N× stack

T-Grammar
Rule Selection

Faulty
Code

Embedding Layer

T-Graph of Partial
Generated Code

Expand

Proposed
Encoder

Inputs Linearized Sequence

Node Assignment_N L-Expr_N loc1 AssignOp_N = R-Expr_N BOperation_N
Operandl_N loc2 Operator_N - Operandr_N 1 loc0 loc1 loc2

Attribute(type) Numeric Numeric Numeric Numeric Numeric Numeric Numeric Numeric Numeric
Numeric Numeric Numeric Numeric Boolean double double

Relation Matrix
(partial) Assignment_N

L-Expr_N AssignOp_N

Ass L-Expr Op

Ass 0 1 1
L-Expr 2 0 3

Op 2 4 0

0:No Rel
1:Parent-Child
2:Child-Parent
3:Left-Ad
4:Right-Ad

Node Embedding

T-Grammar

Fig. 5: Neural Model of Tare

sequential information. It consists of two parts. The first
part is the pre-order traverse of T-AST and the second
part is the sequence of the variables. We assume G has
m AST nodes and n variable nodes. Thus, the length of
this sequence is m+ n.

• Attribute sequence. As described in section IV-A, each
node in T-Graph is annotated with several attributes. To
integrate this information, we represent these attributes
as a sequence of vectors following the order of the node
traverse sequence.

• Relation matrix. We represent the edges as the adjacency
matrix, E ∈ R(m+n)×(m+n). We assign each type of edge
listed in Table I with an unique ID in E. For example,
ei,j denotes the ID of the edge from the i-th node to the
j-th node. Especially, if there are no edge from the i-th
node to the j-th node, we set ei,j = 0.

Figure 5 shows the input sequences of T-Graph in Figure
3. Given these sequences, we then adopt a relation-aware
attention based encoder to process.

Relation Encoding. Inspired by Wang et al. [14], we
adopt the relation-aware attention based on the standard self-
attention [22] to encode the relation matrix. The relation-aware
attention layer first uses multi-head attention to capture the
long dependency of the sequence. To integrate the relations
between nodes, this layer computes the attention weights based
on both node embeddings and edge embedings. For the input
node token embeddings, c1, c2, · · · , cn, this component out-
puts a sequence of output vectors with sequential information,
z1, z2, · · · , zn. The computation of the h-th head can be

represented as

w
(h)
i,j =

qiW
(h)
Q (kjW

(h)
K + ei,j)

T√
d/H

z
(h)
i,j =

n∑
j=1

σ(w
(h)
i,j)(vjW

(h)
V + ei,j)

(1)

where WQ,WK ,WV ∈ Rd are the parameters of three full-
connected layers, d denotes the embedding size, σ denotes the
scoring function (e.g. softmax or hardmax), H is the number
of the heads, and the ei,j term denotes the embedding of the
corresponding edge. With the layer, the encoder can learn to
represent the typing relations via trainable parameters.

Attribute Encoding. To incorporate the attribute infor-
mation of each node with the node embeddings, we use a
Gating Mechanism [15], [23]. First, since each node in T-
Graph has multiple attributes, we combine the embeddings of
the attributes into a real-valued vector via a full-connected
layer. In particular, we use separate layers to process the AST
nodes and the variable nodes. Then, as used in the existing
work [6], [15], [23], we use the gating layer to incorporate
the attribute embeddings with the node embeddings. Here, we
use the node embeddings to decide the weights of these two
embeddings. The computation of the gating layer in i-th head
can be represented as:

αo
i = exp(qT

i k
o
i)/

√
d

αc
i = exp(qT

i k
c
i)/

√
d

hi = (αo
i · vo

i + αc
i · vc

i)/(α
o
i + αc

i)

(2)

where qi,k
o
i ,v

o
i are all computed by a fully-connected layer

over the node embeddings and kc
i , vc

i are computed by another
full-connected layer over the attribute embedding. Then, hi is
combined with output of other heads via a full-connected layer.

1) Linear Layer: Finally, following the structure of Trans-
former [22], we feed the embedding of T-Graph, into two
full-connected layers for linear transformation. The component
yields the output of the mechanism.

In summary, the encoder has N blocks of these three sub-
layers. For the first mechanism, it takes the embeddings of
three sequences as input. For the rest of N -1 mechanisms,
they take the output of the previous mechanism as input.

VI. EXPERIMENT SETUP

In this section, we will introduce the setup of the experiment
for evaluating the effectiveness of Tare. We currently have
implemented Tare in Java programming language.

A. Research Questions

Our experiment aims to answer these research questions:
RQ1: How well does Tare perform compared with the
existing APR tools? To answer this question, we compared
Tare with the existing APR approaches on the widely used
benchmarks, Defects4J v1.2, containing 393 bugs of 6 projects.
RQ2: How well does Tare perform on other APR bench-
marks? To show the generalizability of Tare, we evaluate

TABLE II: Statistics of Dataset

Project Version Bugs Description

Chart V1.0 26 A 2D chart library for Java applications.
Closure V1.0 133 A JavaScript checker and optimizer.
Lang V1.0 64 A host of helper utilities for the java.lang API.
Math V1.0 106 Miscellaneous math-related utilities
Time V1.0 64 Joda-Time is the widely used Java date and time classes.
Mockito V1.2 38 Most popular Mocking framework for unit tests.
Cli V2.0 39 A simple API for presenting a Command Line Interface.
JackSonCore V2.0 26 Core part of Jackson that defines Streaming API.
JacksonDatabind V2.0 112 General data-binding package for Jackson.
JacksonXml V2.0 6 Extension for Jackson JSON processor.
Compress V2.0 47 An API for working with compression and archive formats.
Codec V2.0 18 Simple encoder and decoders for various formats.
Jsoup V2.0 93 The Java HTML parser.
JxPath V2.0 22 A Java-based implementation of XPath 1.0.
Gson V2.0 18 A Java library used to convert Java Objects into JSON.
Csv V2.0 16 A simple interface for reading and writing CSV files.
QuixBugs - 40 A benchmark set based on the Quixey Challenge.

Tare on two additional benchmarks compared with other APR
approaches. One is 444 additional bugs from Defects4J v2.0.
The other one is 40 bugs from QuixBugs.
RQ3: Does Tare improve the accuracy of the generated
patches? To answer this question, we compare Tare with other
APR tools in terms of the ranking of the correct patch on
Defects4J v1.2.
RQ4: Does Tare improve the compilability of generated
patches? To answer this question, we calculate the compilable
rate of the patches generated by several DL-based APR tools
on Defects4J v1.2 and QuixBugs.

B. Dataset

1) Training Dataset: Tare adopts a neural model to generate
the patch and thus needs history program patches to train the
parameters. For fair comparison, we used the dataset collected
by Zhu et al. [6], which contains 103,585 valid patches in Java.
We randomly split the dataset into two parts: 80% for training,
20% for validation following Recoder.

2) Test Dataset: To evaluate the effectiveness of Tare,
we conducted an experiment on three benchmarks, including
Defects4J v1.2 [24], additional bugs from Defects4J v2.0 [24],
and QuixBugs [25]. Defects4J v1.2 contains 393 real-world
bugs from 6 widely-used open-source projects, which is a
commonly used benchmark to evaluate the performance of
the APR tools. Defects4J v2.0 introduces 444 additional bugs
from 12 projects. QuixBugs contains 40 programs from the
Quixey Challenge translated into Java. Each contains a one-
line defect, along with passing and failing test cases. Table II
shows the details of these benchmarks.

C. Independent Variables

1) Fault Localization: We evaluate Tare under two fault
localization settings. In the first setting, we used a spectrum-
based algorithm, Ochiai, implemented by GZoltar [26] fol-
lowing the previous approaches [6], [27]–[29]. In the second
setting, we give the real faulty location to the APR tools known
as perfect fault localization. This setting aims to figure out the
real performance of the tools without the influence of fault
localization techniques, which is extensively used in existing
work [2]–[4], [6], [8].

2) Compared techniques: We compare Tare with several
state-of-the-art APR approaches. (1) Traditional APR tools.
We select 4 commonly-used existing APR tools based on
traditional techniques to compare: CapGen [30], TBar [27],
SimFix [28], Hanabi [12]. (2) DL-based APR tools. With the
development of DL techniques, lots of DL-based APR tools
have been proposed recently. We consider 5 recent models
which have the best performance: CoCoNuT [2], CURE [5],
RewardRepair (RRepair) [7], DLFix [4], and Recoder [6]. In
particular, the former four models all adopt a token-based
decoder structure to generate the patches, while Recoder and
DLFix use a syntax-guided decoder. In addition, Recoder
correctly repairs the highest number of bugs on Defects4J
v1.2 as far as we know. Following the common practice of
the existing approaches [6], [27], [28], all the performances of
the baselines were collected from the existing papers. Since
several tools were only evaluated under one or two settings
used in our paper, for each setting, we select the state-of-the-
art APR tools (with the best recall or precision) which have
been evaluated in the corresponding setting. Furthermore, we
consider two additional baselines. The first one is Recoder-F,
which directly filters out the untypable candidates with basic
type checking during beam search for Recoder. The other
one is Recoder-T, which only replace the orginal grammar
of Recoder with T-Grammar to show the effectiveness of T-
Graph.

3) Patch Validation and Correctness: In our experiment,
Tare generates the patches based on the result of the fault
localization technique. For each suspicious faulty statement,
Tare adopts beam search strategy with size 100 to generate
candidate patches. Thus, we generate 100 patches for each
suspicious statement based on the score. Due to the running-
time limit, we only generate patches for the top-500 suspicious
faulty statements given by the fault localization technique.
After the patches are generated, we execute the patches with
the test suite written by developers until one plausible patch 1

is found. Following the previous work [6], [27], [28], we set
a 5-hour running-time limit for Tare.

The plausible patch is considered as correct when it is
identical or semantically equivalent to the developer-written
patch judged by two authors individually. To alleviate the
potential error in this processing, we also publish all generated
patches for public judgment (details are in Section XI).

4) Implementation: In our current implementation, we di-
rectly adopt the syntax-guided generator, Recoder [6] which
is one of the state-of-the-art APR approaches on several
benchmarks, as the decoder of Tare. We only replace the neural
components for encoding partial code in Recoder with the T-
Graph encoder.

5) Hyperparameter: For the hyperparameters of our model,
we set the number of the encoder iterations N = 5, i.e., the
encoder contains a stack of 5 blocks. The hyperparameters of
other neural components were set following the configuration
of Recoder. We also applied dropout after each block of

1A patch that passes all the test cases.

TABLE III: Comparison without Perfect Fault Localization

Project Bugs CapGen SimFix TBar DLFix Hanabi Recoder Recoder-F Recoder-T Tare

Chart 26 4/4 4/8 9/14 5/12 3/5 8/14 9/15 8/16 11/16
Closure 133 0/0 6/8 8/12 6/10 -/- 13/33 14/36 15/31 15/29
Lang 64 5/5 9/13 5/14 5/12 4/4 9/15 9/15 11/23 13/22
Math 106 12/16 14/26 18/36 12/28 19/22 15/30 16/31 16/40 19/42
Time 26 0/0 1/1 1/3 1/2 2/2 2/2 2/2 2/4 2/4
Mockito 38 0/0 0/0 1/2 1/1 -/- 2/2 2/2 2/2 2/2

Total 393 21/25 34/56 42/81 30/65 28/33 49/96 52/101 54/116 62/115

P(%) - 84.0 60.7 51.9 46.2 84.8 52.5 51.5 46.6 53.9

In the cells, x/y:x denotes the number of correct patches, and y denotes the number of patches that can pass all the test
cases.

TABLE IV: Comparison with Perfect Fault Localization

Project CoCoNuT CURE RRepair Recoder Recoder-F Recoder-T Tare

Chart 7 10 5 10 10 9 11
Closure 9 14 12 23 24 25 25
Lang 7 9 7 9 10 12 14
Math 16 19 18 19 20 20 22
Time 1 1 1 3 3 3 3
Mockito 4 4 2 2 2 2 2

Total 44 47 45 66 69 71 77

Since several state-of-the-art DL-based APR tools only provide the correct
patches with perfect localization, we do not list the corresponding plausible
patches here.

TABLE V: Comparison on additional benchmarks without
Perfect Fault Localization

Project Bugs TBar Recoder Recoder-F Recoder-T RRepair Tare

Cli 39 1/7 3/3 3/3 4/4 6/- 5/13
Clousre 43 0/5 0/7 0/8 0/6 1/- 0/5
JacksonDatabind 112 0/0 0/0 0/0 0/0 3/- 0/4
Codec 18 2/6 2/2 3/3 3/5 3/- 3/7
Collections 4 0/1 0/0 0/0 0/0 0/- 0/0
Compress 47 1/13 3/9 3/9 4/12 0/- 4/13
Csv 16 0/2 4/4 4/4 4/4 2/ 5/7
JacksonCore 26 0/6 0/4 0/5 0/5 1/- 2/7
Jsoup 93 3/7 7/13 7/13 7/15 4/- 10/16
JxPath 22 0/0 0/4 0/4 0/6 3/- 2/10
Gson 18 0/0 0/0 1/1 1/1 1/- 1/1
JacksonXml 6 0/0 0 0/0 0/0 0/- 0/1

Total 444 8/50 19/46 21/50 23/58 24/- 32/84

Quixbugs 40 -/- 17/17 19/19 19/19 19/- 27/27

The publication of RRepair only reports the correct patches of the
addtional bugs in Defects4J v2.0. Thus we use ’-’ here.

the attention layer, where the drop rate is 0.1. The model
was optimized by Adam with an initial learning rate lr =
0.0001, and scheduled by the early-stop policy. Furthermore,
all experiments are conducted with fixed random seeds to
avoid randomness and guarantee reproducibility.

- int j = 4 * n – 1;

+ int j = 4 * n – false; Recoder

+ int j = 4 * n – 4; Tare

Fig. 6: The Patch for Math-80 in Defects4J.

return foundDigit; }

+if((hasDecPoint || hasExp)){ +return false;} Tare

Fig. 7: The Patch for Lang-24 in Defects4J.

VII. EXPERIMENT RESULT

A. RQ1: Effectiveness of Tare

1) Performance without perfect localization: Table III
shows the performance of Tare without perfect fault localiza-
tion. As shown, Tare substantially outperforms the compared
APR approaches on Defects4J v1.2. Overall, Tare successfully
repairs 62 bugs, 14.8% (8 bugs) more than the runner-up
(Recoder-T). In particular, Tare also achieves an uptick (7.3%)
in terms of the precision compared with Recoder-T. These
results indicate that Tare successfully takes the advantage
of the typing relations to enhance the quality of patches
while Recoder-T just implements the T-Grammar. Figure 6
shows a unique bug repaired by Tare. Recoder generates
an incompatible variable and excludes the correct patch out
of the beam. On the contrary, Tare would not generate the
boolean literal when expanding the non-terminal with Numeric
type. Figure 7 also shows a bug repaired by Tare but not
Recoder-T. As shown, without the type information of the
local variables “hasDecPoint” and “hasExp”, Recoder is not
able to generate the correct conditional statement. The result
denotes the effectiveness of T-Graph of Tare. In addition, we
also can observe that Tare has a lower precision than some
APRs (Capgen, Hanabi). We assume the reason is that Tare
focuses on improving the recall of the current DL-based APR,
while they focuses on improving the precision. Furthermore,
as shown in the Table II, Tare has a similar precision to other
APR tools that repair more than 30 bugs on Defects4J v1.2.
We believe such precision is acceptable in practice and the
small difference between different approaches is not important
because many approaches [31]–[33] have been proposed to
handle false positives, and could reduce at least half of the
false positives.

Figure 8 shows the detailed analysis of the complementary
for Tare and other state-of-the-art APR tools, Recoder, DLFix,
TBar, and Simfix. As shown, Tare repairs 9 unique bugs
compared with these approaches on Defects4J v1.2. This

Fig. 8: Degree of Complementary.

TABLE VI: Comparison on Ranking of Correct Patch

Project Recoder Tare

Metric Max Min Avg Max Min Avg

Chart 708 1 172.5 503 1 132.1
Closure 1782 7 545.1 467 18 213.8
Lang 645 2 242.5 338 2 142.3
Math 919 1 251.2 761 1 183.7
Time 1995 846 1420.5 1248 582 915
Mockito 30 16 23 29 3 16

Total 1995 846 368.0 1248 582 203.6

indicates that Tare complements the existing state-of-the-art
APR approaches.

2) Performance with perfect localization: Table IV shows
the performance of several APR tools on Defects4J v1.2 with
perfect fault localization. As shown, Tare also achieves the
best performance, 77 bugs, under this criterion. In particular,
we observe that Recoder additionally handles 3 bugs under
this setting that were repaired by Tare without perfect fault
localization. We assume that Tare gives the correct patch a
higher ranking and makes the patch validated before the time
limit. This indicates that Tare can somehow alleviate the effect
of the fault localization technique.

3) Time Efficiency: We further evaluate the efficiency of
our model. It takes 48 mins for an epoch on two Nvidia
Titan 3090 with batch size 60 for Tare, whereas 53 mins for
Recoder. These two models both are trained for 20 epochs. For
inference, Tare takes 90s in average for each faulty location
with beam size 100, while Recoder takes 120s.

B. RQ2: Generalizability of Tare

As discovered by Durieux et al. [34], “benchmark overfit” is
a common phenomenon for APR tools, especially on Defects4J
v1.2. To show the generalizability of Tare, we further evaluate
Tare on two extra benchmarks, 444 additional bugs from
Defects4J v2.0 and 40 bugs from Quixbugs. Furthermore, we
also use GZoltar to compute the suspicious score for each line
on these benchmarks. Table V presents the results of Tare and
other APR tools. We list serveral state-of-the-art baselines that
have been evaluated on these benchmarks. From the table, we

TABLE VII: Comparison on Compilable Rate

Model Top-30 Top-100 Top-200

SequenceR [3] 33% - -
CoCoNuT [2] 24% 15% 6%-15%
CURE [5] 39% 28% 14%-28%
RRepair [7] 45.3% 37.5% 33.1%
Recoder [6] 43.5% 36.4% 34.2%

Tare 54.6% 48.6% 46.7%

can observe that Tare outperforms the state-of-the-art APR
tools on the benchmarks, with 33.3% (8 bugs) improvement
on additional bugs of Defects4J v2.0 and 42.1% (8 bugs) on
QuixBugs. These results shed light on the generalizability of
Tare. The observation is also expected: Tare is inclined to learn
the typing relations defined by the typing rules via T-Graph,
which is generally useful for all benchmarks.

C. RQ3: Ranking of Correct Patch

In this RQ, to investigate the reason for the improvement,
we calculate the rankings of the correct patch of the bugs
repaired both by Recoder and Tare on Defects4J v1.2. Since
each project has several bugs in Defects4J. Thus, we use the
highest, average, and lowest rankings of the correct patches
among these bugs of different projects.

The detailed results are presented in Table VI. The results
show that Tare almost has better performance than Recoder
on all projects for three metrics except the minimum ranking
of Closure. For the average rankings, Tare achieves 44.7%
improvement over Recoder. Furthermore, we also can observe
that Tare outperforms Recoder by 60.8% on Closure, which
is the highest among all the projects. We assume the reason
is that the code contexts of Closure are more tremendously
complex than other projects. Without the type information,
Recoder tends to generate more untypable patches.

D. RQ4: Compilable Rate of Patches

Finally, to grasp whether Tare tends to generate more
compilable patches, we calculate the compilable rate of the
top-k candidates with perfect fault localization, where k de-
notes the beam size. For sake of fair comparison, we select
k = 30, 100, 200 in our evaluation following RewardRepair [7]
and use the same benchmarks, Defects4J v1.2 and Quixbugs.

Table VII shows the results of the analysis. We directly list
the performances reported in the paper [7] for SequenceR,
CoCoNuT, CURE, and RewardRepair. For Recoder, we re-run
the artifact provided by the authors to calculate the compilable
rate. Notably, Tare is inclined to generate more compilable
patches than the five DL-based approaches. Overall, Tare
achieves 9.3%, 11.1%, 12.5% higher compilable rate than
the previous state-of-the-art tools within Top-30, Top-100
and Top-200, respectively. Recall that the key contribution
of Recoder is a syntax-guided decoder which integrates the
grammatical constraints. This means that Recoder does not
embed typing relations knowledge in the neural network.
RewardRepair introduces a semantic training approach to

help neural models learn the corresponding knowledge via
backpropagation. When the model generates an uncompilable
patch, RewardRepair punishes the candidate via decreasing the
reward during training. On the contrary, Tare directly encodes
the knowledge into the encoder with T-Graph and decodes the
patch with constraints of T-Grammar. We can make another
observation from the table: with the increases of the beam size,
the improvement of Tare increases, too. This also confirms
the effectiveness of encoding the typing rules in the encoder
directly. Favored by this knowledge, the model estimates
higher probabilities for the compilable patches. Thus, the
model tends to preserve more typable candidates in the beam
with the increasing size.

VIII. THREATS TO VALIDITY

Threats to internal validity. A threat to internal validity
is the potential faults in the implementation of our experi-
ments. To alleviate this threat, we mainly used the reported
performance in the paper [2]–[5], [7], [28]–[30], [35]–[37],
[37]–[40] for the existing APR approaches. For the ranking
and the compilable rate of Recoder [6], we re-run the model
provided by the authors. Furthermore, the implementation of
Tare is mainly based on two published models [6], [14] to
avoid potential errors in re-implementation.

Threats to external validity. A threat to external validity
mainly lies in the benchmarks used in our experiment. The
training data for Tare is directly derived from the existing work
[6]. For testing, we use three widely-used evaluated bench-
marks, Defects4J v1.2, Defects4J v2.0, and QuixBugs for Tare.
These results show the effectiveness and generalizability of
Tare. However, the performance of Tare on other benchmarks
[41] is yet unknown. Meanwhile, since our approach was only
implemented on Java, further studies are also needed to apply
our model to other programming languages.

IX. RELATED WORK

Automated Program Repair. Lots of approaches have been
proposed in recent years for automated program repair. Due
to the weak test suite and the large search space, various
techniques have been used to guide the search processing,
including genetic programming [29], manually defined fix
patterns [27], [42], [43], automatically mined fix patterns [10],
[28], [38], [44]–[49], heuristics [50], learning from code or
program synthesis [28], [30], [50]–[53], and semantic analysis
[36], [37], [54]–[59].

Apart from these approaches, a more related serie of work
[2]–[10] adopts the deep learning models for APR. These
approaches mainly use an encoder-decoder architecture and
treat the patch generation as natural language translation.
SequenceR [3] proposes a sequence-to-sequence NMT to gen-
erate the fixed code directly. Different from these approaches,
CODIT [8] uses the same model to predict the code edits for
the faulty code. DLFix [4], CoCoNuT [2] and Cure [5] take the
context of the faulty statement as input and encode it via tree-
based LSTM, CNN, GPT, respectively. Recoder [6] proposes

a syntax-guided decoder to generate edits with placeholder via
the provider/decider architecture.

The recent work, RewardRepair [7] is the most closely
related to Tare, focusing on the low compilable rate of the gen-
erated patches by DL-based APR approaches. RewardRepair
proposes a strategy of semantic training integrating program
compilation and test execution information via reinforce learn-
ing. Different from RewardRepair, Tare directly learns the
typing rules to guide the generation. Thus, Tare also can be
combined with semantic training to boost the performance. We
leave it as the future work.

Graph Representation for Code. For many software anal-
ysis tasks, the graph is the major representation for source
code. Learning a good representation for graphs via neural
models has been researched in recent years. Inst2Vec [16]
proposes to learn the distributed representation of code state-
ments based on contextual data flow. Allamanis et al. [17]
uses a Gated Graph Neural Network (GGNN) to embed a
program’s dataflows for variable renaming and misuses. Lou
et al. [18] also adopts the same neural model to encode the
coverage-based graph for fault localization. DeepSim [60] and
Flow2vec [20] transform the control- and data-flow graph
using a GGNN for method naming. Different from these
approaches, Tare represents the source code as a heterogeneous
graph considering different type relations in code and adopts
a relation-aware attention layer to encode such structure.

X. CONCLUSION

In this paper, we propose Tare, a type-aware neural pro-
gram repair approach. To integrate the typing relations of
an individual typing rule, we represent the faulty code as
a heterogeneous graph structure to represent the program.
Furthermore, we design a novel grammar, T-Grammar, to
combine the typing information into a standard context-free
grammar. Generated with T-Grammar, the generator directly
predicts the type information of the partial generated programs.
Finally, we propose a relation-aware attention-based encoder,
T-Graph Encoder, to embed the type information contained in
T-Graph. We have conducted an extensive experiment on the
widely used benchmarks Defects4J and QuixBugs. The results
show that Tare outperforms the existing APR approaches on all
benchmarks. The further evaluation of correct patches’ ranking
and compilable rate suggests that Tare is able to learn the
typing relations from the graph and tends to generate more
compilable patches.

XI. DATA AVAILABILITY

We have disclosed all the analysis code, generated patches,
and data in https://doi.org/10.5281/zenodo.7029404.

ACKNOWLEDGMENTS

This work is sponsored by the National Natural Science
Foundation of China under Grant Nos. 62161146003, and a
grant from ZTE-PKU Joint Laboratory for Foundation Soft-
ware.

https://doi.org/10.5281/zenodo.7029404

REFERENCES

[1] Z. Qi, F. Long, S. Achour, and M. Rinard, “An analysis of patch
plausibility and correctness for generate-and-validate patch generation
systems,” ser. ISSTA, 2015, pp. 24–36.

[2] T. Lutellier, H. V. Pham, L. Pang, Y. Li, and L. Tan, “Coconut: combin-
ing context-aware neural translation models using ensemble for program
repair,” in ISSTA ’20: 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2020.

[3] M. Tufano, C. Watson, G. Bavota, M. di Penta, M. White, and D. Poshy-
vanyk, “An empirical investigation into learning bug-fixing patches in
the wild via neural machine translation,” in 2018 33rd IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2018, pp. 832–837.

[4] Y. Li, S. Wang, and T. N. Nguyen, “Dlfix: Context-based code
transformation learning for automated program repair,” in Proceedings
of the ACM/IEEE 42nd International Conference on Software
Engineering, ser. ICSE ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 602–614. [Online]. Available:
https://doi.org/10.1145/3377811.3380345

[5] N. Jiang, T. Lutellier, and L. Tan, “Cure: Code-aware neural machine
translation for automatic program repair,” 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE), May 2021.
[Online]. Available: http://dx.doi.org/10.1109/ICSE43902.2021.00107

[6] Q. Zhu, Z. Sun, Y.-a. Xiao, W. Zhang, K. Yuan, Y. Xiong, and
L. Zhang, “A syntax-guided edit decoder for neural program repair,”
in Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ser. ESEC/FSE 2021. New York, NY, USA: Association
for Computing Machinery, 2021, p. 341–353. [Online]. Available:
https://doi.org/10.1145/3468264.3468544

[7] H. Ye, M. Martinez, and M. Monperrus, “Neural program repair
with execution-based backpropagation,” in Proceedings of the 44th
International Conference on Software Engineering, ser. ICSE ’22.
New York, NY, USA: Association for Computing Machinery, 2022,
p. 1506–1518. [Online]. Available: https://doi.org/10.1145/3510003.
3510222

[8] S. Chakraborty, M. Allamanis, and B. Ray, “Codit: Code edit-
ing with tree-based neural machine translation,” arXiv preprint
arXiv:1810.00314, 2018.

[9] R. Gupta, S. Pal, A. Kanade, and S. Shevade, “Deepfix: Fixing common
c language errors by deep learning,” in Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, ser. AAAI’17. AAAI Press,
2017, p. 1345–1351.

[10] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “Semfix:
Program repair via semantic analysis,” in 2013 35th International
Conference on Software Engineering (ICSE), 2013, pp. 772–781.

[11] C. M. U. C. S. Dept, “Speech understanding systems. summary of results
of the five-year research effort at carnegie-mellon university,” cmu, 1977.

[12] Y. Xiong and B. Wang, “L2s: A framework for synthesizing the
most probable program under a specification,” ACM Trans. Softw.
Eng. Methodol., vol. 31, no. 3, mar 2022. [Online]. Available:
https://doi.org/10.1145/3487570

[13] H. Liu, M. Shen, J. Zhu, N. Niu, G. Li, and L. Zhang, “Deep learning
based program generation from requirements text: Are we there yet?”
IEEE Trans. Software Eng., vol. 48, no. 4, pp. 1268–1289, 2022.
[Online]. Available: https://doi.org/10.1109/TSE.2020.3018481

[14] B. Wang, R. Shin, X. Liu, A. Polozov, and M. Richardson,
“Rat-sql: Relation-aware schema encoding and linking for
text-to-sql parsers,” in ACL 2020, June 2020. [Online].
Available: https://www.microsoft.com/en-us/research/publication/
rat-sql-relation-aware-schema-encoding-and-linking-for-text-to-sql-parsers/

[15] Z. Sun, Q. Zhu, Y. Xiong, Y. Sun, L. Mou, and L. Zhang, “Treegen:
A tree-based transformer architecture for code generation,” in The
Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020,
The Thirty-Second Innovative Applications of Artificial Intelligence
Conference, IAAI 2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA,
February 7-12, 2020. AAAI Press, 2020, pp. 8984–8991. [Online].
Available: https://aaai.org/ojs/index.php/AAAI/article/view/6430

[16] T. Ben-Nun, A. S. Jakobovits, and T. Hoefler, “Neural code compre-
hension: A learnable representation of code semantics,” in Proceedings
of the 32nd International Conference on Neural Information Processing
Systems, ser. NIPS’18. Red Hook, NY, USA: Curran Associates Inc.,
2018, p. 3589–3601.

[17] M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning to
represent programs with graphs,” CoRR, vol. abs/1711.00740, 2017.
[Online]. Available: http://arxiv.org/abs/1711.00740

[18] Y. Lou, Q. Zhu, J. Dong, X. Li, Z. Sun, D. Hao, L. Zhang, and
L. Zhang, “Boosting coverage-based fault localization via graph-based
representation learning,” ser. ESEC/FSE 2021. New York, NY, USA:
Association for Computing Machinery, 2021, p. 664–676. [Online].
Available: https://doi.org/10.1145/3468264.3468580

[19] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan,
J. Yin, D. Jiang, and M. Zhou, “Graphcodebert: Pre-training code
representations with data flow,” ArXiv, vol. abs/2009.08366, 2021.

[20] Y. Sui, X. Cheng, G. Zhang, and H. Wang, “Flow2vec: Value-flow-
based precise code embedding,” Proc. ACM Program. Lang., vol. 4,
no. OOPSLA, nov 2020. [Online]. Available: https://doi.org/10.1145/
3428301

[21] Z. Tang, X. Shen, C. Li, J. Ge, L. Huang, Z. Zhu, and B. Luo, “Ast-trans:
Code summarization with efficient tree-structured attention,” in 2022
IEEE/ACM 44th International Conference on Software Engineering
(ICSE), 2022, pp. 150–162.

[22] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proceedings
of the 31st International Conference on Neural Information Processing
Systems, ser. NIPS’17. Red Hook, NY, USA: Curran Associates Inc.,
2017, p. 6000–6010.

[23] Q. Zhu, Z. Sun, X. Liang, Y. Xiong, and L. Zhang, “Ocor: An
overlapping-aware code retriever,” in 35th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2020, Melbourne,
Australia, September 21-25, 2020. IEEE, 2020, pp. 883–894. [Online].
Available: https://doi.org/10.1145/3324884.3416530

[24] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A database of exist-
ing faults to enable controlled testing studies for Java programs,” in
Proceedings of the International Symposium on Software Testing and
Analysis (ISSTA), San Jose, CA, USA, July 23–25 2014, pp. 437–440.

[25] D. Lin, J. Koppel, A. Chen, and A. Solar-Lezama, “Quixbugs: a multi-
lingual program repair benchmark set based on the quixey challenge,”
10 2017, pp. 55–56.

[26] A. Riboira and R. Abreu, “The gzoltar project: A graphical debugger
interface,” in Testing – Practice and Research Techniques, L. Bottaci
and G. Fraser, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 215–218.

[27] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “Tbar: Revisiting
template-based automated program repair,” in Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2019, pp. 31–42.

[28] J. Jiang, Y. Xiong, H. Zhang, Q. Gao, and X. Chen, “Shaping program
repair space with existing patches and similar code,” in International
Symposium on Software Testing & Analysis, 2018, pp. 298–309.

[29] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A
generic method for automatic software repair,” IEEE Transactions on
Software Engineering, vol. 38, no. 1, pp. 54–72, 2012.

[30] M. Wen, J. Chen, R. Wu, D. Hao, and S. Cheung, “Context-aware patch
generation for better automated program repair,” in 2018 IEEE/ACM
40th International Conference on Software Engineering (ICSE), 2018,
pp. 1–11.

[31] X. Liu, M. Zeng, Y. Xiong, L. Zhang, and G. Huang, “Identifying patch
correctness in test-based automatic program repair,” 06 2017.

[32] S. Wang, M. Wen, B. Lin, H. Wu, Y. Qin, D. Zou, X. Mao, and
H. Jin, “Automated patch correctness assessment: How far are we?” in
2020 35th IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2020, pp. 968–980.

[33] H. Ye, M. Martinez, and M. Monperrus, “Automated patch assessment
for program repair at scale,” Empirical Software Engineering,
vol. 26, no. 2, feb 2021. [Online]. Available: https://doi.org/10.1007%
2Fs10664-020-09920-w

[34] T. Durieux, F. Madeiral, M. Martinez, and R. Abreu, “Empirical
Review of Java Program Repair Tools: A Large-Scale Experiment on
2,141 Bugs and 23,551 Repair Attempts,” in Proceedings of the 27th
ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE ’19), 2019.
[Online]. Available: https://arxiv.org/abs/1905.11973

[35] J. Xuan, M. Martinez, F. Demarco, M. Clement, S. L. Marcote,
T. Durieux, D. Le Berre, and M. Monperrus, “Nopol: Automatic repair
of conditional statement bugs in java programs,” IEEE Transactions on
Software Engineering, vol. 43, no. 1, pp. 34–55, 2016.

https://doi.org/10.1145/3377811.3380345
http://dx.doi.org/10.1109/ICSE43902.2021.00107
https://doi.org/10.1145/3468264.3468544
https://doi.org/10.1145/3510003.3510222
https://doi.org/10.1145/3510003.3510222
https://doi.org/10.1145/3487570
https://doi.org/10.1109/TSE.2020.3018481
https://www.microsoft.com/en-us/research/publication/rat-sql-relation-aware-schema-encoding-and-linking-for-text-to-sql-parsers/
https://www.microsoft.com/en-us/research/publication/rat-sql-relation-aware-schema-encoding-and-linking-for-text-to-sql-parsers/
https://aaai.org/ojs/index.php/AAAI/article/view/6430
http://arxiv.org/abs/1711.00740
https://doi.org/10.1145/3468264.3468580
https://doi.org/10.1145/3428301
https://doi.org/10.1145/3428301
https://doi.org/10.1145/3324884.3416530
https://doi.org/10.1007%2Fs10664-020-09920-w
https://doi.org/10.1007%2Fs10664-020-09920-w
https://arxiv.org/abs/1905.11973

[36] J. Hua, M. Zhang, K. Wang, and S. Khurshid, “Sketchfix: A tool for
automated program repair approach using lazy candidate generation,” in
Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2018, pp. 888–891.

[37] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “Avatar: Fixing
semantic bugs with fix patterns of static analysis violations,” in 2019
IEEE 26th International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE, 2019, pp. 1–12.

[38] A. Koyuncu, K. Liu, T. F. Bissyandé, D. Kim, J. Klein, M. Monperrus,
and Y. Le Traon, “Fixminer: Mining relevant fix patterns for automated
program repair,” Empirical Software Engineering, pp. 1–45, 2020.

[39] A. Ghanbari and L. Zhang, “Prapr: Practical program repair via byte-
code mutation,” in 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2019, pp. 1118–1121.

[40] S. Saha et al., “Harnessing evolution for multi-hunk program repair,” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 13–24.

[41] Y. Jiang, H. Liu, N. Niu, L. Zhang, and Y. Hu, “Extracting concise bug-
fixing patches from human-written patches in version control systems,”
in 43rd IEEE/ACM International Conference on Software Engineering,
ICSE 2021, Madrid, Spain, 22-30 May 2021. IEEE, 2021, pp. 686–698.
[Online]. Available: https://doi.org/10.1109/ICSE43902.2021.00069

[42] R. K. Saha, Y. Lyu, H. Yoshida, and M. R. Prasad, “Elixir: Effective
object oriented program repair,” in ASE. IEEE Press, 2017. [Online].
Available: http://dl.acm.org/citation.cfm?id=3155562.3155643

[43] M. Martinez and M. Monperrus, “Astor: A program repair library for
java (demo),” in Proceedings of the 25th International Symposium on
Software Testing and Analysis, ser. ISSTA 2016. New York, NY, USA:
Association for Computing Machinery, 2016, p. 441–444. [Online].
Available: https://doi.org/10.1145/2931037.2948705

[44] F. Long, P. Amidon, and M. Rinard, “Automatic inference of code
transforms for patch generation,” in Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, 2017, pp. 727–739.

[45] J. Jiang, L. Ren, Y. Xiong, and L. Zhang, “Inferring program transfor-
mations from singular examples via big code,” in 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2019, pp. 255–266.

[46] A. Ghanbari, S. Benton, and L. Zhang, “Practical program repair
via bytecode mutation,” in Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2019, pp.
19–30.

[47] J. Bader, A. Scott, M. Pradel, and S. Chandra, “Getafix: Learning
to fix bugs automatically,” Proceedings of the ACM on Programming
Languages, vol. 3, no. OOPSLA, pp. 1–27, 2019.

[48] R. Rolim, G. Soares, L. D’Antoni, O. Polozov, S. Gulwani, R. Gheyi,
R. Suzuki, and B. Hartmann, “Learning syntactic program transforma-

tions from examples,” in 2017 IEEE/ACM 39th International Conference
on Software Engineering (ICSE). IEEE, 2017, pp. 404–415.

[49] F. S. Ocariza, Jr., K. Pattabiraman, and A. Mesbah, “Vejovis: Suggesting
fixes for javascript faults,” in Proceedings of the 36th International
Conference on Software Engineering, ser. ICSE 2014. New York,
NY, USA: Association for Computing Machinery, 2014, p. 837–847.
[Online]. Available: https://doi.org/10.1145/2568225.2568257

[50] Q. Xin and S. P. Reiss, “Leveraging syntax-related code for automated
program repair,” in Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2017,
pp. 660–670.

[51] Y. Xiong, J. Wang, R. Yan, J. Zhang, S. Han, G. Huang, and L. Zhang,
“Precise condition synthesis for program repair,” in 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE). IEEE,
2017, pp. 416–426.

[52] Y. Xiong, B. Wang, G. Fu, and L. Zang, “Learning to synthesize,” in
Proceedings of the 4th International Workshop on Genetic Improvement
Workshop, 2018, pp. 37–44.

[53] F. Long and M. Rinard, “Automatic patch generation by learning correct
code,” in Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, 2016, pp. 298–
312.

[54] S. Mechtaev, J. Yi, and A. Roychoudhury, “Directfix: Looking for
simple program repairs,” in 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, vol. 1. IEEE, 2015, pp. 448–458.

[55] S. Mechtaev, A. Griggio, A. Cimatti, and A. Roychoudhury, “Symbolic
execution with existential second-order constraints,” in Proceedings of
the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2018, pp. 389–399.

[56] X. Gao, B. Wang, G. J. Duck, R. Ji, Y. Xiong, and A. Roychoudhury,
“Beyond tests: Program vulnerability repair via crash constraint extrac-
tion,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 30, no. 2, pp. 1–27, 2021.

[57] L. Chen, Y. Pei, and C. A. Furia, “Contract-based program repair without
the contracts,” in 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 2017, pp. 637–647.

[58] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable multiline
program patch synthesis via symbolic analysis,” in 2016 IEEE/ACM
38th International Conference on Software Engineering (ICSE), 2016,
pp. 691–701.

[59] S. Kaleeswaran, V. Tulsian, A. Kanade, and A. Orso, “Minthint: Auto-
mated synthesis of repair hints,” in Proceedings of the 36th International
Conference on Software Engineering, 2014, pp. 266–276.

[60] G. Zhao and J. Huang, “Deepsim: Deep learning code functional
similarity,” ser. ESEC/FSE 2018. New York, NY, USA: Association
for Computing Machinery, 2018, p. 141–151. [Online]. Available:
https://doi.org/10.1145/3236024.3236068

https://doi.org/10.1109/ICSE43902.2021.00069
http://dl.acm.org/citation.cfm?id=3155562.3155643
https://doi.org/10.1145/2931037.2948705
https://doi.org/10.1145/2568225.2568257
https://doi.org/10.1145/3236024.3236068

	Introduction
	Overview
	Motivating Example
	Novel Components of Tare

	T-Grammar
	Abstract type system
	T-Grammar and its properties

	T-Graph
	Node
	AST Node
	Variable Node

	Edges
	Anode-Anode
	Vnode-Anode
	Anode-Vnode
	Vnode-Vnode

	T-Graph Encoder
	Linear Layer

	Experiment Setup
	Research Questions
	Dataset
	Training Dataset
	Test Dataset

	Independent Variables
	Fault Localization
	Compared techniques
	Patch Validation and Correctness
	Implementation
	Hyperparameter

	Experiment Result
	RQ1: Effectiveness of Tare
	Performance without perfect localization
	Performance with perfect localization
	Time Efficiency

	RQ2: Generalizability of Tare
	RQ3: Ranking of Correct Patch
	RQ4: Compilable Rate of Patches

	Threats to Validity
	Related Work
	Conclusion
	Data Availability
	References

