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ABSTRACT
Pretrained models for code have exhibited promising performance
across various code-related tasks, such as code summarization, code
completion, code translation, and bug detection. However, despite
their success, the majority of current models still represent code as
a token sequence, which may not adequately capture the essence
of the underlying code structure.

In this work, we propose GrammarT5, a grammar-integrated
encoder-decoder pretrained neural model for code. GrammarT5
employs a novel grammar-integrated representation, Tokenized
Grammar Rule Sequence (TGRS), for code. TGRS is constructed
based on the grammar rule sequence utilized in syntax-guided code
generation and integrates syntax information with code tokens
within an appropriate input length. Furthermore, we suggest at-
taching language flags to help GrammarT5 differentiate between
grammar rules of various programming languages. Finally, we in-
troduce two novel pretraining tasks—Edge Prediction (EP), and
Sub-Tree Prediction (STP) to learn syntactic information.

Experiments were conducted on five code-related tasks using
eleven datasets, demonstrating that GrammarT5 achieves state-
of-the-art (SOTA) performance on most tasks in comparison to
models of the same scale. Additionally, the paper illustrates that
the proposed pretraining tasks and language flags can enhance
GrammarT5 to better capture the syntax and semantics of code.
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1 INTRODUCTION
Recently, the field of artificial intelligence has experienced notice-
able advancements, largely driven by the development and deploy-
ment of pretrained models. Pretrained models are trained with self-
supervised tasks over a large corpus of data. In both the domains
of natural language processing [6, 24, 30, 31] and programming
language processing [8, 10, 11, 25, 37, 41, 43], large pretrained lan-
guage models such as T5 [31] and CodeT5 [43] have significantly
outperformed the existing non-pretrained models.

However, most existing pretrained models on programming lan-
guages follow the models on natural languages and treat a program
as a token sequence, i.e., a unique integer ID is assigned for each
token in the training set and a program is represented as a sequence
of such IDs. Different from natural languages, programming lan-
guages have a well-defined syntactic structure and usually follows
a context-free grammar. Representing programs as token sequences
make the syntactic structure implicitly, potentially jeopardizing the
understanding of syntactic structures and permitting the generation
of syntactically incorrect code.

To overcome this problem, multiple existing approaches [29, 35,
36, 44, 46] represent programs as grammar rule sequences. These
approaches assign a unique ID to each grammar rule, parse the
program as an AST, traverse the AST in a certain order (e.g., pre-
order), and record the ID of the grammar rule used to expand each
traversed non-terminal as a sequence to represent the program.

https://doi.org/10.1145/3597503.3639125
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This representation makes the syntactic structure explicit, making
it easier for the model to understand the syntactic structure. When
generating code with this representation, it is ensured that no
syntactic error will be introduced. Consequently, this representation
leads to better performance: models adopting the representation of
grammar rule sequences achieve the state-of-the-art performance
in multiple benchmarks among non-pretrained models [49].

Despite being successful in non-pretrained models, the repre-
sentation of grammar rule sequences has never been used in pre-
training models as far as we are aware. Therefore, in this paper
we ask a question: Can we represent programs as grammar rule
sequences in pretrained models?

Answering this question is not easy, as there are several techni-
cal challenges of adapting this representation to pretrained models.
The first challenge is the big vocabulary. In a typical grammar
of a programming language, some terminals such as ⟨identifier⟩
or ⟨constants⟩ represent many possible lexical tokens, called multi-
value terminals. Existing approaches collect the tokens represented
by multi-value terminals in the training set, and add a grammar
rule for each collected token, such as identifier −→ isodd. However,
in pretraining, the training set is much larger, adding such rules
would lead to a too big vocabulary. Existing pretraining models
use Byte Pair Encoding (BPE) [34] to find a relatively small set of
subtokens whose concatenations could represent the large token
set. However, how to integrate BPE with grammars is still unclear.
The second challenge is heterogeneous grammars. An existing
non-pretrained model deals with only one programming language,
but a pretrained model is typically trained over multiple program-
ming languages, and how to deal with grammars from different
programming languages is yet unknown. The third challenge is
pretraining tasks. Pretraining requires self-supervised tasks for
the training. It is yet unknown what pre-training tasks should be
used when programs are represented as grammar rule sequences.
Especially, since the syntactic structure is explicitly represented,
the pretraining tasks should guide the model to learn the syntactic
structure of the code.

In this work, we propose GrammarT5, a grammar-integrated
encoder-decoder pretrained model for programming languages to
support both code understanding and generation tasks. GrammarT5
uses a variant of grammar rule sequence to represent the code,
called Tokenized Grammar Rule Sequence (TGRS). To address the
first challenge, our first contribution is an integration of BPE
with the representation of grammar rule sequence. BPE uses a set
of sub tokens to represent the original tokens. For example, is
and odd may be used to represent isodd. Then, we can extend the
grammar with the following rules.

identifier → is identifier | odd identifier | · · ·
identifier → 𝜀

However, this grammar introduces an additional node 𝜀 for each leaf
node with a multi-value terminal in the AST, non-trivially increas-
ing the length of the representation. Since compact representation
often leads to better model performance, we rewrite the second
grammar rule by adding a special flag “#” to the last sub-word:

identifier → #odd | #number · · ·

#parity of a number
def isodd(x_number): 

return x_number % 2
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Figure 1: A Python code snippet with its tokenized AST.1

Figure 1 shows an example of the AST in our new grammar,
called tokenized AST. As we can see from the figure, there are five
nodes starting with “#”, indicating that the original representation
will increase the size by 5/19=26%.

To tackle the second challenge, our second contribution is
an empirical study of the effect of combining the grammar rules
of different programming languages. The main consideration is
that different programming languages may have the same grammar
rules and can be shared. Since context-free languages are closed
under union, a possible approach is to build a new grammar by
combining all grammars and sharing grammar rules as much as
possible. While this approach may reduce the total number of gram-
mar rules, it might impose a challenge for the neural model to
learn the syntactical information from this mixed grammar. An-
other possible approach is to share no grammar rules. To achieve
this, we attach a special language flag to non-terminals for each
programming language in order to disable sharing. For instance,
the symbol return_statement in Figure 1 would be modified to re-
turn_statement@py. We empirically compare the two approaches,
and find the latter leads to higher performance.

To overcome the third challenge, our third contribution is
two novel pre-training tasks, Edge Prediction (EP) and Sub-Tree
Prediction (STP) for GrammarT5 to learn the structural information
of the AST. First, EP requires the model to predict the parent node
in the decoder step by step, given the TGRS in the encoder. Second,
STP is inspired by Masked Span Prediction, a denoising task for
token sequences. This task is to predict the randomly masked spans
in the input sequence with arbitrary lengths. Due to its randomness,
the masked spans can potentially destroy the structural integrity
of the input code. Hence, we propose STP, which randomly masks
several sub-trees in the AST. STP requires GrammarT5 to regenerate
the masked sub-tree based on the surrounding context to learn the
code dependency. These two pre-training task guides the model to
capture the syntactic structure of the code effectively.

Our fourth contribution is a series of experiments to thor-
oughly evaluate the performance of GrammarT5 on code-related
tasks. The experiments took in total 50 days, and were conducted

1For better illustration, we omit some identifier nodes in the AST.
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1: module -> function_definition
2:function_definition -> name block parameters
3:name -> identifier 4:block -> return_statement
5:return_statement -> binary_operator
6:binary_operator -> left operator right
7:left -> identifier 8: right -> integer
9:parameters -> identifier

10:identifier -> isodd 11: identifier -> x_number
12:operator -> %       13:integer -> 2

Grammar Rule Sequence:
1,2,3,10,4,5,6,7,11,12,8,13,9,11

1: module@py -> function_definition@py
2:function_definition@py -> name@py block@py parameters@py
3:name@py -> identifier@py 4:block@py -> return_statement@py
5:return_statement@py -> binary_operator@py
6:binary_operator@py -> left@py operator@py right@py
7:left@py -> identifier@p 8:right@py -> integer@py
9:parameters@py -> identifier@py

10: iden -> is 11: iden -> #odd 12: iden -> x 13: iden -> _
14: iden -> #number 15: iden -> #% 16: iden -> #2 

Tokenized Grammar Rule Sequence:
1,2,3,10,11,4,5,6,7,12,13,14,15,8,16,9,12,13,14

Pre-order Traversal

AST

Figure 2: A Python code snippet represented by the grammar rule list and TGRS.

on five tasks over 11 datasets, including two understanding tasks:
code search and comment generation, three generation tasks: code
generation, code translation, and code refinement. To compare with
the SOTA pretrained model of the same scale, CodeT5 [43], we use
a subset of the training set of CodeT5 to train GrammarT5, and set
all hyper-parameters the same as CodeT5-base. The results show
that GrammarT5 achieves state-of-the-art performance on most
of the tasks compared with models of the same scale, including
CodeT5-base.Moreover, GrammarT5 also exhibits a competitive per-
formance compared with CodeT5-large, a 3x larger model. Further
analysis reveals that all the above technical novelties of GrammarT5
enhance its performance.

2 RELATEDWORK
2.1 Pretrained Models for Code
Recent advances in pretrained NLP models have inspired the de-
velopment of numerous pretrained models [1, 8, 10, 11, 19, 25, 37,
41, 43] for programming languages. However, most of these mod-
els represent code as token sequences, potentially hindering the
learning of the syntactic structure and not ensuring the syntactic
correctness during code generation.

Realizing this problem, a few existing models (SynCoBERT [41],
TreeBert [19], and UniXcoder [10]) try to explicitly capture the
syntactic structure by representing code as AST sequences, which
are obtained by traversing the AST in pre-order and recording the
symbol of each traversed node. Since a non-terminal may be ex-
panded by multiple grammar rules, it is hard to recover the tree
structure by recording only the symbol. These approaches add extra
nodes to maintain the tree structure. For example, the sub-tree of
the node name in Figure 1 can be represented as name, identifier,
isodd, bt, bt, bt, where bt is added upon completing each sub-tree
traversal. The program has a length of 48 when represented as an
AST sequence, and has a length of 19 when represented as a gram-
mar rule sequence. The AST representation results in significantly
longer sequences, incurring substantial GPU memory overhead and
potentially lowering model performance. As our evaluation will
show later, GrammarT5 outperforms all these models. Furthermore,
all the existing models use AST representation only in the encoder
and cannot ensure syntactic correctness in code generation.

2.2 Grammar-Integrated Code Generation
Several non-pretrained code generation models [29, 35, 36, 44, 46]
have used grammar rule sequences to represent code. The code
generation task can be modeled as a series of classification problems
of grammar rules, by parsing the programs as AST and decomposing
into several context-free grammar rules.

For the AST of a Python code snippet in Figure 1, We focus
on the sub-tree for the statement "return x_number % 2", where
dotted boxes represent terminal symbols and solid boxes represent
non-terminal symbols. The process of AST-based code generation
involves the iterative expansion of non-terminal nodes using gram-
mar rules until only terminal nodes are left. The first non-terminal
to be expanded is “return_statement”, which is expanded by the
grammar rule “return_statement → binary_operator”. Following a
pre-order traversal, the next node to expand is “binary_operator”,
with the corresponding rule being “binary_operator→ left opera-
tor right”. In this way, the statement is depicted as a list of these
grammar rules. By assigning a unique ID to each grammar rule, we
can represent the statement as a list of these IDs. The number list
representation of the program is illustrated in Figure 2.

The integration of grammar rules boosts the performance. How-
ever, non-pretrained models still lag behind pre-trained ones. Gram-
marT5, inspired by these advances, incorporates novel techniques
to address the challenges of grammer-integrated pretrained models
as outlined in the introduction, and bridge the performance gap.

3 GRAMMART5
GrammarT5 is a grammar-integrated pretrained model for multi-
modal data (programming language (PL) and natural language (NL))
for code understanding and generation. The model is based on
the encoder-decoder framework as T5 [31], and aims to generate
generic representations given the input composed of PL and NL.

3.1 TGRS
As introduced by the syntax-guided decoder [36, 44, 46, 48], each
program can be represented as a sequence of grammar rules. TGRS
first parses the program into an AST and obtains the grammar rules
by traversing the AST. For example, Figure 2 shows the grammar
rule sequence of the code snippet illustrated in Figure 1.

3.1.1 Terminal Tokenization. As shown in Figure 2, the grammar
rule sequence in the existing syntax-guided decoder approaches [36,
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44, 46, 48] directly represents the identifiers in the AST using unique
grammar rules, such as 𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑟 → 𝑖𝑠𝑜𝑑𝑑 . These approaches are
all experimented on small training sets, they are not exposed to the
potential big vocabulary problem. However, when it moves to the
pretraining scenarios with a large code corpus, the big vocabulary
problem will be exposed due to the significant number of identifiers.

Approaches such as those proposed by Karampatsis et al. [20]
and Wang et al. [43] alleviate the issue of representing code as
token sequences by employing the BPE (Byte Pair Encoding) al-
gorithm [28] for pretraining. This algorithm enables words to be
represented as sub-word lists. However, a drawback of this method
is the resulting lack of syntactic information.

To leverage the benefits of both approaches, we tokenize all termi-
nals in the grammar and obtain the tokenized AST via the grammar
extended with new rules for these terminals. For example, the fol-
lowing grammar rules are added for the code in Figure 1, where
each terminal is tokenized into sub-tokens (i.e., “isodd”/“x_number”
is tokenized to “is” and “odd”/“x”, “_”, and “number”).

identifier → is identifier | odd identifier | · · ·
identifier → #odd | #number · · ·
operator → #% integer → #2

To identify the last sub-word, we attach a special flag “#” to it. TGRS
is derived by traversing the tokenized AST in pre-order.

In Figure 2, we illustrate how the “parameters” sub-tree can be
transformed into four distinct rules: parameters→identifier, identi-
fier→x identifier, identifier→_ identifier, and identifier → #number.
Each grammar rule is assigned a unique ID. For example, param-
eters→identifier is represented as 9. Therefore, the code token
"x_number" is represented as a sequence of numbers: 12, 13, 14.
These numbers are subsequently converted into real-valued vectors
through word embedding. These vectors serve as the input for a
neural network. This method effectively compresses the length
of the code input, making it more manageable for the models to
process, while still retaining essential syntactical information.

3.1.2 Language Flag. GrammarT5 is designed to process code from
various programming languages. Different programming languages
may share identical grammar rules. For example, both Java and
Python grammars contain the rule 𝑛𝑎𝑚𝑒 −→ 𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑟 . Directly
combining grammars from different programming languages might
hinder learning the unique syntax information. To investigate the
effect, we conduct an empirical study by training two separate
models. One model uses the grammar of tree-sitter [38], which is a
parser generator tool for all mainstream languages. In the grammars
defined in tree-sitter, many rules are already shared among different
programming languages. The other uses an extended grammar, at-
taching a specific programming language flag to the non-terminals
in the tree-sitter grammars. To prevent introducing too many extra
grammar rules, we only modify the original non-terminals but not
those we introduced for multi-value terminals. As depicted in Fig-
ure 2, each non-terminal in the grammar rule is appended with a
flag @𝑝𝑦 to identify the language. We evaluate the two models on
several downstream tasks, and find the latter one achieves higher
performance. We will clarify these results in the evaluation section.
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Self Attention

Linear Layer

Encoder Attention

Self Attention

Encoder Decoder

#parity of a number
def isodd(x_number): 

return x_number % 2

Python Code
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Figure 3: Overview of GrammarT5.

3.1.3 Format of TGRS. Following the previous work [36, 44, 46,
48], we assign each production rule in the extended grammar a
unique ID as shown in Figure 2. The TGRS is formulated as a list
containing these unique IDs, where each one corresponds to a
particular grammar rule, permitting individual recognition and
reference of each rule.

3.2 Input Representation
Based on TGRS, we describe the input format of the multi-modal
data for GrammarT5, which would take either code or code com-
ment as input. Therefore, there are two formats of the input, PL-only
and NL-PL, depending on whether the code snippet has a corre-
sponding comment. Given a code snippet 𝑐 and its correspondingNL
comment𝑤 , GrammarT5 first transforms 𝑐 into a TGRS, denoted as
𝑐1, 𝑐2, · · · , 𝑐𝑛 . Then, GrammarT5 converts𝑤 into a token sequence,
denoted as𝑤1,𝑤2, · · · ,𝑤𝑚 , using BPE. Finally, GrammarT5 takes
the concatenation of these two parts as input:

𝒙 = {[CLS],𝑤1,𝑤2, · · · ,𝑤𝑚, [SEP], 𝑐1, 𝑐2, · · · , 𝑐𝑛, [SEP]} (1)

where 𝑛 and 𝑚 denote the length of the TGRS and NL token se-
quence, respectively. [CLS] is a special token to identify the se-
quence beginning, and [SEP] is a special token to split two types of
sub-sequences. The NL word sequence is empty for PL-only inputs.

3.3 Model Architecture
Figure 3 displays the model architecture of GrammarT5. Gram-
marT5 adopts an encoder-decoder framework similar to T5 for
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input processing. Each component comprises N transformer blocks
based on a self-attention layer. In particular, the self-attention layer
is the same as the one used in Transformer [40]. This layer inputs
three embeddings, 𝒒, 𝒌, 𝒗, and outputs the combined embeddings,
𝒐, based on the attention score computed by the inputs. In the de-
coder, each block has an additional encoder-decoder attention layer
compared with the encoder. Its computation can be represented as
𝐸𝑛𝑐𝐴𝑡𝑡 = 𝐴𝑡𝑡 (𝒃, 𝒆, 𝒆), where 𝒃 denotes the output of the previous
layer in the decoder and 𝒆 denotes the output of the encoder.

3.4 pretraining Tasks
In this section, we describe the pretraining tasks used in Gram-
marT5. As shown in Figure 3, we pretrain GrammarT5 with 5 self-
supervised tasks over multi-modal data, including three normal
pretraining tasks used in pretrained models and two novel pro-
posed denoising objectives. These tasks are designed to enable
GrammarT5 to learn syntactic and semantic information from ei-
ther PL-only or NL-PL bimodal data.

3.4.1 Masked Span Prediction. Denoising pretraining objective has
been shown to be quite effective for encoder-decoder models, such
as PLBART and CodeT5. This objective typically first poisons the
original sequence with some noising function and then requires
the model to recover the sequence. One of the most used denoising
objectives is masked span prediction (MSP). This task randomly
masks spans in the input sequence with arbitrary lengths. The
model should generate these masked spans based on the corrupt
input. Inspired by this phenomenon, we utilize a similar denoising
objective on the multi-modal data as illustrated in Figure 3.

Specifically, we use the same masked rate, 15%, as the previous
work [31, 43] in our current implementation. Moreover, we control
the average length of the masked length to 3 via uniformly sampling
spans from 1 to 5 tokens. Then, we concatenate these masked spans
as the output separated by several special tokens𝑀𝐴𝑆𝐾𝑖 , where 𝑖
denotes the ID of the span as shown in Figure 3. We represent it as
𝒚 = {𝑦0, 𝑦1, · · · , 𝑦𝑛}. Thus, the loss of the masked span prediction
can be computed as

L𝑀𝑆𝑃 (𝜃 ) =
𝑛∑︁
𝑖=1

−𝑙𝑜𝑔P𝜃 (𝑦𝑖 |𝒙𝑚𝑎𝑠𝑘 ,𝒚𝑡<𝑖 ) (2)

where 𝜃 is the trainable parameters, 𝒙𝑚𝑎𝑠𝑘 is the corrupted input
sequence, and 𝒚𝑡<𝑖 denotes the generated sequence so far.

3.4.2 Generation Masked Prediction. Although the MSP task bene-
fits the code understanding tasks, it differs significantly from code
generation objectives, which require generating thewhole sequence.
To address this issue, we adopt a similar pretraining objective used
in decoder-only models [30] for GrammarT5.

Specifically, we randomly select a pivot location in the input
sequence. Then, given the preceding sequence, GrammarT5 predicts
the succeeding sequence, as shown in Figure 3. In our current
implementation, we ensure that the pivot location falls between
10% and 90% of the input sequence to control the sequence length.
The loss of this pretraining task can be represented as:

L𝐺𝑀𝑃 (𝜃 ) =
|𝑥𝑠𝑢𝑐 |∑︁
𝑖=1

−𝑙𝑜𝑔P𝜃 (𝑥𝑖 |𝒙𝑝𝑟𝑜 , 𝒙𝑠𝑢𝑐𝑡<𝑖 ) (3)

where 𝒙𝑠𝑢𝑐 denotes the succeeding sequence and 𝒙𝑝𝑟𝑜 denotes the
proceeding sequence.

3.4.3 Masked Identifier Prediction. The importance of symbolic
information in programming languages is critical for understanding
code semantics, especially identifiers in code. Accordingly, we adopt
a denoising objective, masking all identifiers in the code following
CodeT5 [43]. We replace all instances of the 𝑖-th identifier in the
input sequence with a unique sentinel token 𝑀𝐴𝑆𝐾𝑖 . Then, we
construct the target sequence by concatenating all unique identifiers
with their sentinel tokens (as depicted in Figure 3). The decoder
then predicts the target sequence in an auto-regressive manner
from the corrupted sequence. The loss is computed as:

L𝐼𝑃 (𝜃 ) =
|𝒚 |∑︁
𝑖=1

−𝑙𝑜𝑔P𝜃 (𝑦𝑖 |𝒙𝑀𝐼 ,𝒚𝑡<𝑖 ) (4)

where 𝒙𝑀𝐼 is the masked input sequence and 𝒚𝑡<𝑖 denotes the
sequence generated so far.

To help GrammarT5 learn the code-specific structural informa-
tion, we propose two additional pretraining tasks: Edge Prediction
and Sub-tree Prediction.

3.4.4 Edge Prediction. When converting a code snippet into a
TGRS, some crucial structural information might get lost. Existing
approaches propose the edge masking technique for encoder-only
models [11, 41] to predict the masked edge via the attention score.
Inspired by these approaches, we propose an edge prediction ob-
jective for GrammarT5. The decoder should predict the parent rule
of each rule based on the given sequence. Here, we use a pointer
network to predict the location of the parent rule in the original
sequence. Especially, we use the parent rule sequence as the input
of the decoder. Then, GrammarT5 should output the location of the
parent rule based on the parent rule sequence as shown in Figure 3.

Given the output of the encoder 𝒐, the output of the decoder 𝒅,
and the parent rule location sequence 𝒍 , the loss is computed as:

L𝐸𝑃 (𝜃 ) =
|𝒙 |∑︁
𝑖=1

−𝑙𝑜𝑔(𝑝𝑖,𝑙𝑖 ), 𝑝𝑖, 𝑗 =
𝑒𝑥𝑝 (𝒐 𝑗𝒅𝑖 )∑𝑛
𝑘=1 𝑒𝑥𝑝 (𝒐𝑘𝒅𝑖 )

(5)

3.4.5 Sub-Tree Prediction. Since code possesses a tree-like struc-
ture, the most prevalent denoising objective, masked span predic-
tion, indiscriminately masks spans within the sequence, potentially
compromising its structural integrity. To address this issue, we
propose a new denoising objective, Sub-Tree Prediction, which
considers the tree structure of the code.

To corrupt the original sequence, this objective randomly masks
several sub-trees and uses a special token 𝑀𝐴𝑆𝐾𝑖 to replace the
TGRS of the sub-trees. In our current implementation, each sub-
tree has a consistent masking rate of 15%. To control the input
and output lengths, we restrict the length of each masked sub-tree
to a range of 10-60 and the total length of the masked sub-trees
constitutes less than 15% of the input sequence’s length. To create
the output sequence, we concatenate all the masked sub-trees with
the special token. The loss for this objective can be computed as:

L𝑆𝑃 (𝜃 ) =
|𝒚 |∑︁
𝑖=1

−𝑙𝑜𝑔P𝜃 (𝑦𝑖 |𝒙𝑆𝑃 ,𝒚𝑡<𝑖 ) (6)
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where 𝒙𝑆𝑃 denotes the masked input. In this objective, the model
needs to reconstruct themasked sub-tree using the context, possibly
aiding it in assimilating the AST’s structural information.

3.4.6 Aggregation. Our pretraining methodology involves cycling
through the five different tasks. At every step, a task is randomly
selected from this pool, ensuring that each task has an equal chance
of being selected and contributes equally to the model’s learning.
The total loss of the pretraining process can be expressed as:

L(𝜃 ) =
5∑︁

𝑖=1
𝑝𝑖L𝑖 (𝜃 ),𝒑 = 𝑂𝑛𝑒𝐻𝑜𝑡 (𝑅𝑎𝑛𝑑𝑜𝑚(1, 5)) (7)

where L𝑖 denotes the five pretraining tasks above and 𝒑 denotes a
one-hot vector based on a random integer.

4 EXPERIMENT SETUP
4.1 Research Question
Our experiment aims to answer these research questions:
RQ1: How well does GrammarT5 perform compared with
the existing pretrained models? To answer this question, we
compare GrammarT5 with the existing pre-trained models on 5
code-related tasks, containing 11 benchmarks.
RQ2: How does TGRS representation affect the model per-
formance? To answer this question, we train a modified model,
where we replace the code representation of CodeT5 with TGRS, for
comparing TGRS and token sequences. Furthermore, we compare
the average length of the code in the pretraining dataset repre-
sented by TGRS with token sequences and AST sequences, the two
representations used in existing pretrained models.
RQ3: How does the inclusion of language flags in grammar
rules affect the model performance? To answer this question,
we train an ablated model with the combined grammar of tree-sitter
without language flags (such that the common rules in different pro-
gramming languages are shared) and compare it with the original
version of GrammarT5 on the benchmarks.
RQ4:Howdo the proposed pre-training tasks affect themodel
performance? To answer this question, we pre-train two ablated
versions of GrammarT5 and compare themwith the original version
of GrammarT5 on the benchmarks.
RQ5: How does GrammarT5 generalize to token sequences?
We assess the adaptability of GrammarT5 to tasks like code comple-
tion, involving unparseable partial code. To answer this question,
we conduct an evaluation of GrammarT5 on code completion and
code translation, treating the unparsable code as token sequence.

4.2 Pretraining Dataset
To eliminate the possible effect of training sets on model perfor-
mance, we choose the training set of CodeT5 [43], a SOTA pre-
trained model at its scale, for fair comparison with CodeT5. How-
ever, due to time and computational resource constraints, we can
only use a subset of the training set to train GrammarT5. Please
note that this setting favors CodeT5, as it is generally believed that
more training data leads to better model performance.

CodeT5 is trained on the CodeSearchNet dataset [16] and the
C and CSharp data from the GitHub code dataset [5]. We choose
Java and Python data from CodeSearchNet and CSharp data from

Table 1: Statistics of the pre-training datasets we used.

CodeSearchNet GithubCode Total

Statistics Java Python CSharp -

# W/ NL 457,380 453,750 422,457 1,333,587
# W/o NL 1,070,265 656,990 581,873 2,309,128

#Rule 963 1105 1913 3981

Total 1,527,645 1,110,740 1,004,330 3,642,715
The line “#W/(o)NL” represents the number of instances with(out) natural lan-
guage descriptions, and “#Rule” refers to the number of grammar rules in the
respective language.

the GitHub code dataset to pretrain GrammarT5. Table 1 shows the
detailed statistics of the utilized pretraining dataset. In total, we use
approximately 3.64 million instances for pretraining GrammarT5.

To transform code into the TGRS, we adopt the tree-sitter [38]
to convert the code into an AST and then extract the corresponding
TGRS. We filter out the code snippets that cannot be parsed into a
valid AST from the original dataset.

4.3 Model Configurations
Following the model configuration of CodeT5 for consistency, we
construct GrammarT5 using the publicly available PyTorch [7]
implementation of T5 in the Huggingface Hub [15]. CodeT5 has
three versions of different sizes. Given the computational resource
constraints, we implement the two smaller versions for GrammarT5:
GrammarT5-small (60M) and GrammarT5-base (220M). All these
models are trained from scratch.

The hyperparameters are directly adopted from CodeT5. During
the pretraining phase, we set the maximum lengths of the source
and target sequences to 512 and 256, the batch size to 2880, and a
peak learning rate of 2𝑒−4 with linear decay. GrammarT5 is pre-
trained using the five self-supervised tasks for 100 epochs in total.
During the fine-tuning phase, we employ a grid search and select the
best hyper-parameters based on the validation set following CodeT5.
We also directly use the trained BPE tokenizer from CodeT5. To
expedite the pre-training process, we employ Accelerate [14] and
DeepSpeed [32] with BF16 to train GrammarT5.

All experiments were conducted on two Dell workstations. Each
workstation is equipped with 300 GB RAM, Intel Xeon CPU E5-2680
v4 @ 2.40 GHz, and eight 24 GB GeForce RTX 3090 GPUs, running
Ubuntu 16.04.6 LTS1. The total experiments took 50 days, with 40
days for pretraining and 10 days for finetuning the model for the
downstream tasks.

4.4 Downstream Tasks and Metrics
To assess the performance of GrammarT5, we adopt CodeXGLUE
benchmark [25], a benchmark dataset and open challenge for code
intelligence. It includes a collection of code understanding and
generation tasks for model evaluation and comparison. For a fair
comparison, we use the same data splits following the previous
work [25] for all these tasks. Moreover, we consider four additional

1The code is available in https://github.com/GrammarT5/GrammarT5.

https://github.com/GrammarT5/GrammarT5
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Table 2: Statistics of the fine-tuning datasets we used.

Code Summarization Code Search NL-Based Code Generation Code Refinement Code Translation

Statistics Sum-Java Sum-Python Adv CosQA CONCODE Django Conala MBPP MathQA-Python Refine-S Refine-M Codetrans

# Train 164,923 251,820 251,820 20,000 100,000 16,000 2,379 374 19208 46,680 52,364 10,300
# Dev 5,183 13,914 9,604 604 2,000 998 - 90 2822 5,835 6,545 500
# Test 10,955 14,918 19,210 500 2,000 1,805 500 500 1882 5,835 6,545 1,000

code generation benchmarks—MBPP [2], Django [27], MathQA-
Python [2], and Conala [45]—to further assess the code genera-
tion capabilities of GrammarT5. The statistics of these datasets are
shown in Table 2. We execute GrammarT5 on these benchmarks
five times, each time using a different random seed, to ensure robust
results. These downstream tasks are divided into two categories,
code understanding and code generation.

4.4.1 Code Understanding. In this part, we focus on two cross-
modal downstream tasks: code summarization and code search.

Code summarization aims to generate a NL description given
a function-level code snippet. The dataset in CodeXGLUE consists
of 6 programming languages. In this experiment, we select the sub-
set of Java and Python to experiment with GrammarT5. Following
the existing work [43], we use the smoothed BLEU-4 (Bilingual
Evaluation Understudy with 4-grams) score [23] to evaluate the
performance. The BLEU score measures the quality of the generated
text via calculating the geometric mean of n-gram precision scores
compared with the ground truth.

Code search aims to identify the most semantically relevant
code snippets based on a natural language functional description.
We conduct experiments on two datasets, namely AdvTest [25] and
CosQA [13]. AdvTest is constructed from the Python sub-set of
CodeSearchNet, filtering the low-quality queries. The test set nor-
malizes Python functions and identifiers to better evaluate model
generalization capabilities. CosQA’s code base is also derived from
the CodeSearchNet corpus, with natural language queries collected
from Microsoft Bing search engine logs. We use the Mean Recip-
rocal Rank (MRR) for evaluation in this task. MRR is a metric for
evaluating ranking tasks. It calculates the average of the reciprocal
ranks of the first correct answers. The higher the MRR, the better
the model is at ranking relevant answers higher.

4.4.2 Code Generation. In code generation, we primarily focus on
three related tasks: natural language code generation, code refine-
ment, and code translation.

Natural-Language-Based Code Generation aims to generate
code snippets from NL descriptions. We employ three commonly-
used benchmarks: Concode [17], Django [27], and CoNaLa [45].
Concode considers NL description and class environment contexts,
Django includes Python code lines from the DjangoWeb framework
paired with NL descriptions, and CoNaLa features NL questions and
Python solutions from Stack Overflow. We evaluate performance
using BLEU-4, exact match accuracy (EM), which is the percentage
of programs that has exactly the same token sequence as the ground
truth; and CodeBLEU (C-BLEU) [33], which considers syntactic and
semantic matches based on data-flow graphs. Additionally, we as-
sess GrammarT5’s program synthesis ability on the MBPP dataset

and the MathQA-Python. The first one contains 974 coding prob-
lems written in Python with 3 unit tests each. The second one is
to generate Python programs to solve mathematical problems de-
scribed in natural language descriptions, where code correctness
is measured based on the execution outputs of the generated pro-
grams. We follow existing work [3, 12] and evaluate GrammarT5
using the pass@k metric, measuring the percentage of problems
solved by generating 𝑘 programs per problem.

Code refinement converts a buggy function into a correct one.
We use two Java benchmarks provided by Tufano et al. [39]. These
two benchmarks have different function lengths. Refine-small has
fewer tokens (< 50 tokens), while Refine-medium has more tokens
(50-100 tokens). We use the same metrics as code generation to
evaluate the performance.

Code translation is to translate the code of one programming
language into another. We utilize CodeTrans dataset [4], which con-
tains the mutually matched pairs of CSharp and Java. We use the
same metrics as code generation for this task. Additionally, we ob-
served that CodeXGlue’s original dataset did not employ language-
specific tokenization when evaluating the BLEU and CodeBLEU
metrics, which may have prevented these metrics from accurately
reflecting the models’ performance. Therefore, we modified the
evaluation scripts for these two metrics.

4.5 Comparison Models
Although some code pre-trained models (CodeGen-6B [26], Incoder-
6B [9]) have shown promising performance, they have a much
larger size (30×) than GrammarT5 and are difficult to fine-tune on
downstream benchmarks due to computation resource limitations.
Thus, we compare GrammarT5 with various pretrained models with
comparable sizes in four categories: encoder-only, decoder-only,
encoder-decoder, and unified-encoder. For encoder-only models,
we consider CodeBERT [8], trained with masked language mod-
eling and replaced token detection; GraphCodeBERT [11], which
uses data flow graphs in code; SynCoBERT [41], which employs
ASTs to learn syntactical information. For decoder-only models,
we consider GPT-C [37], trained on a large corpus of Java, and
CodeGPT-adapted [25], trained on code using parameters of GPT-
2. Besides these two models, we also consider two larger models,
CodeGen-Multi-350M and CodeGen-Multi-2B [26], to figure out
whether GrammarT5 can still outperform the sequence models
with more parameters and data. For encoder-decoder models, we
adopt CodeT5 [43], which uses identifier-aware masking denoising
objectives; PLBART [1], trained on code with a BART [22] archi-
tecture; and CoTexT, trained on code with a T5 [31] architecture;
CodeT5+ [42], trained on more data and training objectives. For
unified-encodermodels, we select Unixcoder [10], which employs
a unified encoder to encompass the functionality of the three model
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Table 3: Results of the code understanding tasks.

Code Summarization Code Search

Sub-Task Java Python Adv CosQA

Model
Metric BLEU BLEU MRR MRR

CodeBERT(110M) 17.25 19.06 27.20 65.90
GraphCodeBERT(110M) 18.93 19.39 35.20 68.55
SynCoBERT(110M) 18.89 18.74 38.30 69.19

GPT-C(110M) 17.18 17.78 24.39 50.32
CodeGPT-adapted(110M) 17.68 18.46 25.97 54.24
CodeGen-multi (350M) 19.41 18.31 35.47 69.22
CodeGen-multi (2B) 20.01 19.31 36.47 70.22

CoTexT(220M) 19.19 19.72 34.13 68.70
PLBART(220M) 18.45 19.30 34.70 65.01
CodeT5-small(60M) 19.92 20.04 30.52 66.74
CodeT5-base(220M) 20.31 20.01 39.30 67.80
CodeT5-large(770M) 20.74 20.57 42.11 71.29
CodeT5+ (220M) 20.31 20.01 43.3 72.7

Unixcoder(110M) 19.42 18.64 41.30 70.10

GrammarT5-small(60M) 19.93±0.10 19.78±0.11 37.24±0.26 70.34 ±0.12
GrammarT5-base(220M) 20.66±0.16 20.21±0.12 44.12±0.10 73.48±0.05

styles mentioned above. Moreover, for NL-based code generation,
we also draw a comparison between GrammarT5-base and the lead-
ing non-pretrained code generation model, TreeGen+Grape [49].

The majority of models are pretrained over CodeSearchNet, ex-
cept for GPT-C, PLBART, CodeT5, CodeGen, and CodeT5+. GPT-C is
pretrained using a massive dataset of 1.2 billion lines of source code
in Python, CSharp, JavaScript, and TypeScript. PLBART utilizes a
larger dataset, comprising 470 million Python and 210 million Java
functions, as well as 47 million natural language posts from Stack
Overflow, outstripping the size of CodeSearchNet. CodeT5 incorpo-
rates additional C-Sharp and C corpus extracted from the GitHub
code dataset to ensure coverage of all programming languages used
in downstream tasks. CodeGen and CodeT5+ adopt a larger training
corpus from the BigQuery dataset, including about 115M code files
from GitHub in 32 programming languages. As mentioned before,
our pretraining set is a subset of CodeT5, minimizing the effect of
the pretraining set when compared with CodeT5.

5 EXPERIMENTAL RESULTS
5.1 RQ1: Effectiveness of GrammarT5
In this section, we compare GrammarT5 with SOTA pretrained
models on code understanding and code generation tasks. If the
model has been evaluated on the benchmarks, we directly use
results from the original papers. Otherwise, we run the pretrained
models on the corresponding benchmarks using the published code.

5.1.1 Code Understanding. Table 3 compares pretrained models on
code summarization and code search tasks. GrammarT5-base out-
performs similar-sized models, achieving the highest MRR scores
of 43.98 in Adv and 73.58 in CosQA for Code Search, indicating
its accuracy in generating code summaries and retrieving relevant
code snippets. GrammarT5-small, despite having fewer parameters,
shows strong performance in both tasks. Note that CodeGen-multi-
2B (decoder-only), despite having 10 times more parameters, still

shows lower performance, highlighting the importance of bidirec-
tional and syntactic information in code comprehension.

5.1.2 Natural-Language-Based CodeGeneration. We compare Gram-
marT5 with decoder-only, encoder-decoder, and unified-encoder
models since encoder-onlymodels are ineffective for natural-language-
based code generation. Table 4 shows that GrammarT5-base out-
performs others across all benchmarks. For Conala and Django
benchmark, GrammarT5 outperforms other models. The Concode
benchmark, requiring function snippet generation from a program-
matic context, is more challenging, but GrammarT5-base model
achieves an improvement of 2.45 points in exact match accuracy
and a 0.4-point increase in CodeBLEU over the previously lead-
ing model, CodeT5-large. While these improvements may appear
small, they are significant given the task’s complexity. Consider
that machine learning models for code generation, such as CodeT5-
large [21], currently seen as SOTA and an improvement over the
existing published approaches, only achieved a 0.35-point increase
in exact match accuracy over CodeT5-base [43]. Further showcasing
our model’s efficiency is GrammarT5-small(60M), which delivers
competitive results despite fewer parameters.

The MBPP dataset, designed for Python program synthesis, aims
to generate comprehensive Python code to pass specified tests.
With its modest size of 374 training sets, MBPP effectively assesses
pretrained models’ generalizability in code generation. As shown in
Table 4, GrammarT5-base significantly outperforms CodeT5-base
by 9.2 points and matches CodeT5-large. The smaller GrammarT5-
small (60M) variant competes well on the MBPP dataset, even
outperforming CodeT5-base, four times its size, by 2 points. In
the MathQA-Python task, GrammarT5 surpasses other pretrained
models, showing a 4.32-point advantage over CodeT5-large. The
GrammarT5-base model particularly performs well in complex
problem-solving, achieving a 63.27% pass rate for problems re-
quiring over 10 reasoning steps, significantly higher than CodeT5-
base’s 21.23%. Despite more training data for CodeGen-multi-2B
and CodeT5+, GrammarT5 consistently performs better, highlight-
ing the importance of syntactic and structural information.

To explore the necessity of representing programs grammatically,
we analyzed the syntactic correctness of 40,000 programs generated
by baseline models of different sizes on the MBPP dataset. Table 6
shows the occurrence of syntax errors in programs generated by
various models. It can be seen that models with a size of 220M have
about 10% or more programs with syntax errors, some of which
even include incorrect Python indentation. Even the 2B model still
has a 6% error rate. Additionally, we found that most of the errors
these models make involve mixing syntax from different languages.
For example, in Python programs generated for the MBPP dataset,
there are many expressions like “if (i == 0 && j == 0 or k == 0):”,
“return (first_char ? (first_char - 1) : (last_char + 1))”, and “if(num >
10){”. Since the token sequence does not explicitly tell the model
the corresponding programming language, while in the grammar
sequence, the language’s syntax is explicitly indicated through
grammar rules. Also, our method, by generating syntax trees, can
never produce programs with incorrect indentation. Lastly, com-
pared to the CodeGen-multi-2B, in the problems where our model
performes correctly and CodeGen does not, 62% of these involve
CodeGen generating syntactically incorrect programs. Therefore,
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Table 4: Results of the natural-language-based code generation tasks.

BenchMark Concode Conala Django MBPP MathQA

Model
Metric BLEU EM C-BLEU BLEU EM BLEU EM pass@80 pass@80

TreeGen + Grape(35M) 26.45 17.60 30.05 20.16 2.80 75.86 77.30 2.00 26.58

GPT-C(110M) 30.85 19.85 33.10 30.32 4.80 72.56 68.91 10.40 58.94
CodeGPT-adapted(110M) 35.94 20.15 37.27 31.04 4.60 71.24 72.13 12.60 55.90
CodeGen-multi (350M) 38.23 21.25 40.57 33.14 5.70 74.45 74.23 23.50 62.10
CodeGen-multi (2B) 41.23 22.25 44.57 40.14 9.40 81.45 84.04 32.50 83.10

CoTexT(220M) 19.19 19.72 38.13 31.45 6.20 75.91 78.43 14.00 58.18
PLBART(220M) 36.69 18.75 38.52 32.44 5.10 72.81 79.12 12.00 57.25
CodeT5-small(60M) 38.13 21.55 41.39 31.23 6.00 76.91 81.77 19.20 61.58
CodeT5-base(220M) 40.73 22.30 43.2 38.91 8.40 81.40 84.04 24.00 71.52
CodeT5-large(770M) 42.66 22.65 45.08 39.96 7.40 82.11 83.16 32.40 83.14
CodeT5+(220M) 34.13 22.16 43.45 38.91 8.00 78.45 85.21 28 85.6

Unixcoder(110M) 38.73 22.65 40.86 36.09 10.20 78.42 75.35 22.40 70.16

GrammarT5-small(60M) 38.08±0.36 21.05±0.36 40.62±0.56 38.18±0.46 8.20±0.36 80.64±0.36 82.27±0.46 25.00±0.86 83.91±0.46
GrammarT5-base(220M) 43.30±0.86 25.10±0.75 45.48±0.35 41.92±0.56 10.40±0.15 82.40±0.56 84.17±0.16 33.00±0.20 87.26±0.32

Table 5: Results of the code refinement and code translation tasks.

Code Refinement Code Translation

Sub-task Small Medium Java to CSharp CSharp to Java

Model
Metric BLEU EM C-BLEU BLEU EM C-BLEU BLEU EM C-BLEU BLEU EM C-BLEU

CodeBERT(110M) 78.41 16.40 78.09 86.94 5.20 83.88 85.23 62.10 86.87 85.81 61.80 85.19
GraphCodeBERT(110M) 79.61 17.3 79.68 87.63 9.10 85.33 86.35 63.10 87.6 86.50 62.10 85.18
SynCoBERT(110M) 78.81 20.32 78.56 88.37 11.17 87.05 87.04 65.10 88.26 87.80 65.20 86.81

GPT-C(110M) 70.06 13.03 71.83 85.41 8.26 82.47 78.90 61.90 81.02 84.48 60.70 83.87
CodeGPT-adapted(110M) 76.07 13.66 77.13 85.28 11.00 84.55 82.11 62.90 83.45 85.68 61.30 84.98
CodeGen-multi (350M) 78.12 20.12 77.23 88.21 13.12 86.84 90.21 66.40 90.24 89.75 65.50 88.65
CodeGen-multi (2B) 79.52 22.12 79.23 89.21 14.12 88.84 91.41 68.40 91.44 89.75 70.60 88.65

CoTexT(220M) 77.28 21.33 77.38 87.13 13.03 85.14 85.57 66.70 86.25 87.21 65.80 87.11
PLBART(220M) 77.02 19.40 77.58 88.48 8.98 86.67 87.95 67.80 88.12 87.19 67.70 87.01
CodeT5-small(60M) 76.23 19.06 76.44 89.20 10.92 87.25 88.23 65.40 88.32 87.22 69.60 87.18
CodeT5-base(220M) 77.43 21.61 77.24 87.64 13.96 87.05 88.55 66.90 88.72 87.03 68.70 86.71
CodeT5-large(770M) 77.38 21.7 77.14 89.22 14.76 87.35 88.89 67.20 88.98 87.20 68.80 87.16
CodeT5+(220M) 78.27 22.18 77.48 88.64 15.13 86.28 91.66 66.20 91.51 89.64 70.20 91.01

Unixcoder(110M) 79.18 19.05 79.45 87.59 13.96 86.23 90.20 67.00 90.15 90.51 70.60 90.32

GrammarT5-small(60M) 76.90±0.15 20.50±0.35 76.98±0.15 89.11±0.35 12.63±0.15 86.86±0.25 91.15±0.15 67.80±0.25 90.29±0.54 89.20±0.25 71.60±0.45 89.49±0.15
GrammarT5-base(220M) 79.39±0.05 22.60±0.26 78.88±0.16 90.57±0.24 15.32±0.40 89.18±0.18 91.31±0.13 69.10±0.26 91.11±0.28 90.53±0.05 73.40±0.12 91.26±0.38

we believe that representing programs through GrammarT5 can
significantly narrow the search space for programs and increase
the probability of generating correct programs.

Table 6: Error Type of MBPP.

Model
Type Syntax

Error
Indentation

Error
Tab
Error

Error
Rate

CodeT5(220M) 5142 389 15 13.87%
CodeT5+(220M) 4392 294 5 11.73%
CodeT5-large(770M) 4123 229 2 10.89%
CodeGen-multi(2B) 2312 92 7 6.03%

GrammarT5 0 0 0 0%

5.1.3 Code-to-Code Generation. We compare GrammarT5 with
other pretrained models on two code-to-code generation tasks:
code refinement and code translation. In the code refinement task,

the large overlap between the source and target code may result in a
high BLEU score but zero exact matches. Consequently, we concen-
trate on the exact match (EM) metric for this task. As illustrated in
Table 5, GrammarT5-base outperforms all baselines on both tasks,
including CodeT5-large. Examining the GrammarT5-small model,
it also demonstrates solid performance across all tasks and metrics
when compared to other models in the same size category.

In the task of code translation, we primarily compare Gram-
marT5 with CodeT5, CodeT5+, and CodeGen-multi, all of which
have been pre-trained on a corpus that includes CSharp. In this
scenario, GrammarT5-base surpasses CodeGen-multi-2B by 0.7 and
2.8 points in the Exact Match (EM) metric across two distinct sub-
tasks. Remarkably, GrammarT5-small, which has only 60 million
parameters, outperforms CodeT5-large, a model with around 770
million parameters, making it nearly 11 times larger.

To sum up, GrammarT5 exhibits better performance on most
metrics and tasks compared with existing models with the same or
smaller sizes. Furthermore, GrammarT5-base achieves very similar,
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or even better performance compared with larger models, CodeT5-
large and CodeGen-multi-2B. Please recall that the other variables
are controlled when compared with CodeT5 models. These results
suggest that representing programs as grammar rule sequences is
beneficial and novel techniques used in GrammarT5 are effective.

Table 7: Ablation study with GrammarT5-small.

Model
BenchMark Adv Java-CSharp CSharp-Java MBPP

MRR EM EM pass@80

GrammarT5-small 37.24±0.26 67.80±0.25 71.60±0.45 25.00±0.86

w/o EP 35.41±0.22 66.80±0.32 71.00±0.16 23.80±0.60
w/o STP 34.03±0.36 66.60±0.22 69.60±0.28 22.40±0.44

w/o LF 35.26±0.21 67.20±0.29 69.40±0.26 23.60±0.36

CodeT5-small 30.52 65.40 68.8 19.20
CodeT5-small + TGRS 33.27±0.12 66.10±0.46 70.10±0.36 22.40±0.13

5.2 RQ2: Effectiveness of TGRS
To underscore the efficacy of TGRS, we trained an ablated CodeT5-
small model, with the sole alteration being the switch in repre-
sentation to TGRS. The key difference between this model and
GrammarT5-small is the pre-training objectives, where this model
uses the same pre-training tasks as the original paper. As portrayed
in Table 7, the ablated model outperforms CodeT5-small across all
benchmarks. These results point to TGRS’s ability to encapsulate
crucial syntactic information in a more organized fashion than to-
ken sequences, thereby bolstering the performance of models that
are pre-trained on this particular representation.

For further understanding the effect of TGRS, we compute the
average input lengths of varying programming languages, as repre-
sented by different representations within the pretraining dataset.
As demonstrated in Table 8, the TGRS representation navigates a
judicious balance between the conciseness of the Token Sequence
and the comprehensive structure of the AST. TGRS provides a more
compact representation than ASTs, which can be beneficial for tasks
requiring efficient processing and reduced memory usage.

Table 8: Average Length of Different Representation.

Representation Java CSharp Python

TGRS 199.20 300.67 242.32
AST 427.66 583.49 476.99
Token Sequence 169.58 247.67 186.27

5.3 RQ3: Effectiveness of Language Flags
As stated in Section 3.1.2, there are two approaches to combining
grammar rules, whether to share or not to share the same produc-
tion rules in different languages. To understand their differences,
we train an ablated version of GrammarT5-small using the original
combined grammar of tree-sitter without language flags.

As shown in Table 7, the performance of GrammarT5-small
without language flags decreases in four tasks. This result suggests
that GrammarT5 is difficult to learn syntactical information from
mixed grammar rules. It is more effective to provide models with
additional language-specific information, such as the language flags
used in this paper, to differentiate between languages.

5.4 RQ4: Effectiveness of Pre-training Tasks
To evaluate the effectiveness of the proposed pre-training tasks,
we conduct an ablation study to examine their contributions. Due
to computational resource limitations, we compare GrammarT5-
small on four selected tasks by ablating the two proposed denoising
objectives: Edge Prediction (EP), and Sub-Tree Prediction (STP).

As depicted in Table 7, the performance declines across all tasks
when each component is removed, demonstrating the importance
of each component in the model. The removal of STP results in the
most substantial decrease in performance across all tasks, indicat-
ing that the sub-tree prediction objective significantly impacts the
model’s effectiveness. The other components, such as EP, and LF,
also contribute to the overall performance, albeit to a lesser extent.
In summary, the ablation study underscores the importance of each
component in achieving the superior performance of GrammarT5.

public static List shunting_yard(ArrayList tokens) {
……
ArrayList rpntokens = new ArrayList(100);
ArrayDeque opstack = new ArrayDeque();
for (Object token: tokens) {

if (Integer.class.isInstance(token)) {
rpntokens.add((Integer) token);

} else {
String operator = (String) token;

while (!opstack.isEmpty() && precedence.get(operator) 
<= precedence.get(opstack.getLast())) {

rpntokens.add(opstack.pop());
}
_mask_line_;

}
}
……

GrammarT5-base:
opstack.push(operator);

Incoder-6B: 
opstack.addLast(operator);

Codegen-6B:
rpntokens.add(operator);              
opstack.push(operator);

ChatGPT:
opstack.push(operator);

GroundTruth:
opstack.push(operator);

Figure 4: SHUNTING_YARD bug in QuixBugs.

Specifically, we observe that the STP pretraining task can be
applied to the code fill downstream task in the zero-shot setting.
Figure 4 illustrates a real bug in the QuixBugs benchmark. The
human-written patch inserts a push operation in the placeholder
“_mask_line_”.We compare GrammarT5-basewith three pre-trained
models capable of generating code in the designated location. As
demonstrated, Incoder-6B and Codegen-6B cannot generate the
correct statement, while GrammarT5-base produces the same code
as ChatGPT, albeit with a much smaller size (220M).We hypothesize
that this objective can assist the model in learning the structural
relationship between the sub-tree and its context. This objective
also endows GrammarT5with the ability to complete the code based
on the context, indicating potential applications of GrammarT5 for
code completion and program repair.

5.5 RQ5: Generalizability to token sequences
We recognize that tasks like code completion often involve partial,
syntactically incorrect code, which is challenging to convert into
TGRS. However, we find that every program token is encapsulated
within the TGRS sequence. We hypothesize that it is plausible to
directly use token sequence for fine-tuning when dealing with tasks
like code completion. To this end, we test the generalizability of
GrammarT5 on the line-level code completion task of CodeXGlue.
We also conduct experiments on text sequences in the code transla-
tion dataset to compare performance differences with TGRS.

In our comparison, as illustrated in Table 9, GrammarT5 demon-
strates its capability by showing similar levels of effectiveness on
both benchmarks when the code is represented through token se-
quences compared with the baselines of comparable size. There
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Table 9: Results with Token Sequences.

Code Completion Code Translation

Sub-Task Python Java Java-CSharp CSharp-Java

Model
Metric EM EM EM EM

GPT-C(110M) 38.37 28.60 61.90 60.70
CodeGPT-adapted(110M) 42.37 30.60 62.90 61.30
CodeGen-multi (350M) 42.47 35.47 66.40 65.50
CodeGen-multi (2B) 46.32 40.47 68.40 70.60

PLBART(220M) 38.01 26.97 67.80 67.70
CodeT5-small(60M) 19.92 20.04 65.40 69.60
CodeT5-base(220M) 36.97 24.80 66.90 68.70
CodeT5-large(770M) 38.74 28.57 67.20 68.80
CodeT5+ (220M) 43.42 35.17 66.20 70.20

Unixcoder(110M) 43.12 32.90 67.00 70.60

GrammarT5-small(60M) 38.93±0.42 28.54±0.24 65.12±0.46 67.21 ±0.23
GrammarT5-base(220M) 43.75±0.22 34.32±0.36 67.12±0.23 70.23±0.25

is also a performance drop on code translation tasks when TGRS
is not used. This disparity suggests that while GrammarT5 is re-
liable and effective in handling tasks involving token sequences,
its integration with TGRS enhances its performance significantly.
Furthermore, this observation opens up intriguing possibilities for
future advancements. The integration of token sequence representa-
tion with TGRS, potentially through the development of additional
pretraining objectives, could lead to more sophisticated and effec-
tive models, which we suggest as a direction for future research.

6 DISCUSSION
Margin Improvement of Small Models.We observe that in some
instances, especially with smaller datasets and models, our tech-
nique may not only appear less promising but can occasionally
yield inferior results compared to existing methodologies, specifi-
cally "GrammarT5-small(60M)" and "CodeT5-small(60M)," on the
Concode dataset. However, it is important to emphasize that as
model size increases, our approach demonstrates significantly im-
proved performance. This scalability is particularly notable when
dynamic metrics are employed, showcasing the method’s robust-
ness and adaptability in more complex scenarios. Therefore, our
research indicates that the integration of grammar-aware compo-
nents becomes increasingly beneficial as the model size expands.
This finding suggests a promising direction for future research
and development, particularly in the realm of large-scale language
models where the nuances of grammar and context play a crucial
role.

Selection of Aggregation. In this study, we have adhered to the
aggregation strategy utilized by CodeT5, maintaining consistency
for a fair and uniform comparative analysis. However, there are
also several possible approaches, such as averaging all pre-training
tasks. Due to constraints in time and computational resources, an
in-depth investigation of these alternatives remains beyond the
scope of our current research. We identify this as an area for future
work, recognizing the potential it holds for enhancing model perfor-
mance and providing a more nuanced understanding of aggregation
impacts in language model training.

7 THREATS TO VALIDITY
Threats to Internal Validity. A potential threat to our study’s
internal validity lies in our experiment’s implementation. To mit-
igate this threat, we rely on the performance metrics reported in
the original papers [1, 8, 10, 11, 25, 37, 41, 43], and use publicly
available models from the Hugging Face Hub [15] for additional
benchmarks. Furthermore, we use fixed random seeds in all experi-
ments to eliminate randomness and guarantee reproducibility.

Threats to External Validity. A primary threat to external va-
lidity lies in the benchmarks utilized in our experiment. While our
pre-training dataset is derived from the widely-used CodeSearch-
Net benchmark [16] and downstream benchmarks use versions
collected by CodeXGlue [25], the performance of GrammarT5 can
only be generalized to the evaluated tasks and datasets. Its perfor-
mance on other software engineering tasks [18, 47, 50] and bench-
marks remains uncertain. The variety in pre-training corpora used
in different models could also influence performance. However,
GrammarT5-base’s superiority over CodeT5 in most benchmarks
implies that incorporating grammar sequences in GrammarT5 sig-
nificantly improves performance, even with a subset of the same
pretraining dataset. Nonetheless, it is crucial to conduct more ex-
periments with diverse corpora and coding scenarios to further
validate these results.

8 CONCLUSION
In conclusion, this paper introduces GrammarT5, a pretrained
model for code understanding and generation that leverages multi-
modal content, including programming languages and natural lan-
guage. The model utilizes an encoder-decoder framework, employ-
ing two Transformers in the samemanner as T5. This work proposes
a novel code representation, TGRS, which effectively represents
programs as grammar rule sequences in pretraining. Moreover, the
paper introduces three pre-training tasks designed to help themodel
learn syntactic structures and semantic information in GrammarT5.
Experiments were conducted on five code-related tasks using ten
datasets, demonstrating that GrammarT5 achieves state-of-the-art
performance on all tasks compared to models of a similar scale. Fur-
thermore, ablation studies show that the three technical novelties
are all effective at boosting the model performance.
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