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INTRODUCTION
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Background

Software 
Project 
Team

Large amount

• Eclipse got 4414 bug 
reports in 2009

Painstaking

• 11892 source code 
files in Eclipse 3.1

• No prior knowledge 
for new developers
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Bug-Report-Oriented Fault Localization

Bug reports as queries

Rate source files by heuristics

Ranked list of source code files 

Developers

4



This Talk

Two new heuristics
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A Typical Approach -- BugLocator

• Combining three heuristics

• First heuristic: VSM (vector space model) 
similarity between the bug report and files

– Each document represented as a vector of token 
weights

– Token weight = token frequency × inverse 
document frequency
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An Example for VSM
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A Typical Approach -- BugLocator

• Second heuristic: large files

– Existing studies show that large files has higher 
fault density

• Third heuristic: similar bug reports

– The files modified in the fix of a previously similar 
bug report are more likely to contain faults

• Final score = VSM score × large file score + 
similar bug report score
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Existing Problem 1

• Noise in large source code files

– When file size changes, fault density may change 
more than an order of magnitude 

– BugLocator: large file score range from 0.5~0.73

– Large files may have much noise
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Motivation Example - Noise

• If BugLocator is used
• Accessible.java is 

ranked 1st

• TextConsoleViewer.java 
(real fix) is ranked 26th

• Problems

– Noisy words

• “access”

• “invalid”

• “call”
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Our solution - Segmentation

Using 
segmentation 

technique, 
TextConsoleVie

wer.java is 
ranked to 1st
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Accessible.java TextConsoleViewer.java



Existing Problem 2

• Stack Traces Information

– Direct clues for bugs

– Often treated as plain text

12



Motivation Example – Stack Traces

Table.java
is 

suspicious

Table.java is 
ranked to 
252nd in 

BugLocator. 
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APPROACH
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Segmentation

• Extract a corpus
– Lexical tokens

– Keywords removal (e.g. float, double)

– Separation of concatenated word (e.g. 
isCommitable)

– Stop words removal (e.g. a, the)

• Evenly divide corpus into segments
– Each segment contains n words

• VSM score = the highest score of all segments
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Fixing Large File Scores

• 𝐿𝑎𝑟𝑔𝑒𝐹𝑖𝑙𝑒𝑆𝑐𝑜𝑟𝑒 #terms =
1

1+𝑒−𝛽×𝑁𝑜𝑟(#𝑡𝑒𝑟𝑚𝑠)

• Function 𝑁𝑜𝑟 normalize values to [0, 1] based 
on even distribution

• Parameter 𝛽 in BugLocator is always 1

• Can be a larger number in our approach 
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Stack-Trace Analysis

• Extract file names from stack traces ( D )

• Identify closely related files by imports ( C )

• A defect is typically located in one of the top-10 stack 
frames
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Calculating Final Scores for Source 
Code Files
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Modified 
BugLocator

Score

BoostScore

Final 
Score



EVALUATION
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Subjects and Parameters
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• Parameters
• Segmentation Size n = 800
• Large File Factor 𝛽=50
• No universally best values



Metrics

• Standard ones also used in BugLocator

• Top N Rank of Files (TNRF)

– The percentage of bugs whose any related files are listed 
in top N of returned files

• Mean Reciprocal Rank (MRR)

– How high the first related files are ranked

– 𝑀𝑅𝑅 =
Σ𝑖=1
𝐵𝑅

1/𝑟𝑎𝑛𝑘(𝑖)

|𝐵𝑅|

• Mean Average Precision (MAP)

– How high all related files are ranked

– 𝐴𝑣𝑔𝑃 =
Σ𝑖=1
𝑚 𝑖/𝑃𝑜𝑠(𝑖)

𝑚

– 𝑀𝐴𝑃 = the mean value of 𝐴𝑣𝑔𝑃 for all bug reports
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Overall Effectiveness
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Effectiveness of Segmentation
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Effectiveness of Stack-Trace Analysis
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Summary of Main Findings
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Our approach is able to significantly outperform 
BugLocator

Either segmentation or stack-trace analysis is an 
effective technique

Segmentation and stack-trace analysis 
complement each other
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The two heuristics in our approach are different 
from all parallel work



Comparison with L2R and BLUiR

• AspectJ

– Better than L2R, Better than BLUiR

• SWT

– Better than L2R, Worse than BLUiR

• Eclipse

– Worse than L2R, Similar to BLUiR
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The two heuristics are probably orthogonal to 
other heuristics, and can be combined
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Thanks for your attention!

Code and data available at: 
http://brtracer.sourceforge.net/
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