Boosting Bug-Report-Oriented Fault
Localization with Segmentation and

Stack-Trace Analysis
Chu-Pan Wong?, Yingfei Xiong', Hongyu
Zhang?, Dan Hao?, Lu Zhang!, Hong Meil

1Peking University
’Microsoft Research Asia

INTRODUCTION

Large amount

e Eclipse got 4414 bug
reports in 2009

Background

Software
Project
Team

Painstaking

e 11892 source code
files in Eclipse 3.1

e No prior knowledge
for new developers

Bug-Report-Oriented Fault Localization

Bug reports as queries

\ 4
\ 4

Ranked list of source code files

Rate source files by heuristics

Developers

This Talk

Two new heuristics

A Typical Approach -- BuglLocator

* Combining three heuristics

* First heuristic: VSM (vector space model)
similarity between the bug report and files

— Each document represented as a vector of token
weights

— Token weight = token frequency X inverse
document frequency

An Example for VSM

Bug ID 80720
Summary Pinned console does not remain on top
Description Open two console views, ... Pin one console. Launch another

program that produces output. Both consoles display the last
launch. The pinned console should remain pinned.

Corresponding source code file: ConsoleView.java
public class ConsoleView extends PageBookView implements
[ConsoleView [Consolelistener {

public void display(IConsole console){
if (fPinned&&fActiveConsole!=null) {return;}
}

public void pin(IConsole console){
if (console == null) {
setPinned(false);
}

else{
if (isPinned()){ setPinned(false); }
display(console):
setPinned(true);

A Typical Approach -- BuglLocator

* Second heuristic: large files

— Existing studies show that large files has higher
fault density

* Third heuristic: similar bug reports

— The files modified in the fix of a previously similar
bug report are more likely to contain faults

* Final score = VSM score X large file score +
similar bug report score

Existing Problem 1

* Noise in large source code files

— When file size changes, fault density may change
more than an order of magnitude

— Buglocator: large file score range from 0.5~0.73
— Large files may have much noise

Motivation Example - Noise

Bug 1D 87692

Summary setConsoleWidth() causes
Invalid thread access

Description calling setConsoleWidth()
outside UI thread causes In-
valid thread access.

 If BuglLocator is used * Problems
* Accessible.java is — Noisy words
ranked 1° * “access”
* TextConsoleViewer.java * “invalid”

|II

(real fix) is ranked 26t * el

Our solution - Segmentation

0.16
| N\
0.12| | Using
0.10} segmentation

2 o technique,

- o TextConsoleVie
. wer.java is

ranked to 1%t
N /
0.00

| a b C d e f)l A B]
' Segments

Accessible.java TextConsoleViewer.java
11

Existing Problem 2

e Stack Traces Information
— Direct clues for bugs
— Often treated as plain text

Motivation Example — Stack Traces

Bug ID

87855

Sllllllll{{-l‘}'

NullPointerException in Table.callWindowProc

Description

Here is

ing the

3.1Mb5a.

at
at
at
at
at
at
at
at
at
at

at org.ec

a stack trace I found when trying to kill a running process by press-

Lamp:quot:kill &:quot; button in the console view. 1 use

IENTRY org.eclipseui 4 0 2005-03-12 14:26:25.58 MESSAGE

java.lang. NullPointerException ISTACK 0 java.lang.NullPointerException

Table.java
IS

org.eclipse.swt.widgets. Table.callWindow Prdc(Table.java:156)
org.eclipse.swt.widgets. Table.send MouseDownEven§(Table.java:2084)
org.eclipse.swt.widgets. Table WM__LBUTTONDOWXN|(Table.java:3174)

suspicioys

org.eclipse.swt.widgets.Control.windowProc(Control.java:3057)
org.eclipse.swt.widgets.Display. window Proc(Display.java:3480)
org.eclipse.swt.internal. win32.0S .DispatchMessageW(Native Method)
org.eclipse.swt.internal.win32.0S5.DispatchMessage(OS java:1619)
org.eclipse.swt.widgets. Display.read AndDispatch(Display.java:2539)
org.eclipse.ui.internal. Workbench.runEventLoop(Workbench.java:1612)
org.eclipse.ui.internal. Workbench.runUI(Workbench.java:1578)

lipse.ui.internal. Workbench.create AndRunWorkbench (Workbench.java:293

)
at org.eclipse.ui. PlatformUlcreate And RunWorkbench (Platform Ul java: 144)
at org.eclipse.ui.internal.ide. IDEApplication.run (IDEApplication.java:102)
at java.lang.reflect. Method.invoke(Method.java:585)
at org.eclipse.core.launcher. Main.invokeFramework(Main.java: 268)
at org.eclipse.core.launcher. Main.basicRun (Main.java:260)
at org.eclipse.core.launcher. Main.run(Main_java:887)
at org.eclipse.core.launcher. Main.main (Main.java:871)

Table.java is
ranked to
252nd jin

BuglLocator.

= ./

APPROACH

Segmentation

* Extract a corpus
— Lexical tokens
— Keywords removal (e.g. float, double)

— Separation of concatenated word (e.g.
isCommitable)

— Stop words removal (e.g. a, the)

* Evenly divide corpus into segments
— Each segment contains n words

* VSM score = the highest score of all segments

Fixing Large File Scores

1
+e—BXNor(#terms)

LargeFileScore(#terms) = -

Function Nor normalize values to [0, 1] based
on even distribution
Parameter [in BuglLocator is always 1

Can be a larger number in our approach

Stack-Trace Analysis

e Extract file names from stack traces (D)
* |dentify closely related files by imports (C)
* A defectis typically located in one of the top-10 stack

frames

BoostScore(z) = ¢

0

1
rank

0.1

0.1

r €D & rank <10
r €D & rank > 10
reC

otherwise

Calculating Final Scores for Source
Code Files

Modified
Buglocator
Score

BoostScore

18

EVALUATION

Subjects and Parameters

Project Studied Period #Bug #Source
Reports | Files

Eclipse 3.1 | Oct 2004 - Mar 2011 | 3075 11892
AspectJ 1.5 | Jul 2002 - Oct 2006 | 286 5487
SWT 3.1 | Oct 2004 - Apr 2010 | 98 484

* Parameters
* Segmentation Size n = 800
* Large File Factor =50
* No universally best values

Metrics

Standard ones also used in BuglLocator
Top N Rank of Files (TNRF)

— The percentage of bugs whose any related files are listed
in top N of returned files

Mean Reciprocal Rank (MRR)
— How high the first related files are ranked
|BR|1/rank(l)
|BR|
Mean Average Precision (MAP)
— How high all related files are ranked

— MRR =

_ Ang - M i/Pos(i)

m

— MAP = the mean value of AvgP for all bug reports

Overall Effectiveness

Subject Approach Top N (%) MRR MAP
=1 =5 N=10 (%)

Eclipse BugLocator 294 52.9 62.8 40.7 30.7
BRTracer 32.6 55.9 65.2 43.4 32.7

Aspect] | BuglLocator 26.5 51.0 62.9 38.8 22.3
BRTracer 39.5 60.5 68.9 49.1 28.6

SWT Buglocator 35.7 69.3 79.5 50.2 44.5
BRTracer 46.9 79.6 88.8 59.5 53.0

22

Effectiveness of Segmentation

Subject Approach Top N (%) MRR MAP
=1 =5 N=10 (%)

Eclipse Buglocator 294 52.9 62.8 40.7 30.7
Segmentation 30.5 54.2 64.0 41.6 31.1

Aspect] | BuglLocator 26.5 51.0 62.9 38.8 22.3
Segmentation 31.1 54.5 67.1 42.2 24.0

SWT Buglocator 35.7 69.3 79.5 50.2 44.5
Segmentation 45.9 76.5 85.7 58.2 51.6

23

Effectiveness of Stack-Trace Analysis

Subject Approach Top N (%) MRR MAP
=1 N=5 N=10 (%)
Eclipse BugLocator 294 52.9 62.8 40.7 30.7
Stack-Trace 31.8 54.8 64.0 42.8 32.5
Aspect] | BugLocator 26.5 51.0 62.9 38.8 22.3
Stack-Trace 37.4 59.0 68.5 47.7 277.7
SWT BugLocator 35.7 69.3 79.5 50.2 44.5
Stack-Trace 38.7 72.4 81.6 53.3 47.2

24

Summary of Main Findings

-

_

Our approach is able to significantly outperform
BuglLocator

~N

J

-

_

Either segmentation or stack-trace analysis is an
effective technique

~N

J

-

Segmentation and stack-trace analysis
complement each other

~N

25

RELATED WORK

Parallel Work

[L2R] X. Ye, R. Bunescu, and C. Liu, “Learning to rank relevant files for bug
reports using domain knowledge,” in Proc. FSE, 2014, pp. 66—76.

[BLUIR] R. K. Saha, M. Lease, S. Khurshid, and D. E. Perry, “Improving bug
localization using structured information retrieval,” in Proc. ASE, 2013, pp.
345-355.

B. Sisman and A. C. Kak, “Assisting code search with automatic query
reformulation for bug localization,” in Proc. MSR, 2013, pp. 309-318.

T.-D. B. Le, S. Wang, and D. Lo, “Multi-abstraction concern localiza- tion,” in
Proc. ICSM, 2013, pp. 364—-367.

C. Tantithamthavorn, A. lhara, and K. ichi Matsumoto, “Using co- change
histories to improve bug localization performance,” in Proc. SNPD, 2013,
pp. 543-548.

(")
The two heuristics in our approach are different

from all parallel work
g W,

27

Comparison with L2R and BLUIR

* Aspect)

— Better than L2R, Better than BLUIR
e SWT

— Better than L2R, Worse than BLUIR
* Eclipse

— Worse than L2R, Similar to BLUIR

(

_

The two heuristics are probably orthogonal to
other heuristics, and can be combined

\

J

28

More Parallel Work

Laura Moreno, John Joseph Treadway, Andrian Marcus,
Wuwei Shen. On the Use of Stack Traces to Improve
Text Retrieval-Based Bug Localization. ICSME 2014

Rongxin Wu, Hongyu Zhang, Shing-Chi Cheung and
Sunghun Kim. CrashLocator: Locating Crashing Faults
based on Crash Stacks, ISSTA 2014

Ripon K. Saha, Julia Lawall, Sarfraz Khurshid, Dewayne
E. Perry. On the Effectiveness of Information Retrieval
Based Bug Localization for C Programs. ICSME 2014

Shaowei Wang, David Lo, Julia Lawall. Compositional
Vector Space Models for Improved Bug Localization.
ICSME 2014

Thanks for your attention!

Code and data available at:
http://brtracer.sourceforge.net/

30

