
Boosting Bug-Report-Oriented Fault
Localization with Segmentation and

Stack-Trace Analysis
Chu-Pan Wong1, Yingfei Xiong1, Hongyu
Zhang2, Dan Hao1, Lu Zhang1, Hong Mei1

1Peking University
2Microsoft Research Asia

1

INTRODUCTION

2

Background

Software
Project
Team

Large amount

• Eclipse got 4414 bug
reports in 2009

Painstaking

• 11892 source code
files in Eclipse 3.1

• No prior knowledge
for new developers

3

Bug-Report-Oriented Fault Localization

Bug reports as queries

Rate source files by heuristics

Ranked list of source code files

Developers

4

This Talk

Two new heuristics

5

A Typical Approach -- BugLocator

• Combining three heuristics

• First heuristic: VSM (vector space model)
similarity between the bug report and files

– Each document represented as a vector of token
weights

– Token weight = token frequency × inverse
document frequency

6

An Example for VSM

7

A Typical Approach -- BugLocator

• Second heuristic: large files

– Existing studies show that large files has higher
fault density

• Third heuristic: similar bug reports

– The files modified in the fix of a previously similar
bug report are more likely to contain faults

• Final score = VSM score × large file score +
similar bug report score

8

Existing Problem 1

• Noise in large source code files

– When file size changes, fault density may change
more than an order of magnitude

– BugLocator: large file score range from 0.5~0.73

– Large files may have much noise

9

Motivation Example - Noise

• If BugLocator is used
• Accessible.java is

ranked 1st

• TextConsoleViewer.java
(real fix) is ranked 26th

• Problems

– Noisy words

• “access”

• “invalid”

• “call”

10

Our solution - Segmentation

Using
segmentation

technique,
TextConsoleVie

wer.java is
ranked to 1st

11

Accessible.java TextConsoleViewer.java

Existing Problem 2

• Stack Traces Information

– Direct clues for bugs

– Often treated as plain text

12

Motivation Example – Stack Traces

Table.java
is

suspicious

Table.java is
ranked to
252nd in

BugLocator.

13

APPROACH

14

Segmentation

• Extract a corpus
– Lexical tokens

– Keywords removal (e.g. float, double)

– Separation of concatenated word (e.g.
isCommitable)

– Stop words removal (e.g. a, the)

• Evenly divide corpus into segments
– Each segment contains n words

• VSM score = the highest score of all segments

15

Fixing Large File Scores

• 𝐿𝑎𝑟𝑔𝑒𝐹𝑖𝑙𝑒𝑆𝑐𝑜𝑟𝑒 #terms =
1

1+𝑒−𝛽×𝑁𝑜𝑟(#𝑡𝑒𝑟𝑚𝑠)

• Function 𝑁𝑜𝑟 normalize values to [0, 1] based
on even distribution

• Parameter 𝛽 in BugLocator is always 1

• Can be a larger number in our approach

16

Stack-Trace Analysis

• Extract file names from stack traces (D)

• Identify closely related files by imports (C)

• A defect is typically located in one of the top-10 stack
frames

17

Calculating Final Scores for Source
Code Files

18

Modified
BugLocator

Score

BoostScore

Final
Score

EVALUATION

19

Subjects and Parameters

20

• Parameters
• Segmentation Size n = 800
• Large File Factor 𝛽=50
• No universally best values

Metrics

• Standard ones also used in BugLocator

• Top N Rank of Files (TNRF)

– The percentage of bugs whose any related files are listed
in top N of returned files

• Mean Reciprocal Rank (MRR)

– How high the first related files are ranked

– 𝑀𝑅𝑅 =
Σ𝑖=1
𝐵𝑅

1/𝑟𝑎𝑛𝑘(𝑖)

|𝐵𝑅|

• Mean Average Precision (MAP)

– How high all related files are ranked

– 𝐴𝑣𝑔𝑃 =
Σ𝑖=1
𝑚 𝑖/𝑃𝑜𝑠(𝑖)

𝑚

– 𝑀𝐴𝑃 = the mean value of 𝐴𝑣𝑔𝑃 for all bug reports
21

Overall Effectiveness

22

Effectiveness of Segmentation

23

Effectiveness of Stack-Trace Analysis

24

Summary of Main Findings

25

Our approach is able to significantly outperform
BugLocator

Either segmentation or stack-trace analysis is an
effective technique

Segmentation and stack-trace analysis
complement each other

RELATED WORK

26

Parallel Work

• [L2R] X. Ye, R. Bunescu, and C. Liu, “Learning to rank relevant files for bug
reports using domain knowledge,” in Proc. FSE, 2014, pp. 66–76.

• [BLUiR] R. K. Saha, M. Lease, S. Khurshid, and D. E. Perry, “Improving bug
localization using structured information retrieval,” in Proc. ASE, 2013, pp.
345–355.

• B. Sisman and A. C. Kak, “Assisting code search with automatic query
reformulation for bug localization,” in Proc. MSR, 2013, pp. 309–318.

• T.-D. B. Le, S. Wang, and D. Lo, “Multi-abstraction concern localiza- tion,” in
Proc. ICSM, 2013, pp. 364–367.

• C. Tantithamthavorn, A. Ihara, and K. ichi Matsumoto, “Using co- change
histories to improve bug localization performance,” in Proc. SNPD, 2013,
pp. 543–548.

27

The two heuristics in our approach are different
from all parallel work

Comparison with L2R and BLUiR

• AspectJ

– Better than L2R, Better than BLUiR

• SWT

– Better than L2R, Worse than BLUiR

• Eclipse

– Worse than L2R, Similar to BLUiR

28

The two heuristics are probably orthogonal to
other heuristics, and can be combined

More Parallel Work

• Laura Moreno, John Joseph Treadway, Andrian Marcus,
Wuwei Shen. On the Use of Stack Traces to Improve
Text Retrieval-Based Bug Localization. ICSME 2014

• Rongxin Wu, Hongyu Zhang, Shing-Chi Cheung and
Sunghun Kim. CrashLocator: Locating Crashing Faults
based on Crash Stacks, ISSTA 2014

• Ripon K. Saha, Julia Lawall, Sarfraz Khurshid, Dewayne
E. Perry. On the Effectiveness of Information Retrieval
Based Bug Localization for C Programs. ICSME 2014

• Shaowei Wang, David Lo, Julia Lawall. Compositional
Vector Space Models for Improved Bug Localization.
ICSME 2014

29

Thanks for your attention!

Code and data available at:
http://brtracer.sourceforge.net/

30

