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Abstract—To deal with post-release bugs, many software
projects set up public bug repositories for users all over the world
to report bugs that they have encountered. Recently, researchers
have proposed various information retrieval based approaches to
localizing faults based on bug reports. In these approaches, source
files are processed as single units, where noise in large files may
affect the accuracy of fault localization. Furthermore, bug reports
often contain stack-trace information, but existing approaches
often treat this information as plain text. In this paper, we propose
to use segmentation and stack-trace analysis to improve the
performance of bug localization. Specifically, given a bug report,
we divide each source code file into a series of segments and use
the segment most similar to the bug report to represent the file.
We also analyze the bug report to identify possible faulty files
in a stack trace and favor these files in our retrieval. According
to our empirical results, our approach is able to significantly
improve BugLocator, a representative fault localization approach,
on all the three software projects (i.e., Eclipse, Aspect]J, and SWT)
used in our empirical evaluation. Furthermore, segmentation and
stack-trace analysis are complementary to each other for boosting
the performance of bug-report-oriented fault localization.

Keywords—fault localization, bug report, feature location, in-
Jformation retrieval

I. INTRODUCTION

With the increasing size of software and the limited de-
velopment resources, it is often inevitable to release software
systems with bugs. A common way to deal with those post-
release bugs is to set up a public bug repository to collect bug
reports from users. For a popular software system, the number
of bug reports in its bug repository may increase rapidly. For
example, as counted by Zhou et al. [1], the Eclipse project
received 4414 bug reports in 2009. Therefore, it is typically
vital to the success of such a system whether its development
team can fix the received bug reports in an efficient way.
However, given a bug report, it is often painstaking for a
developer to manually locate the buggy source code in the
code base. It may become even worse for a new developer
to handle a bug report for a very large code base (containing
thousands of files).

To help developers handle bug reports, researchers have
investigated approaches to bug-report-oriented fault localiza-
tion (e.g., [2], [3], [4]), which try to find among the entire
code base a small subset of source files that are directly
related to fixing each bug report. These approaches typically
rely on information retrieval [S], [6] where bug reports are

treated as queries to locate a few related source files from the
whole collection of source files. Both bug reports and source
code are usually treated as text objects. Different information
retrieve techniques, such as LDA [7], SUM [8], VSM [1], or
combination of different techniques [9] have been used.

Although a large number of approaches have been pro-
posed, we found that the existing approaches still do not deal
with the following two issues well, leading to accuracy loss.

e Large files. Typically, existing approaches treat each
source file as a single unit, and use IR-based ap-
proach to match the files. Some approaches, such as
BugLocator [1], have further introduced parameters
to favor large files as existing studies [10], [11] have
shown that larger files are far more likely to be bug-
prone. However, due to the fuzzy nature of information
retrieval, textually matching bug reports against source
files may have to concede noise (less relevant but
accidentally matched words). Large files are more
likely to contain noise as usually only a small part
of a large file is relevant to the bug report. By treating
files as single units or favoring large files, we are more
likely to be affected by the noise in large files.

e Stack traces. Bug reports often contain stack-trace
information, which may provide direct clues for pos-
sible faulty files. Most approaches directly treat the
bug descriptions as plain texts and do not explicitly
consider stack-trace information.

To deal with the two issues, we propose two novel heuristic
techniques over existing approaches to bug-report-oriented
fault localization, as follows.

e Segmentation. We divide each source code file into
a series of segments and use the segment with the
highest similarity to the bug report to represent a file.
By using one segment to represent a source code file,
we are able to reduce some noise that may exist in
the other segments of the file.

e  Stack-trace analysis. We identify files that are related
to stack traces in bug reports, and increase the ranking
of these files based on the observation that the files
covered by the stack-trace are more likely to be bug-
prone. Although some other approaches (e.g., [12])
have attempted to use stack-trace information, we use



Bug ID 87692

Summary setConsoleWidth()  causes Invalid
thread access

Description  calling setConsoleWidth() outside UI

thread causes Invalid thread access.

Fig. 1: The First Bug-Report Example

it in a novel way and make the first attempt to combine
it with our segmentation technique.

We realize the two techniques on top of Buglocator [1], a
state-of-art approach on bug-report-oriented fault localization.
We call the integrated approach BRTracer.

We further performed an experimental evaluation of BR-
Tracer together with Buglocator on three subject Java projects
using three widely used metrics. Our empirical results demon-
strate that our two techniques are able to significantly improve
the performance of Buglocator with or without considering
similar bug reports (similar bug reports are first used in
BugLocator to boost bug localization). Furthermore, our ex-
periments show that either segmentation or stack-trace analysis
is effective in boosting bug-report-oriented fault localization.
They are complimentary to each other and thus better used
together.

II. MOTIVATING EXAMPLES

In this section, we present two examples selected from
Eclipse 3.1 project to further motivate our research.

A. Example One

Figure 1 depicts an example bug report for Eclipse, in
which there is a clear clue to the source of the bug but
only limited information available for information retrieval.
Developers modified file TextConsoleViewer. java to fix
this bug, but Buglocator ranks Accessible.java as first
while this file at the 26th.

To understand the cause of the inaccuracy, we investigate
the information retrieval process of BugLocator. According
to the revised Vector Space Model (rVSM), the final sim-
ilarity score between a file and a bug report is the mul-
tiplication of two factors: a similarity score calculated by
the basic Vector Space Model (VSM)' and a length score
calculated by a length function. As Accessible.java is
several times larger than TextConsoleViewer.java, Bu-
glocator assigns a larger length score to Accessible. java
than to TextConsoleViewer. java. What really surprises
us is that both files have similar similarity scores cal-
culated by the basic VSM. In fact, the bug report per-
fectly matches TextConsoleViewer.java (where method
setConsoleWidth is declared), but a large number of
occurrences of “access”, “invalid” and “call” in
Accessible. java significantly increase its similarity score.
As a result, the final similarity score for Accessible. java is
significantly larger than that for TextConsoleViewer. java
in Buglocator. This issue also accounts for many highly
ranked files for this bug report.

'Here a logarithm function is used to calculate the term frequency.

In fact, the fuzzy nature of information retrieval deter-
mines that when matching a bug report against source code
files, the number of code snippets accidentally matched to
the bug report is inevitably large. Thus, those accidentally
matched code snippets (i.e., noise) may become an important
factor that impacts the effectiveness of rVSM in BuglLocator.
For Accessible.java, the noisy matches of “access”,
“invalid” and “call” are largely magnified in rVSM to push
Accessible. java into the first position in the rank.

Similarity

Segments

Fig. 2: Similarity between Bug Report and Each Segment

We further divide both Accessible.java and
TextConsoleViewer. java into equally-sized segments. In
particular, we divide Accessible.java into six segments
(denoted as a, b, c, d, e, f), and TextConsoleViewer. java
into two segments (denoted as A, B). Figure 2 depicts the
similarity score calculated by the basic VSM in Buglocator
for each segment. In this setting, one segment (i.e., B) from
TextConsoleViewer. java overwhelms any segment from
Accessible.java in similarity. If this similarity score
is used to calculate the final similarity score in rVSM,
TextConsoleViewer. java instead of Accessible.java
would be ranked in the first position.

B. Example Two

Among 3459 bug reports in our dataset, we observe that
bug reporters include stack-trace information in more than 17%
bug reports. A previous study by Schroter et al. [13] shows that
the top-10 functions in stack traces are likely to be the sources
of bugs. Therefore, stack-trace information in bug reports can
be a good information source for bug localization.

Figure 3 depicts an example bug report for Eclipse, which
contains a very long stack trace observed by the bug reporter.
In the real fix of this bug, file Table. java (which also appears
in the stack trace) is actually modified. That is to say, we may
be able to locate Table. java quite conveniently by analyzing
the stack trace in the bug report.

However, existing approaches always treat bug descriptions
as plain texts and thus may hardly be able to handle stack-trace
information properly. First, a file name (which is also a class
name in Java) in a stack trace may typically match only a
few times in the file defining the class, but may match many
times in other files using the class. Second, a stack trace may
contain a large volume of information, resulting a large number
of matches (including many noisy matches) in various files.
For this example, noisy matches (e.g., “java”, “button”, and
“launcher” etc.) overwhelm the matches in “Table. java”,



BugID 87855

Summary  NullPointerException in Table.callWindowProc

Here is a stack trace I found when trying to kill a running process by
pressing the kill button in the console view. I use 3.1M5a.
IENTRY org.eclipse.ui 4 0 2005-03-12 14:26:25.58
IMESSAGE java.lang.NullPointerException

ISTACK 0

java.lang.NullPointerException

at org.eclipse...Table.callWindowProc(Table.java:156)

at org.eclipse...Table.sendMouseDownEvent(Table.java:2084)
at org.eclipse... Table. WM_LBUTTONDOWN(Table.java:3174)
at org.eclipse...Control.windowProc(Control.java:3057)

at org.eclipse...Display.windowProc(Display.java:3480)

at org.eclipse.core.launcher.Main.run(Main.java:887)
at org.eclipse.core.launcher.Main.main(Main.java:871)

Fig. 3: The Second Bug-Report Example

resulting a very low position of “Table.java” in the rank
(i.e., at the 252nd position). On the other hand, our stack-trace
analysis can push it to the 5th position.

It should also be noted that it may not be appropriate
to directly deem all files appearing in stack traces as faulty,
because one stack trace may contain many file names and the
real faulty file may not appear in the stack trace at all.

III. APPROACH

As mentioned before, we build our two heuristic techniques
on top of BuglLocator [1], resulting in a new tool BRTracer.
That is to say, both Buglocator and BRTracer share the same
retrieval model (i.e., r'VSM). As mentioned previously, rVSM
uses a length function as a factor to favor larger files. In
BRtracer, we further introduce a parameter into the length
function. Using this parameter (which we refer to as the
magnifier), we are able to provide different degrees of favor
that we give to larger files. Thus, on the basis of controlling
the noise through segmentation, we may magnify the favor
assigned to larger files to further take advantage of rVSM.

It should be noted that the two heuristic techniques we
proposed can be easily migrated to other IR-based approaches.
We develop BRTracer on top of Buglocator because the
retrieval model implemented in BuglLocator is basic and
straightforward, which make it convenient to demonstrate the
effectiveness of segmentation and stack-trace analysis.

A. Overview

In our approach, we first divide each source code file into
segments and match the bug report against each segment,
resulting an initial similarity score for each segment. Then,
we calculate a length score for each source code file with
our parameterized length function. Furthermore, we perform
stack-trace analysis on the bug report and get a boost score
for each source code file. For each source code file, we first
use the segment with the highest initial similarity score to
represent the file and multiply this initial similarity score with
the length score of the file to calculate the similarity score
of the file, then we add the corresponding boost score to this
similarity score to calculate the final score. In the following,
Sections III-B, III-C, III-D, and III-E present the details of

our segmentation strategy, our parameterized length function,
our stack-trace analysis, and the calculation of the final score,
respectively.

B. Segmenting Source Code Files

For a bug report, as there may be many code snippets
in a source code file (especially a large file) being textually
similar to the bug report, the aim of segmentation is to use only
the most similar code snippet to represent the file. Therefore,
how to divide a source code file into segments may have
significant impacts on the effectiveness of this segmentation
approach. One straightforward method is to divide a file by
lines. In addition, we could also divide a source code file by
methods, treating each method in a Java class as a segment.
However, as the primary goal of our segmentation is to prevent
noise in larger files from being too much magnified, using
segments with equal sizes should be more suitable for this
goal. Therefore, in order to get segments that vary little in
size, we evenly divide each source code file based on its code
corpus.

Given a source code file, we first extract a corpus (i.e.,
a series of words) in a similar way to existing approaches’:
First, we extract a series of lexical tokens from the file. Second,
we remove keywords (e.g., float and double in Java) specific
to the programming language and separate each concatenated
word (e.g., tsCommitable) into several words. Finally, we
remove stop words (e.g., a and the) and stem each word into
its root form>.

Let us use Cor={ws,ws, ..., w,} to denote the corpus of
a source code file, where w; is the i-th word in the corpus.
Given the maximum number (denoted as [) of words in each
segment, we divide C'or into k segments denoted as Seg,
Sega,..., Segr, where k = [2], Segi={w(_1)i41,.-, Wi}
for any 1 < i < k, and Segp={w(r—1)i41,.--, wn}. In such
a segmentation strategy, only the number of words in the
last segment may be less than [. For example, if the corpus
contains 11 words (i.e., wy,ws,...,w11) and each segment
contains at most 4 words, we have the following 3 segments:
{wlv Wz, W3, 'U}4}, {’U}5, We, Wr, 'UJg}, and {w97 w10, wll}- Note
that, as some pieces of source code may contribute very little
to the corpus, segmentation on the basis of the extracted corpus
instead of the source file can ensure to produce evenly divided
segments.

In fact, the segmentation strategy itself only provides us
with a mechanism to avoid uneven segmentation. We still need
to assign a proper value to [. If we assign a too small number
to [, the preceding segmentation strategy may still divide the
most similar code snippet in the file into different segments.
Of course, if we assign a too large number to [/, each segment
itself may contain much noise.

C. Parameterizing the Length Function

In rVSM, a length function based on the logistic function*
depicted in Formula 1 (where #terms denotes the number

2In fact, all existing approaches [7], [8], [1] to bug-report-oriented fault
localization use very similar ways to build corpora from source code files.

3Currently, we use the Porter Stemming algorithm provided in http://
tartarus.org/martin/PorterStemmer/.

“http://en.wikipedia.org/wiki/Logistic_function



of terms (words) in the corpus extracted from a source code
file, and Nor() is a normalization function) is used to give
favor to larger files. Thus, the final similarity in rVSM is the
initial similarity calculated with the basic Vector Space Model
multiplied by the length function. According to experimental
results reported by Zhou et al. [1], the length function in the
form of the logistic function is more effective than length
functions in other forms.

1

LenFunc(#terms) = 1 1 o= Nor(#terms)
e or erms

€]

In our approach, we parameterize Formula 1 with a new
factor 8 (8 > 0) to form Formula 2. According to the property
of the logistic function, given the same file, the larger the value
of [3 is, the more favor is given to the size (represented by the
number of terms) of the file. Therefore, parameter /3 actually
serves as a magni fier to adjust how much favor we give to
larger files. By adjusting magni fier, we are able to develop a
better balance between favoring large files and reducing noise
in large files.

1

LenFunc(fterms) = 1 + e—BxNor(#terms) @)

To further utilize the property that the logistic function
has the largest capability to distinguish different inputs when
the input value is around zero, we use of the normalization
function depicted in Formula 3, which is able to normalize
the medium value to zero to make our length function better
distinguish files with the numbers of terms close to the medium
value.

Nor(t) = L tmed 3)

tm ar — tmin

Given a set of values for variable ¢, ¢,,02, tmin, and 4
in Formula 3 represent the maximum value, the minimum
value, and the medium value among all the values in the set,
respectively.

D. Analyzing Stack-Trace Information

As discussed in Section II-B, it is common that buggy files
are directly mentioned in bug reports, usually in the form of
stack traces. Therefore, we extract all the file names directly
mentioned in the bug report using a regular expression. In the
regular expression, we look for phrases ended with “java”
and we further require that what appears before “.java” should
form a valid file name for Java (e.g., containing only letters,
digits, underscores, and hyphens with the beginning symbol to
be a letter). Then we check the file names against the code
base to eliminate file names that do not exist in the code base.
This checking would help filter out both mistakenly obtained
file names and file names in libraries. Finally, we get a set of
source code files (denoted as D) directly mentioned in the bug
report.

Moreover, if a stack trace indicates that a file is suspicious,
the root cause may actually lie in some methods (of some
classes) used in this file. Therefore, these classes may also
deserve more attention. In our approach, we also analyze each

file (denoted as f) in D to get a set of files (classes) directly
used in f. For ease of presentation, we refer to the set of files,
each of which is used by some file in D, as the closely related
file set (denoted as C). In particular, for each Java source code
file in D, we extract all the import statements and record the
corresponding files referred to in these statements. As for the
import statements for packages, we put all the classes in the
packages into C. After filtering out files not existing in the
code base, we obtain the closely related file set C.

As our goal is to favor files in the two sets D and C, we
calculate an additional score (referred to as the boost score
in this paper) for each file in D or C. Note that the use of
a boost score makes it easy to incorporate the results of our
stack-trace analysis into the retrieval process.

In particular, given a file (denoted as x), we use Formula 4
to calculate the boost score for z. For the convenience to
incorporate the boost score into the retrieval process, we deem
the boost score of any file neither in D nor in C as 0. A previous
study by Schroter et al. [13] shows that a defect is typically
located in one of the top-10 stack frames. Furthermore, the
higher stack frame is more likely to be faulty than the lower
one. Therefore, our calculation of the boost score also depends
on the rank of each source file in a stack trace. In the following
formula, rank = 1 refers to the highest source file in a stack
trace. For example, in Figure 3, rank(Table.java) = 1.

L 2 eD & rank <10

rank

0.1 z €D & rank > 10
BoostScore(z) = 4)

0.1 rel

0 otherwise

E. Calculating the Final Score

In our approach, we use Formula 5 to calculate the final
score of a source code file. Given file z, 7V SM,.,(x) (ie.,
the similarity score between file x and the bug report) is the
multiplication of the similarity score of the most similar seg-
ment in x and the length score of z; and N is a normalization
function to normalize 7V SM,.,(z) into range [0..1].

FinalScore(x) = N(rVSMeqy(x)) + BoostScore(z)  (5)

As BuglLocator has the ability to utilize similar bug reports,
we adopt the same mechanism to utilize similar bug reports
in our approach. Formula 6 depicts the calculation of the final
score considering similar bug reports, where SimiScore(x) is
the score calculated from similar bug reports and « is a value
between 0 and 1 denoted as the weight of SimiScore(x).

FinalScore(z) = (1 — a) x N(rVSMseq4(z))
+a x N(SimiScore(z)) + BoostScore(z) (6)

In both BugLocator and our approach, SimiScore(x) is
calculated as follows. The bug report (denoted as BR) is
matched against each previously fixed bug report. Let B;
denote the i-th previously fixed bug report and S; denote the
similarity between BR and B;. Thus, Formula 7 calculates



SimiScore(x), where F; is the set of modified files for fixing
B, and |F}| is the number of files in F;.

SimiScore(x) = Z

zEF;

Si
| @)

|F

IV. EMPIRICAL EVALUATION
A. Research Questions

As we implemented our two heuristic techniques on top
of Buglocator, we are interested in whether the new tool,
BRTracer, is able to outperform Buglocator. In our com-
parison, we treated similar bug reports as an independent
variable. This is because of the following reasons. First, the
information of similar bug reports may not be fully available
for some existing projects. Furthermore, collecting similar bug
data requires recovering links between source code files and
bug reports, which is not a trivial task. Therefore, we are
interested in how BRTracer compares with BuglLocator both
with and without considering similar bug reports. Second, as
both BugLocator and BRTracer share the same mechanism to
deal with similar bug reports, treating similar bug reports as
an independent variable would help us further investigate the
strengths and weaknesses of both approaches. Therefore, there
are two research questions in our empirical evaluation:

e RQ1: How does our approach compare to BugLocator
either with or without considering similar bug reports?

e RQ2: How do segmentation and stack-trace analysis
impact the effectiveness of our approach?

B. Independent Variables

To answer the preceding research questions, we were
primarily concerned with the following two independent vari-
ables: the experimented approach and the consideration of
similar bug reports. We compared the following four imple-
mentations in our evaluation.

1)  Buglocator without considering similar bug reports.
2)  Buglocator considering similar bug reports.

3)  BRTracer without considering similar bug reports.
4)  BRTracer considering similar bug reports.

C. Subject Projects

For better comparison with BuglLocator, we evaluated
BRTracer using the same subjects as Zhou et al. [1]. In our
empirical evaluation, we used the following three projects:
Eclipse® (v3.1), Aspect]® (v1.5), and SWT” (v3.1). All projects
have a fairly large number of bug reports that help us achieve
statistically sound empirical results. Eclipse, which is a large
open source development platform widely used in various em-
pirical studies, has been used by Poshyvanyk et al. [2], [3], Gay
et al. [4], Lukins et al. [7], Bangcharoensap et al. [9], and Zhou
et al. [1] to investigate bug-report-oriented fault localization.
Aspect], which is a famous aspect-oriented extension for Java
and is provided by Dallmeier and Zimmermann [14] as a part
of the iBUGs® benchmark for evaluating techniques for bug-
report-oriented fault localization, has been used by Rao and

Shttp://www.eclipse.org
Ohttp://eclipse.org/aspectj/
7http://www.eclipse.org/swt/
8hittp://www.st.cs.uni-saarland.de/ibugs/

TABLE I: Statistics of Studied Projects

Project Studied Period #Bug #Source
Reports Files
Eclipse 3.1 Oct 2004 - Mar 2011 | 3075 11892
Aspect] 1.5 Jul 2002 - Oct 2006 286 5487
SWT 3.1 Oct 2004 - Apr 2010 | 98 484

Kak [8] and Zhou et al. [1]. SWT (v3.1), which has been used
by Zhou et al. [1], is a library providing various graphical
widgets used in Java. Table I depicts statistics related to the
three projects.

D. Metrics

In our empirical evaluation, we consider the following three
metrics: top N rank of files, mean reciprocal rank, and mean
average precision. The first one is a metric widely used in
evaluating techniques for bug-report-oriented fault localization.
The latter two are metrics widely used in information retrieval.

Top N Rank of Files (TNRF). Given a number N, the top
N rank gives the percentage of bugs whose related files are
listed in top N (which is set to 1, 5, and 10 in our evaluation)
of returned files. Here, following how Zhou et al. [1] used
the TNRF metric to evaluate Buglocator, we use the highest
ranked one among all the related files when a bug report has
more than one related files.

Mean Reciprocal Rank (MRR). The MRR metric [15]
measures the overall effectiveness of retrieval for a set of bug
reports. Let us denote the set of bug reports as BR and the
rank of the first related file of the i-th bug report as rank(7).
The value of the MRR metric is defined in Formula 8.

| BRI 1/rank(q)
M — i=1
RR BR]

®)

Mean Average Precision (MAP). The MAP metric [16]
provides a synthesized way to measure the quality of retrieved
files, when there are more than one related file retrieved for
the bug report. Supposing that m related files are retrieved, if
we use f1, f2,..., fm to denote the m related files in the same
order as they are ranked and Pos(i) to denote the position
that f; is ranked at, the average precision (denoted as AvgP)
is defined in Formula 9. Given a set of bug reports, we use the
mean value of the AvgP values of all bug reports in the set to
define the MAP metric.

iz, i/ Pos(i)

m

AvgP = ©)

Among the preceding three metrics, the TNRF metric does
not consider the quality of retrieval outside the top N files,
while the other two metrics consider the overall quality of
retrieval. Furthermore, larger values for all the three metrics
indicate better effectiveness.

E. Experimental Procedure

To use the three projects for our empirical evaluation, we
need to prepare both the data related to source code files and
the data related to bug reports. Since we would like to compare
BRTracer with BugLocator, we follow the steps described in



[1] to prepare our data. For Eclipse and SWT, we downloaded
the source code of the corresponding versions from their
project website. For Aspect], we downloaded the source code
from iBUGs. For each subject project, we collected a set of
fixed bug reports from its bug tracking system and mined
the links between bug reports and source code files following
the same methodology® that Zhou et al. [1] used to evaluate
BuglLocator. As a result, we collected a total of 3459 bug
reports with their links to source code files. We put both the
data related to the bug reports and the used source code of the
three projects on our project website!”.

In particular, we adopted the following classic heuristics
suggested by Bachmann and Bernstein [17] to recover links
between source code files and bug reports. With these recov-
ered links, we were able to calculate the effectiveness of each
approach under experimentation in terms of the three metrics.

First, we scanned through the change logs of the three
projects to identify bug IDs (e.g., “issue 327”). As there might
be several formats of recording bug IDs, we tried all the
formats we could think of. Second, we further excluded false
bug IDs (e.g., “r360”) through manual examination. To ensure
accuracy, we deemed as false bug IDs any ones that we were
not certain to be real bug IDs. Third, we also searched in the
bug tracking system to identify IDs of fixed bugs. Finally, we
mined the version repository (e.g., SVN) to identify changed
files for each identified bug ID. Note that each bug report is
also associated with a date for submission and a date for fixing.
Given a bug report (denoted as r), when considering similar
bug reports for r, only those both whose submission date and
whose fixing date are prior to the submission date of r can be
candidates.

Our initial experience with our approach indicated that
our approach with the segment size being 800 words (i.e.,
[=800), the magnifier in our length function being 50 (i.e.,
£=50) might typically achieve competitive effectiveness. In
fact, we have tuned ! (I = 400, 600,800, 1000, 1200) and
(8 = 30,50,70,90) to explore how they affect the retrieval
results. Our experiment shows that, BRTracer is able to achieve
effectiveness no worse than Buglocator in most parameter
settings, but the optimized parameter settings are different
from project to project. It seems that [ and 5 should be set
according to some characteristics of the target project (e.g.,
project size, average source file size), and we leave that to our
future work. In order to demonstrate the general effectiveness
of our segmentation technique, throughout all experiments in
our empirical evaluation, we set [ = 800 and 5 = 50 as the
default values of our approach. Furthermore, to balance the
similarity acquired from similar bug reports and the similarity
from direct matching the bug report with each source code
file, we set the value of « in Formula 6 as 0.2 (which Zhou
et al. [1] also used in their evaluation of BugLocator) for both
BugLocator and our BRTracer.

F. Results and Analysis

1) RQI: Overall Effectiveness: Table II depicts the overall
effectiveness of BugLocator and our BRTRacer without con-

°In fact, we directly used the data related to bug reports that THE
AUTHORS OF [1] provided for us.

10http://brtracer.sourceforge.net

TABLE II: Overall Effectiveness without Considering SBRs

Subject Approach Top N (%) MRR MAP
N=1 N=5 N=10 (%)

Eclipse BugLocator 25.8 47.9 58.2 36.5 27.5
BRTracer 29.6 51.9 61.8 40.2 30.3

Aspect] | BugLocator 24.1 47.2 60.4 35.1 19.8
BRTracer 38.8 58.7 66.8 47.6 27.2

SWT BugLocator 33.6 67.3 75.5 48.0 41.5
BRTracer 37.8 74.5 81.6 53.6 46.8

TABLE III: Overall Effectiveness Considering SBRs

Subject Approach Top N (%) MRR MAP
N=1 N=5 N=10 (%)

Eclipse BugLocator 29.4 52.9 62.8 40.7 30.7
BRTracer 32.6 55.9 65.2 43.4 32.7

Aspect] | BugLocator 26.5 51.0 62.9 38.8 22.3
BRTracer 39.5 60.5 68.9 49.1 28.6

SWT BugLocator 35.7 69.3 79.5 50.2 44.5
BRTracer 46.9 79.6 88.8 59.5 53.0

sidering similar bug reports (SBRs). From Table II, we have

the following observations.

First, our approach outperforms BugLocator in all circum-
stances. This observation indicates that our approach provides
a clear improvement in the performance of bug localization.

Second, both Buglocator and our approach typically do
not achieve very high percentage numbers in Eclipse project.
We suspect the reason to be the intrinsic difficulty of the
target problem. The fuzzy nature of different descriptions in
different bug reports may prevent any approach from retrieving
source code files very accurately. Furthermore, when there are
thousands of or even tens of thousand files, it is almost impos-
sible for any approach to retrieve the correct files by chance.
Therefore, we argue that the improvement of our approach over
BugLocator should be a substantial improvement although the
improvement is small in magnitude.

Table III depicts the overall effectiveness of BRTracer
considering similar bug reports (SBRs). From this table, we
have the following observations.

First, our approach is also able to outperform Buglocator
in all circumstances, when both approaches use the same way
to deal with similar bug reports. In general, the differences be-
tween our approach and Buglocator when considering similar
bug reports are similar to those without considering similar
bug reports. In some cases, when considering similar bug re-
ports, the differences become significantly larger. For example,
compared with Table II, our approach gains more improvement
in SWT project under all the three metrics. This observation
indicates that our two techniques (i.e., segmentation and stack-
trace analysis) for boosting bug localization may be quite
compatible with existing heuristics (e.g., utilizing similar bug
reports).

Second, for either Buglocator or our approach, considering
similar bug reports would typically improve the corresponding
approach. This observation confirms that similar bug reports
could be a reliable information source for bug-report-oriented
fault localization.

We further use a statistical test to check whether the
improvement is significant. In particular, we use Sign Test on
the basis of the TNRF metric. Let ny (n_) be the number
of cases where BRTracer (BugLocator) ranks the correct file



higher than BuglLocator (BRTracer) for a specific bug report,
and N = ny + n_. We further drop all the cases for which
neither BRTracer nor BuglLocator is able to rank the buggy file
within top 10 because we regard both approaches as equally
ineffective in these cases.

TABLE IV: Sign Test Result without Considering SBRs

Subject ny n_ N D
Eclipse 718 533 1251 <0.0001 (reject)
Aspect] 91 33 124 <0.0001 (reject)
SWT 30 16 46 0.0541

TABLE V: Sign Test Result Considering SBRs

Subject ny n_ N D
Eclipse 686 578 1264 0.00262 (reject)
Aspect] 84 41 125 0.000172 (reject)
SWT 33 12 45 0.00246 (reject)

The Sign Test results are depicted in Tables IV and V. As
shown in the tables, the null hypothesis between our BRTracer
and BuglLocator are rejected at the a=0.05 level for 5 out of 6
cases. The only exception is found in SWT project. As reported
in Table I, the number of bug reports in SWT project is 98,
which is too small to derive statistically sound results. For
example, if ny = 30 and n_ = 15, the resulted p would be
0.0357, which rejects the null hypothesis. Thus, we argue that
our approach is able to significantly outperform BuglLocator
on all the three subjects either with or without considering
similar bug reports.

2) RQ2: Effectiveness of Segmentation and Stack-Trace
Analysis: Table VI depicts the effectiveness of segmentation
without considering similar bug reports (SBRs). In this table,
we use “Segmentation” to denote our approach using only
segmentation. From Table VI, we observe that, although the
improvement of using only segmentation is less than that of
using both techniques, using only segmentation is still able
to outperform Buglocator for all the three metrics without
considering similar bug reports.

Table VII depicts the effectiveness of using only segmen-
tation when considering similar bug reports. From Table VII,
we have the following observations.

First, following the same trend for not considering similar
bug reports, using segmentation is also able to outperform
BuglLocator when both approaches use the same way to deal
with similar bug reports.

Second, compared with Table VI, the differences between
our approach using only segmentation and Buglocator when
considering similar bug reports become even bigger than the
differences when not considering similar bug reports. For ex-
ample, improvement in SWT under the metric of “Top 1 Rank
of Files” changes from 1.0 percentage points (34.6% — 33.6%)
to 10.2 percentage points (45.9% — 35.7%). This indicates that
segmentation is compatible with and even a boosting factor
for the use of similar bug reports.

Tables VIII and IX depict the effectiveness of using only
stack-trace analysis, i.e., using rV.SM (x) (which is used in
BugLocator) instead of 7V SM.4(x) in Formula 5 and 6. In
these two tables, we use “Stack-Trace” to denote our approach
using only stack-trace analysis. From these tables, we have the
following observations.

TABLE VI: Effectiveness of Segmentation without Consider-
ing SBRs

Subject | Approach Top N (%) MRR MAP
N=1 N=5 N=10 (%)

Eclipse BugLocator 25.8 47.9 58.2 36.5 27.5
Segmentation 272 49.9 60.6 38.0 28.6

Aspect] | BugLocator 24.1 47.2 60.4 35.1 19.8
Segmentation 30.4 50.0 62.2 39.8 224

SWT BugLocator 33.6 67.3 75.5 48.0 41.5
Segmentation 34.6 724 79.5 50.7 444

TABLE VII: Effectiveness of Segmentation Considering SBRs

Subject Approach Top N (%) MRR MAP
N=1 N=5 N=10 (%)

Eclipse BugLocator 29.4 52.9 62.8 40.7 30.7
Segmentation 30.5 542 64.0 41.6 31.1

Aspect] | BugLocator 26.5 51.0 62.9 38.8 22.3
Segmentation 31.1 54.5 67.1 42.2 24.0

SWT BugLocator 35.7 69.3 79.5 50.2 44.5
Segmentation 45.9 76.5 85.7 58.2 51.6

First, similar to using only segmentation, using only stack-
trace analysis would also improve BugLocator either with or
without considering similar bug reports under all the three
metrics.

Second, our stack-trace analysis is generally compatible
with the use of similar bug reports, because when considering
similar bug reports, our stack-trace analysis can achieve a
similar improvement over BugLocator.

Furthermore, when comparing the overall effectiveness of
our approach with the effectiveness of using only segmentation
and the effectiveness of using only stack-trace analysis, we
have the following observation. Segmentation and stack-trace
analysis can typically complement each other for boosting
bug localization, especially when not considering similar bug
reports.

3) Summary of Main Findings: We summarize the main
findings of our empirical evaluation as follows:

e  Whether or not considering similar bug reports, our
approach is able to significantly outperform BuglLoca-
tor for all the three projects under all the three metrics.

e  FEither segmentation or stack-trace analysis is an ef-
fective technique to boost bug localization and both
techniques are compatible with the use of similar bug
reports.

e  Segmentation and stack-trace analysis should better be
used together, as they can complement each other.

G. Threats to Validity

The main threat to internal validity lies in the implementa-
tion of the experimented approaches. To reduce this threat, we
used the version of BuglLocator provided by its authors and
carefully reviewed the code to implement our approach on top
of BuglLocator.

The main threat to external validity lies in the subject
projects used in our empirical evaluation. As all the three
projects are open source projects, our empirical results may be
specific to these projects and thus not generalizable to projects
other than open source projects. However, recent work by Ma
et al. [18] shows that a large portion of issues are often reported
by commercial developers, which indicates that defects in open



TABLE VIII: Effectiveness of Stack-Trace Analysis without
Considering SBRs

Subject | Approach Top N (%) MRR MAP
N=1 N=5 N=10 (%)
Eclipse BugLocator 25.8 47.9 58.2 36.5 27.5
Stack-Trace 28.2 50.1 59.6 38.8 29.4
Aspect] | BugLocator 24.1 47.2 60.4 35.1 19.8
Stack-Trace 34.2 56.2 65.7 442 252
SWT BugLocator 33.6 67.3 75.5 48.0 41.5
Stack-Trace 36.7 70.4 71.5 S1.1 44.2

TABLE IX: Effectiveness of Stack-Trace Analysis Consider-
ing SBRs

Subject Approach Top N (%) MRR MAP
N=1 N=5 N=10 (%)

Eclipse BugLocator 29.4 52.9 62.8 40.7 30.7
Stack-Trace 31.8 54.8 64.0 42.8 32.5

Aspect] | BugLocator 26.5 51.0 62.9 38.8 22.3
Stack-Trace 37.4 59.0 68.5 47.7 27.7

SWT BugLocator 35.7 69.3 79.5 50.2 44.5
Stack-Trace 38.7 72.4 81.6 533 47.2

source projects are likely to stem from commercial projects.
Further reduction of this threat may involve more projects,
especially commercial projects. Furthermore, like most other
IR-based fault localization approaches, we use the same set
of source code in the evaluation of each project. Since the
modifications between revisions are usually small, we deemed
the threat posed by the differences between revisions to be
acceptable.

The main threat to construct validity lies in the metrics
used in our empirical evaluation. To reduce this threat, we
used three different metrics in our empirical evaluation. All the
three metrics are widely used in previous studies. As all the
three metrics are based on recovered links between bug reports
and source code files, inaccuracy in the recovery process may
impact our empirical results. However, using recovered links
between bug reports and source code files for evaluation has
been widely adopted by existing studies on bug-report-oriented
fault localization [7], [8], [9], [1]. Furthermore, we used the
same data set of recovered links that has been studied in a
previous paper [1] in our experiments.

V. FUTURE WORK

In our approach, we use empirically determined values
for (3, I. However, due to different characteristics of different
projects, it might be better to use differentiated values of these
parameters. In future work, we plan to investigate mechanisms
to automatically choose suitable values for these parameters on
the basis of analyzing the target project.

In our approach, our segmentation strategy does not con-
sider the characteristics of source code (e.g., code structures).
Further consideration of code structures in segmentation (such
as putting highly related code portions into one segment) may
further improve our approach. Thus, we also plan to extend
our research in this direction in future work.

Our approach uses a function with respect to the length
of each source code file to favor larger files. As the ultimate
reason is that larger files are far more likely to contain faults,
in future work, we plan to investigate functions in respect to
some fault-prediction techniques to directly favor files more
likely to contain faults.

We adopt a lightweight but coarse analysis of source-code
files in our stack-trace analysis. In fact, heavier analysis (e.g.,
language-specific syntactic and semantic analysis) may further
improve the precision of analysis to benefit our approach, but
such an analysis may become too time-consuming due to a
large number of files potentially requiring analysis. In future
work, we plan to investigate better trade-offs between time-
consumption and analysis precision.

Our approach contains two distinctive techniques, which
are complementary to each other for boosting the retrieval pro-
cess according to our empirical results. However, the straight-
forward combination of the two technique in our approach
may not fully exploit the strengths of both of them. In future
work, we plan to investigate other ways to combine the two
techniques.

VI. RELATED WORK
A. Progress after BugLocator

In parallel with our work, several approaches have been
proposed to improve IR-based bug localization with different
heuristics. For example, Ye et al. [19] defined six features
measuring the relationship between bug reports and source
files, and defined a ranking model to combine them, using
a learning-to-rank technique. In one of their features, they
utilized project API descriptions to narrow the lexical gap
between bug reports and source files. Saha et al. [20] proposed
an approach called BLUiR and gained significant improvement
over BugLocator by replacing Vector Space Model with struc-
tured information retrieval model. Sisman et al. [21] proposed
to use automatic query reformulation by injecting closely
related words into the query. Le et al. [22] applied topic
modeling to infer multiple abstraction levels from documents,
and extended Vector Space Model to locate code units by
computing similarities resulting from several abstraction levels.
Tantithamthavorn et al. [23] proposed an approach to improve
Buglocator by leveraging co-change histories, which relied
on the assumption that files that have been changed together
are prone to be fixed together again in the future. Davies and
Roper [12] combined four kinds of information to locate bugs:
(1) textual similarities between bug reports and source files,
(2) similarities of bug reports, (2) number of previous bugs
that caused by each method and (4) stack-trace information.
Note that our utilization of stack-trace information is different
from theirs in that we not only consider files that mentioned
in the stack traces, but also take other closely related files into
account.

It is worth noting that the two heuristics used in our
approach are different from nearly all parallel approaches and
thus in future it is promising to investigate the combination
of our approach with these approaches to gain an even higher
accuracy.

Furthermore, among all the approaches that share the same
dataset with us, BLUiR [20] is reported to have the highest
boost over Buglocator, and thus it is interesting to compare
the boost of BLUIR with our approach. Basically, in Eclipse
project, BRTracer and BLUIR achieve similar accuracy under
all metrics (i.e., TNRF, MRR and MAP). In SWT project,
BRTracer is noticeably inferior to BLUIR under MRR and
MAP (e.g., 6.5 points lower in MRR). In Aspect] project,



BRTracer noticeably outperforms BLUiIR under all metrics
(e.g., 6.1 points higher in MRR). Thus, the two approaches
achieve the same level of overall boost over BugLocator.
Furthermore, both BRTracer and BLUiR get improvement
after considering similar bug reports, and the improvement
on BRTracer is mostly greater than on BLUIR. Therefore,
our approach is more compatible with the usage of similar
bug reports. Because the two approaches differ in performance
among different projects and with/without similar bug reports,
we assume that the improvement techniques used in BRTracer
and BLUIiR are orthogonal. Hopefully, we can achieve a higher
accuracy by combining our heuristics with BLUiR. However,
since the implementation of BLUiR has not been released to
public yet, we leave it to our future work.

B. Bug-Report-Oriented Fault Localization

Apart from BugLocator, there exist some other lines of
research on bug-report-oriented fault localization. Given a
fault, bug-report-oriented fault localization aims to use textual
description of the fault in the bug report obtained from a bug
repository to localize the fault. Typically, such a technique
may not pinpoint the buggy piece of code, but may provide
developers with further information about how the bug relates
to the source code. Since a developer unfamiliar with the code
base may have very few clues from only a bug report, such an
approach may provide the developer with more clues.

As a typical bug report contains only textual information,
information retrieval (IR) plays a central role in existing
approaches to bug-report-oriented fault localization. Thus, a
main line of research is to investigate various models for IR.
In fact, researchers have investigated almost all classic IR
models [2], [3], [24], [7], [8]. Another main line of research
is to utilize other information beside textual information (e.g.,
[9], [1]). Due to the nature of bug reports and corpora extracted
for source code files, using textual information alone is difficult
to be very accurate.

Recently Kim et al. [25] proposed a two-phase machine
learning-based approach to predict files to be fixed. In the first
phase, their model examines the bug reports and determines
whether there is sufficient information in the bug reports. Then,
the second phase prediction is performed only on the bug
reports that the model believes to be predictable.

Different from existing research, the research reported in
this paper focuses on segmentation and stack-trace analysis
in bug-report-oriented fault localization. Furthermore, our re-
search is actually generic to existing research as both seg-
mentation and stack-trace analysis can be easily adapted to
combine with other approaches besides Bugl.ocator.

C. Feature Location

Feature location aims to locate the source code related
to each functionality. Intuitively, such an approach may be
used to locate all the code that is functionally related to a
bug report. In fact, some researchers (e.g., Poshyvanyk et
al. [2], [3] and Gay et al. [4]) did use approaches to feature
location to handle bug reports as a way to evaluate those
approaches. However, the nature of feature location determines
that such an approach would typically find more code than
necessary to fix a bug. That is to say, an approach to feature

location can hardly be very accurate for handling bug reports.
Below, we briefly discuss some representative research on
feature location. Please refer to Dit et al. [26] for a recent
comprehensive survey on feature location.

According to Dit et al. [26], approaches to feature location
typically rely on the following information: static informa-
tion [27], [28], dynamic information [29], and textual informa-
tion [30], [4]. There are also approaches that combine two or
more types of information: Eisenbarth et al. [31] and Antoniol
and Guéhéneuc [32] combine static information and dynamic
information; Zhao et al. [33] and Hill et al. [34] combine static
information and textual information; Poshyvanyk et al. [2],
[3] and Liu et al. [35] combine dynamic information with
textual information; and Eaddy et al. [36] combine all the
three types of information. Note that approaches using only
static information may have to rely on human intervention
to link features to source code units, while combining static
information with textual information may naturally remove the
reliance on human intervention.

D. Bug-Report Analysis

Due to the need to efficiently handle a large number of
bug reports and the wealth of information embedded in bug
reports, there has been a large amount of research around bug
reports in recent years. As summarized in [37], a significant
portion of research (e.g., [38], [39], [40], [41], [42]) focuses on
detecting and utilizing duplicate bug reports. Anvik et al. [43]
and Kanwal et al. [44] proposed techniques to identify suitable
developers for handling bug reports. Bettenburg et al. [45]
empirically identified some guidelines for bug reporters to
submit quality bug reports. Rastkar et al. [46] proposed a
technique to distill essential information from verbose bug
reports.

However, as techniques proposed for bug-report analysis
typically do not consider how bug reports are related to
source code, none of those techniques can be directly used
or adapted in a straightforward way for bug-report-oriented
fault localization.

VII. CONCLUSION

When matching a bug report against source code files,
larger files may be more likely to be affected by noisy matches.
Furthermore, bug reports may contain descriptions with direct
pointers to possible faulty files, but information retrieval may
be difficult to deal with those descriptions accurately. In this
paper, we have proposed two techniques (i.e., segmentation
and stack-trace analysis) to deal with these two issues. First,
we divide the corpus extracted from each source code file into
a series of segments and use the segment having the highest
similarity with the bug report to substitute the file. Second,
we identify names of explicitly-described possible faulty files
in bug reports and provide more favor to these files and files
directly related to these files. We implemented our approach
(named BRTracer) via combining both techniques on top of
BugLocator and performed an empirical evaluation to compare
BRTracer against BugLocator. Our empirical results demon-
strate that BRTracer can significantly outperform BugLocator
on all the three projects under each metric either with or
without considering similar bug reports. Our empirical results
further demonstrate that segmentation and stack-trace analysis



can complement each other for boosting bug-report-oriented
fault localization.
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