
Test Case Prioritization for Compilers:
A Text-Vector Based Approach

Junjie Chen1,2, Yanwei Bai1,2, Dan Hao1,2∗†, Yingfei Xiong1,2†, Hongyu Zhang3†, Lu Zhang1,2, Bing Xie1,2

1Key Laboratory of High Confidence Software Technologies (Peking University), MoE
2Institute of Software, EECS, Peking University, Beijing 100871, China

{chenjunjie,byw,haodan,xiongyf,zhanglucs,xiebing}@pku.edu.cn
3Microsoft Research, Beijing, 100080, China, honzhang@microsoft.com

Abstract—Test case prioritization aims to schedule the ex-
ecution order of test cases so as to detect bugs as early as
possible. For compiler testing, the demand for both effectiveness
and efficiency imposes challenge to test case prioritization. In
the literature, most existing approaches prioritize test cases by
using some coverage information (e.g., statement coverage or
branch coverage), which is collected with considerable extra
effort. Although input-based test case prioritization relies only
on test inputs, it can hardly be applied when test inputs are
programs. In this paper we propose a novel text-vector based
test case prioritization approach, which prioritizes test cases
for C compilers without coverage information. Our approach
first transforms each test case into a text-vector by extracting
its tokens which reflect fault-relevant characteristics and then
prioritizes test cases based on these text-vectors. In particular, in
our approach we present three prioritization strategies: greedy
strategy, adaptive random strategy, and search strategy. To
investigate the efficiency and effectiveness of our approach, we
conduct an experiment on two C compilers (i.e., GCC and
LLVM), and find that our approach is much more efficient than
the existing approaches and is effective in prioritizing test cases.

I. INTRODUCTION

Software testing aims to guarantee software quality through

the execution of test cases [1], [2], [3]. To improve the

efficiency of software testing, test case prioritization [4] is

proposed to schedule the execution order of test cases so that

bugs can be detected as early as possible.

In the literature, there are many systematic and matured

test case prioritization approaches [5], [6], [7], [8], [9], [10],

[11], [12], [13]. However, most of these approaches [4], [14],

[15], [5], [16] rely on some coverage information (e.g., state-

ment coverage, branch coverage). Collecting such information

consumes much extra effort. For example, Mei et al. [17]

reported that the execution time of a program that records the

coverage information (through instrumentation) is much larger

than the execution time without instrumentation. Furthermore,

in some practical testing scenarios, collecting such coverage

information is infeasible. For example, when the software is

tested for the first time, it is impossible to collect its testing

information without executing its test cases. That is, these

coverage-based approaches cannot be applied when coverage

information is hard to collect.

∗Corresponding author.
†Sorted in the alphabet order of the last names.

To prioritize test cases without coverage information, input-

based prioritization [18], [19] is proposed by utilizing test in-

put alone. In particular, two existing input-based prioritization

approaches utilize either linguistic data (i.e., identifier names,

comments and string literals) of test scripts or test-input text.

However, when test inputs are programs (e.g., the test inputs

of C compilers are C programs), our preliminary study shows

that the time spent by these input-based approaches on prioriti-

zation is large1. That is, these existing input-based approaches

can hardly be applied when test inputs are programs due to

their efficiency problem.

To address the preceding issues, in this paper, we focus

on prioritizing test cases for C compilers without coverage

information. We choose C compilers due to the following

reasons. First, the reliability of C compilers is very important

because many safety-critical software are written in C. Second,

C compiler testing is a typical and practical testing scenario for

test case prioritization without coverage information, because

collecting such information for C compilers is costly. Third, as

C compiler testing consumes much time, it is more beneficial

to execute fault-revealing test cases earlier. In the literature

of C compiler testing, Yang et al. [20] spent three years on

detecting 325 C compiler bugs, and Le et al. [21] spent eleven

months on detecting 147 C compiler bugs. That is, test case

prioritization is useful and important for C compiler testing.

In particular, we propose a novel text-vector based approach

to test case prioritization, which transforms each test input

into a text-vector representing its fault-relevant characteristics.

In particular, our approach regards test inputs as text, and

extracts their tokens reflecting fault-relevant characteristics

so as to transform test inputs into a set of vectors. Then,

after normalizing the values of elements in the set of vectors,

our approach gives three prioritization strategies (i.e., greedy

strategy, adaptive random strategy and search strategy) to

prioritize test cases based on the set of vectors. Moreover,

1We applied the input-based approach proposed by Jiang and Chan [19]
to a test suite and found that its time spent on prioritization is even far
larger than the time spent on test suite execution. More details are referred to
Section III-F1. Furthermore, the input-based approach proposed by Thomas et
al. [18] achieves close efficiency to the basic string-based approach [18], which
is slower than the approach proposed by Jiang and Chan [19]. Therefore, due
to their high time cost for prioritization, neither of these approaches may be
applied to software systems whose test inputs are programs (e.g., compilers).

to improve the prioritization efficiency, we apply principal

component analysis (PCA) to optimize our approach with the

adaptive random and search strategies. Although our approach

is proposed to aid C compiler testing, it is not specific to

C compiler testing and can be extended to other testing

scenarios. More discussion on such extensions are referred to

Section IV-B.

To investigate the efficiency and effectiveness of our ap-

proach, we apply our approach to two C compilers (i.e., GCC

and LLVM), which cover all C compilers used in the literature

of C compiler testing [20], [21], [22]. The experimental

results show that our approach is much more efficient than

the existing approaches and is effective in prioritizing test

cases for C compiler testing. Furthermore, we also explore

the impact of various factors (i.e., the PCA processing and

distance formulae) on the effectiveness and efficiency of our

approach. The results show that the PCA processing improves

the efficiency of our approach by slight loss on effectiveness.

Our approach tends to be stably effective and efficient no

matter which distance formula is used.

To sum up, this paper has the following major contributions.

• We identify a practical and important test case prioritiza-

tion scenario—the testing scenario of C compilers.

• We propose a novel text-vector based test case prioriti-

zation approach for C compilers.

• We conduct an experimental study that confirms the

efficiency and effectiveness of our approach.

The remaining of this paper is organized as follows: Sec-

tion II presents the details of our approach. Section III presents

our experimental study and analyzes our experimental results.

Section IV discusses the implicit precondition of test case

prioritization and the extension of our approach. Section V

presents the related work. Section VI concludes our work.

II. APPROACH

In this section, we present our approach in detail. As the

test inputs of C compilers are C programs, in the remainder of

this paper, we use the terms “test program” and “test input”

exchangeably. Our approach consists of the following three

steps.

• Our approach regards test programs as text and extracts

tokens reflecting fault-relevant characteristics of the test

program from text, and then transforms test programs into

a set of vectors by counting the number of occurrences

of each token for each test program.

• Our approach normalizes the values of elements in the

vectors into an interval between 0 and 1.

• Our approach gives three prioritization strategies (i.e.,

greedy strategy, adaptive random strategy and search

strategy) to prioritize the set of test programs.

In particular, in order to improve the prioritization effi-

ciency, we propose to use the PCA processing to optimize our

approach. An overview of our approach is shown in Fig. 1.

Section II-A presents the process of token extraction. Sec-

tion II-B presents the process of normalization. Section II-C

presents three prioritization strategies in detail. Section II-D

presents the process of optimization (i.e., the PCA processing)

in our approach.

A. Token Extraction

Our approach utilizes only test-input information to pri-

oritize test programs. For C compilers, our approach first

regards test programs as text. More concretely, our approach

recognizes test programs as token streams. Then, our approach

extracts tokens reflecting fault-relevant characteristics of the

test program from text. More concretely, our approach con-

siders three types of fault-relevant characteristics of the test

program.

• Statement Characteristics: For C programs, “statement”

is a kind of information reflecting fault-relevant char-

acteristics of the test program. For example, if a test

program does not have loop statements, the test pro-

gram cannot detect loop optimization bugs. That is,

as loop optimization bugs result from the existence of

loop statements, loop statements characterize such bugs.

In particular, statement keywords are the best way to

extract statement characteristics from text. Therefore, our

approach considers all statement keywords in C language

as the first type of characteristics, e.g., for, while, if, else,

goto, etc.

• Type and Modifier Characteristics: For C programs,

“type” also reflects fault-relevant characteristics of the

test program. For example, “struct” is a complex and

error-prone variable type, and it usually leads to align

bugs. Furthermore, modifier keywords are usually used

together with type keywords in C language. Therefore,

our approach regards type keywords and modifier key-

words in C language as the second type of characteristics,

e.g., struct, union, int, static, const, etc.

• Operator Characteristics: Test programs tend to con-

tain many operators to implement some functions. In

particular, when test programs contain a large number

of operators and form a series of complex operations,

the bugs related to operation optimization tend to be

triggered. Therefore, our approach considers all operators

in C language as the third type of characteristics, e.g.,

++, −−, !, ||, >>, etc.

After extracting the three types of tokens reflecting fault-

relevant characteristics from text, our approach counts the

number of occurrences of each token for each test program.

Therefore, our approach transforms each test program into a

text vector.

B. Normalization

As each element in a vector is numeric type, our approach

normalizes each value of these elements in each vector into

the interval [0, 1] using the min-max normalization [23] in

order to adjust values measured on different scales to a

common scale. Supposed the set of test programs is denoted

as P = {p1, p2, . . . , pn} and the set of vectors representing P
is denoted as V = {v1, v2, . . . , vn}, and the set of elements in

Fig. 1. Overview of Our Approach

a vector is denoted as E = {e1, e2, . . . , em}, we use a variable

xij to represent the value of the element ej in the vector vi
before normalization and use a variable x∗

ij to represent the

value of the element ej in the vector vi after normalization

where 1 ≤ i ≤ n and 1 ≤ j ≤ m. In particular, the

normalization formula is shown as follows.

x∗
ij =

xij −min({xkj |1 ≤ k ≤ n})
max({xkj |1 ≤ k ≤ n})−min({xkj |1 ≤ k ≤ n}) (1)

C. Prioritization Strategies

Based on the set of processed vectors, our approach gives

three prioritization strategies to order the set of test programs,

including greedy strategy, adaptive random strategy and search

strategy.

1) Greedy Strategy: The traditional greedy strategy con-

tains the total and additional techniques, both of which are

based on coverage information [4]. However, our approach

gets rid of coverage information and considers only test-input

information, and thus we adapt the total technique to use in our

approach. That is, the greedy strategy given by our approach

is the adapted total technique.

Since each test program can be represented as a vector

whose elements are numeric type and the values of them are

normalized, our approach gives a score to each test program

by calculating the Manhattan distance between the vector and

origin vector (0, 0, . . . , 0). The formula calculating the score

for each test program is expressed as follows.

score(vi) =
m∑

k=1

|xik| (2)

After giving a score to each test program, our approach pri-

oritizes test programs in the descending order of their scores.

That is, our approach uses the scores of test programs to

replace coverage information in the traditional total technique

to prioritize test programs.

2) Adaptive Random Strategy: Jiang et al. [24], [19] applied

the idea of adaptive random testing to prioritize test cases. The

adaptive random strategy selects next test case that has the

maximum distance with the selected test cases. In particular,

the set of unselected test cases is called the candidate set in

adaptive random testing [25].

Similarly, our approach adapts the adaptive random strategy

to prioritize test programs. In particular, our approach uses

Manhattan distance to calculate the distance between two test

programs. The formula calculating the distance between two

test programs is expressed as follows.

distance(vi, vj) =
m∑

k=1

|xik − xjk| (3)

3) Search Strategy: Recently, Jiang and Chan [19] proposed

to use the local beam search strategy to prioritize test cases,

and achieved good effectiveness. Therefore, our approach

adapts the search strategy (i.e., the local beam search strategy)

to prioritize test programs based on the set of vectors.

In fact, the local beam search strategy can be regarded

as the strategy between random order prioritization and the

adaptive random strategy. That is, the adaptive random strategy

calculates all the distances between selected test programs and

the test programs in the candidate set for each selection, but

the local beam search strategy samples randomly a subset of

unselected test programs from the candidate set and calculates

the distances between the subset of unselected test programs

and all the selected test programs for each selection. In

particular, our approach also uses Formula 3 to calculate the

distance between test programs in this search strategy.

In particular, Manhattan distance is the default distance

formula in our approach with the three strategies, but other

distance formulae can be also used in our approach, which

will be discussed in Section III-F4.

D. Optimization: Principal Components Analysis

Because the adaptive random and search strategies consider

the interaction effect between test programs and the total time

spent on calculating the distance between test programs tends

to be large especially when the number of test programs is

large, which is confirmed in Section III-F1, our approaches

with the two strategies need to be optimized. Therefore, we

optimize our approaches with the two strategies by the PCA

processing. The PCA processing improves the efficiency by

reducing dimension for the set of normalized vectors before

using the two strategies. Furthermore, for our approach with

the greedy strategy, it does not include the interaction effect

between test programs, and thus it does not have the high time

cost issue. Therefore, our approach with the greedy strategy

does not need to be optimized by the PCA processing2.
PCA is a statistical method widely used in dimension

reduction processing and it is based on the assumption that

most information is contained in the directions along which

the variations are the largest [26], [27]. Therefore, it uses an

orthogonal transformation to convert a set of observations of

possibly correlated elements into a set of values of linearly

uncorrelated elements called principal components. These

principal components retain the maximum possible variance

of the original set. The number of principal components is

smaller than or equal to the number of elements in the original

vector. Therefore, the optimization by the PCA processing

generates a set of new vectors that filter some elements

including noise.

III. EXPERIMENTAL STUDY

In C compiler testing, the efficiency is as important as the

effectiveness of a prioritization approach. Thus, we conduct an

experimental study by applying our approach to C compilers,

to investigate its efficiency as well as its effectiveness.
In particular, our study addresses the following four research

questions. The first two research questions are concerned with

the efficiency and effectiveness of our approach, and the

other two research questions are concerned with the impact

of various factors on our approach.

• RQ1: How does our approach perform comparing with

the existing test case prioritization approaches in terms

of efficiency?

• RQ2: How does our approach perform comparing with

the existing test case prioritization approaches in terms

of effectiveness?

• RQ3: How does the PCA processing impact our approach

in terms of effectiveness and efficiency?

• RQ4: How do distance formulae impact our approach in

terms of effectiveness and efficiency?

A. Subjects, Test Programs, and Bugs
We use two mainstream open-source C compilers in this

experimental study, namely GCC3 and LLVM4 working in

2Dimension reduction by the PCA processing can optimize efficiency but
it may also sacrifice effectiveness due to filtering some elements. That is, if
an approach does not have efficiency issue, it does not need to be optimized
by the PCA processing.

3http://gcc.gnu.org/.
4The LLVM project is a collection of compiler and toolchain techniques,

which is accessible at http://llvm.org/. To be consistent with previous work
on compiler testing, we also use LLVM to represent the compiler used in
LLVM, which is mainly Clang.

TABLE I
DENSITY OF BUGS

ID 1 2 3 4 5 6 7 8 9 10
GCC 1,220 1 1 2 1 1 7 1 3 1
LLVM 2 7 1 4 1 2 1 1 4 42

ID 11 12 13 14 15 16 17 18 19 20
GCC 1 3 1 23 7 2 7 28 1 1
LLVM 1 1 1 3 - - - - - -

the x86 64-Linux platform. The two subjects cover all C

compilers used in the literature of C compiler testing [20],

[21], [22].

In particular, our study uses GCC 4.4.3 and LLVM 2.6,

whose number of lines of code is 3,343,377 and 4,727,209,

respectively.

Similar to the existing work on compiler testing [21],

[28], [29], our study uses a random program generation tool

CSmtih5 [20] to generate a set of C programs, which serve as

the test cases to be prioritized. In total, our study uses 82,593

test programs for each compiler.

Furthermore, we apply these test programs to each compiler

and detect 20 bugs in GCC 4.4.3 and 14 bugs in LLVM 2.6.

That is, the bugs used in our study are real compiler bugs.

Note that such a number of bugs is not trivial according to the

literature of compiler testing [20], [21]. Furthermore, Table I

presents the number of test programs used to detect each bug,

where the first and fourth rows represent the ID of each bug

and the other rows represent the number of test programs

detecting the corresponding bugs.

B. Independent Variables

We consider test case prioritization approaches as indepen-

dent variables in the study.

1) Compared Approaches: In our study, we consider the

following test case prioritization approaches as comparison

approaches.

• Random order prioritization (RO): RO selects test pro-

grams randomly from the given test suite until all the

test programs are selected. Furthermore, to reduce the

influence of random selection on RO, for each test suite

we repeat RO 10 times and use their average results. As

for a test suite RO tends to produce various prioritization

results, RO is not a practical prioritization approach.

However, it usually serves as one of the baselines in the

literature of test case prioritization [19], [30], [24] and

so does it in this paper. In other words, RO actually

represents the testing result without any prioritization

approach.

• Input-based adaptive random prioritization (IARP): To

our knowledge, IARP is the latest work on input-based

test case prioritization [19], which prioritizes test pro-

grams based on the edit distance between selected test

programs and unselected test programs.

5The C program generated by CSmith does not require external inputs, and
its output is the checksum of the non-pointer global variables of the program
at the end of the execution of the C program.

2) Our Prioritization Approach: As our approach gives

various prioritization strategies (i.e., greedy strategy, adaptive

random strategy and search strategy), it forms a family of text-

vector based test case prioritization approaches. In particular,

we denote our approach with the greedy strategy as TB-G, our

approach with the adaptive random strategy as TB-AR and our

approach with the search strategy as TB-S.

3) Variants of Our Approach: In order to explore the impact

of various factors (i.e., the PCA processing and distance for-

mulae) on our approach, we adapt our approach by changing

these factors.

As the PCA processing is proposed to improve the efficiency

of test case prioritization with the adaptive random strategy

or the search strategy, we further implement two variants of

our approach: (1) TB-AR′, our approach with the adaptive

random strategy but without the PCA processing, and (2) TB-

S′, our approach with the search strategy but without the PCA

processing.

As distance formulae could affect the selection of test pro-

grams in test case prioritization, we implement five variants of

our approach by using other distance formulae rather than For-

mula 2 or 3. In particular, the other two distance formulae are

Euclidean distance and Cosine distance formulae, which are

expressed by Formulae 4 and 5, respectively. For any two vec-

tors vi = (xi1, xi2, . . . , xim) and vj = (xj1, xj2, . . . , xjm),
Formula 4 calculates their Euclidean distance and Formula 5

calculates their Cosine distance. The Cosine distance is not

implemented in our TB-G because Cosine distances requires

the cosine value of the angle between two vectors, but the

greedy strategy does not include the interaction effect between

two test programs. We adopt Euclidean distance for TB-G by

always setting one vector as (0, 0, . . . , 0). In summary, we

implement the following variants of our approach: (1) TB-G

with Euclidean distance, (2) TB-AR with Euclidean distance,

(3) TB-AR with Cosine distance, (4) TB-S with Euclidean

distance, and (5) TB-S with Cosine distance.

Euc(vi, vj) =

√√√√
m∑

k=1

(xik − xjk)2 (4)

Cos(vi, vj) = 1−
∑m

k=1(xikxjk)√∑
x2
ik

√∑
x2
jk

(5)

C. Dependent Variables

The first dependent variable considered in our study is the

time spent on prioritization, which is used to measure the

efficiency of a test case prioritization approach.

The second dependent variable considered in our study

is the number of executed test programs when detecting

each bug. Based on it, we can calculate the APFD value,

which is an effective measurement [4] on the rate of bug

detection. APFD is the average rate of bugs detected during

the execution of prioritized test programs and is widely used to

measure the effectiveness of a test case prioritization approach.

More concretely, supposed T is a test suite containing n test

programs, T ′ is the prioritized test suite, and F is a set of m
bugs detected by T , TFi is the first test program in T ′ that

detects the ith bug, we use Formula 6 to calculate the APFD

value for T ′.

APFD = 1− TF1 + TF2 + . . .+ TFm

nm
+

1

2n
(6)

D. Experimental Process

Initially, for the two C compilers, we randomly generate a

large number of test programs using CSmith, which compose

the test suite to prioritize. Then we apply these test programs

to test each compiler, recoding the test programs that reveal

each bug and the time spent on each test program execution.

First, we apply a family of our approaches with different

prioritization strategies (i.e., TB-G, TB-AR and TB-S), the

compared test case prioritization approaches (i.e., RO and

IARP) to these test programs, recording the time spent on

prioritization, the time spent on each step of our approach

respectively, and the prioritization results, i.e., the execution

order of the test programs. To reduce the impact of random

selection on RO, we repeat RO 10 times and use the average

results.

Second, in order to explore the impact of the PCA process-

ing and distance formulae on our approach, we apply a family

of variants of our approach including TB-AR′ and TB-S′ and

the corresponding variants with different distance formulae to

these test programs and record the same information as well.

As the PCA processing targets at saving time on distance

calculation, we further record the total time spent on distance

calculation using our approach with PCA and our approach

without PCA, respectively.

Finally, for each prioritization approach involved in our

study, we calculate its APFD value.

All the experiments are conducted on a workstation with

Intel E5504 Quad-Core Processor 2.0GHz and 100G memory,

running Ubuntu 12.04.

E. Threats to Validity

The threats to internal validity mainly lie in the implementa-

tions of a family of our prioritization approaches with different

prioritization strategies, the variants of our approach and the

compared prioritization approaches. To avoid implementation

error, at least two authors of this paper review the source code

of these approaches. On the other hand, the implementations of

these prioritization approaches could influence the efficiency

of these approaches. To reduce this threat, we use C++

language to implement these approaches and try our best to

optimize these implementations.

The threats to external validity mainly lie in the subjects

and test programs. To reduce the threat of subjects, we use

all the compilers that are used in the literature of C compiler

testing [20], [21], but they may be not representative for other

C compilers. To reduce the threat of test programs, we use a

large number of C programs randomly generated by CSmith

as the prior work did [20], [21], but these C programs may

not be representative for other C programs. In future, we will

use more types of test programs (e.g., manually written C

programs or test programs suited with compilers) so as to

reduce this threat.

F. Results and Analysis

The following four subsections are to answer our four

research questions, respectively.

1) Efficiency: In our study, we find that the time spent

on prioritization using IARP is very long, even far longer

than the time spent on test suite execution6. That is, IARP is

infeasible for C compilers. The main reason for IARP’s large

prioritization cost is that IARP regards the whole test program

as text and calculates the distance between them using edit

distance. Besides, the time spent on prioritization using TB-

S is also larger than the time spent on test suite execution,

and thus TB-S is also infeasible for C compilers. Although

extracting tokens to replace the whole text indeed saves a great

deal of time, the time spent on prioritization using TB-S is still

large, because the search strategy has heavy computational

effort when the size of test suite is large (e.g., 82,593).

In fact, the time spent on our prioritization approaches can

be divided into two parts. The first one (denoted as T1) is the

time spent on extracting tokens from text, transforming all the

test programs into a set of vectors and processing the set of

vectors, and the second one (denoted as T2) is the time spent

on ordering test programs using some prioritization strategy.

Fig. 2 presents the time spent on prioritization by the

remaining feasible approaches—RO, TB-G and TB-AR. In

this figure, the x axis represents the number of prioritized

test programs, and the y axis represents the time spent on

prioritization. When the value of x is 0, the value of y

represents T1 for each approach. In our study, T1 of TB-G

is 4,020 seconds, T1 of TB-AR is 4,028 seconds, and T1 of

RO is 0 seconds. Furthermore, with the number of prioritized

test programs increasing, the increment of T2 of RO and TB-G

is trivial. In our study, T2 that RO takes to order all the test

programs is 0.003 seconds, T2 that TB-G takes to order all

the test programs is 0.014 seconds, and T2 that TB-AR takes

to order all the test programs is 17,659 seconds.

From Fig. 2, the time spent on prioritization by TB-AR is

much larger than that by RO and TB-G. With the number

of test programs increasing from 50 ∗ 103 for TB-AR, the

increment speed of time spent on prioritization slows down

gradually. Moreover, although the time spent on prioritization

by TB-AR is larger than that by RO and TB-G, it is still far

less than the time spent on test suite execution because the

time spent on prioritization by TB-AR is about six hours but

the time spent on test suite execution is about three days.

In conclusion, the time spent on prioritization by TB-G

and TB-AR is acceptable because it is far less than the time

spent on test suite execution. TB-G is much more efficient

than TB-AR. Besides, IARP and TB-S are infeasible since

6The time spent on test suite execution is about three days.

Number of Prioritized Test Programs (*10^3)

All80706050403020100

T
im

e
 S

p
e

n
t

o
n

 P
ri

o
ri

ti
za

ti
o

n
 (

s
e

c
o

n
d

s
)

25,000

20,000

15,000

10,000

5,000

0

TB-AR

TB-G

RO

Fig. 2. Efficiency of Prioritization Approaches

Number of Detected Bugs

2018161412108642

P
e

rc
e

n
ta

g
e

 o
f

E
x

e
c

u
te

d
 T

e
s

t
P

ro
g

ra
m

s

100%

80%

60%

40%

20%

0%

TB-AR

TB-G

RO

(a) GCC

Number of Detected Bugs

1413121110987654321

P
e

rc
e

n
ta

g
e

 o
f

E
x

e
c

u
te

d
 T

e
s

t
P

ro
g

ra
m

s

100%

80%

60%

40%

20%

0%

TB-AR

TB-G

RO

(b) LLVM

Fig. 3. Percentage of Executed Test Programs to Reveal Each Bug

the time spent on prioritization is very long, even larger

than the time spent on test suite execution, and thus we do

not consider the two approaches in subsequent sections (i.e.,

Sections III-F2, III-F3 and III-F4).

2) Effectiveness: Fig. 3 presents the percentage of test

programs used to detect each bug through executing the

prioritization results of RO, TB-G and TB-AR. In this figure,

the x axis represents the number of detected bugs, and the

y axis represents the percentage of executed test programs.

In particular, Fig. 3(a) and Fig. 3(b) present the effectiveness

of these approaches for GCC and LLVM, respectively. From

the figure, the lines representing TB-G and TB-AR are almost

always below the line representing RO. That is, when detecting

the same number of bugs, the number of executed test pro-

grams by TB-G and TB-AR is smaller than that by RO, and

thus TB-G and TB-AR are more effective than RO for both

C compilers. Besides, the line representing TB-AR is below

the line representing TB-G in most cases in Fig. 3(a), and

thus TB-AR is more effective than TB-G for GCC; the line

representing TB-AR is close to the line representing TB-G in

Fig. 3(b), and thus the two approaches have close effectiveness

for LLVM.

We further compare the AFPD values of the compared

approaches, whose results are shown in Table II. From this

table, for both GCC and LLVM the APFD values of TB-G

and TB-AR are larger than that of RO, and thus TB-G and

TB-AR are more effective than RO. For TB-G and TB-AR,

TABLE II
APFD VALUES OF PRIORITIZATION APPROACHES

Compiler RO TB-G TB-AR
GCC 0.6611 0.7577 0.7790
LLVM 0.6400 0.7836 0.7829

TABLE III
ONE-TAILED PAIRED SAMPLE T TEST (α = 0.05)

Compiler RO v.s. TB-G RO v.s. TB-AR
GCC 0.000026 0.000005
LLVM 0.000017 0.000017

the APFD value of TB-AR is larger than that of TB-G for

GCC, and their APFD values are close for LLVM, and thus

TB-AR is slightly more effective than TB-G. Moreover, to

learn whether TB-G and TB-AR significantly outperform RO,

we further perform a one-tailed paired sample T test (with

the significance level α set to be 0.05). The results are given

in Table III. From this table, all the values are much smaller

than 0.05, and thus TB-G and TB-AR are significantly more

effective than RO in terms of APFD values.

Besides, Fig. 4 presents the total time (i.e., the time spent

on prioritization and test execution) used to detect each bug

by using RO and TB-G, where the y axis represents the total

time spent on prioritization and test program execution before

detecting the corresponding bug. Here we do not present

the results of our proposed TB-AR because TB-G seems to

be much more efficient but slightly less effective than TB-

AR resulting from the preceding analysis. As RO has been

repeated 10 times, we use boxplots to represent its results, and

then we use the line to represent the results of TB-G. From

this figure, the two prioritization approaches seem to achieve

similar effectiveness in terms of time used to detect each bug.

However, the proposed TB-G is more stable than RO, because

the former approach is seldom higher than the higher quartile

of RO (i.e., top of the box). That is, RO produces less stable

prioritization results, whereas TB-G produces stable prioriti-

zation results although the latter seems to be less significantly

effective. This observation is as expected, because similar

to existing prioritization approaches, the proposed approach

does not take into account test-execution time and assume

the execution time of different test programs to be equal.

Furthermore, this observation indicates an important practical

aspect in test case prioritization, which should be addressed

in future work.

In addition, we find that when the size of the test suite is

small, the time spent on prioritization using TB-S is less than

the time spent on test suite execution, and thus TB-S may be

applicable for a small test suite. Therefore, in order to evaluate

the effectiveness of TB-S, we conduct a study using a partial

test suite (i.e., 30,000) from the entire test suite (i.e., 82,593),

and prioritize it by various approaches (i.e., RO, TB-G, TB-

AR, TB-S). Table IV shows their APFD values. From this

table, TB-G and TB-AR are more effective than RO and TB-

S for both two compilers, because the APFD values of TB-G

0

50,000

100,000

150,000

200,000

250,000

300,000

2 4 6 8 10 12 14 16 18 20
Number of Detected Bugs

Ti
m

e
Sp

en
t o

n
R

un
ni

ng
 T

es
t P

ro
gr

am
s

(s
ec

on
ds

)

(a) GCC

0

50,000

100,000

150,000

200,000

250,000

300,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Number of Detected Bugs

Ti
m

e
Sp

en
t o

n
R

un
ni

ng
 T

es
t P

ro
gr

am
s

(s
ec

on
ds

)

(b) LLVM

Fig. 4. Test-Execution Time to Reveal Bugs

TABLE IV
APFD VALUES FOR THE PARTIAL TEST SUITE

Compiler RO TB-G TB-AR TB-S
GCC 0.6594 0.7399 0.7283 0.6647
LLVM 0.6174 0.8429 0.8444 0.5314

and TB-AR are larger than those of RO and TB-S. That is,

for TB-S, when the size of the test suite is small, it may be

applicable in efficiency, but its effectiveness is worse than the

effectiveness of TB-G and TB-AR. In particular, even when the

size of the test suite is small, the time spent on prioritization

using IARP is still larger than the time spent on test suite

execution, and thus IARP is still infeasible.

In conclusion, TB-AR and TB-G are more effective than the

other approaches in terms of APFD values, and TB-G is more

stable than the other approaches in terms of time used to detect

each bug. Besides, when the size of the test suite is small, TB-

S may be applicable in efficiency but its effectiveness is worse

than the effectiveness of TB-G and TB-AR.

3) PCA Impact: For TB-AR and TB-S, our approach uses

PCA to process vectors. Since TB-S is infeasible (explained

in Section III-F1), we only evaluate the impact of the PCA

processing on the effectiveness and efficiency of TB-AR.

Similarly, when evaluating the impact of distance formulae

in Section III-F4, we also do not consider TB-S.

Fig. 5 presents the impact of the PCA processing on the

effectiveness of TB-AR. Table V presents the impact of the

PCA processing on the APFD values and efficiency of TB-

AR. In this table, the first two columns present the APFD

values of TB-AR with the PCA processing (i.e., TB-AR) and

TB-AR without the PCA processing (i.e., TB-AR′) on GCC

and LLVM, respectively. The last column presents the time

spent on the PCA processing and calculating all the distances

between test programs (explained in Section III-D). The PCA

processing targets saving time on distance calculation, but it

may also incur extra cost from the process of PCA. Thus, in

the last column of this table, the time before “+” represents

the time spent on the PCA processing, and the time behind

“+” represents the time spent on calculating all the distances

between test programs.

From Fig. 5 and the first two columns in Table V, the

effectiveness of TB-AR and TB-AR′ are close on both GCC

TABLE V
IMPACT OF THE PCA PROCESSING

Approach APFD on GCC APFD on LLVM Time (seconds)
TB-AR 0.7790 0.7829 8 + 283
TB-AR′ 0.7804 0.7948 0 + 1,599

Number of Detected Bugs

2018161412108642

P
e

rc
e

n
ta

g
e

 o
f

E
x

e
c

u
te

d
 T

e
s

t
P

ro
g

ra
m

s

100%

80%

60%

40%

20%

0%

TB-AR’

TB-AR

(a) GCC

Number of Detected Bugs

1413121110987654321

P
e

rc
e

n
ta

g
e

 o
f

E
x

e
c

u
te

d
 T

e
s

t
P

ro
g

ra
m

s

100%

80%

60%

40%

20%

0%

TB-AR’

TB-AR

(b) LLVM

Fig. 5. Effectiveness of the PCA Processing

and LLVM. That is, although the PCA processing reduces

dimension of vectors, it has little impact on the effectiveness—

only slight loss on effectiveness, which means that principle

components indeed retain the important elements of vectors in

our approach. From the last column in Table V, the total time

spent on the PCA processing and calculating all the distances

between test programs by TB-AR is much less than that by

TB-AR′. That is, the PCA processing makes TB-AR more

efficient due to dimension reduction.

In conclusion, the PCA processing improves the efficiency

of TB-AR by slight loss on effectiveness.

4) Distance Impact: As distance formulae tend to impact

the selection of test programs in test case prioritization,

distance formulae are also an important factor that may have

an impact on the effectiveness and efficiency of TB-G and

TB-AR. In order to explore the impact of distance formulae,

we introduce Euclidean distance and Cosine distance formulae

to our approach besides Manhattan distance. In particular,

we cannot use Cosine distance in TB-G (explained in Sec-

tion III-B).

Fig. 6 shows the impact of distance formulae on the

effectiveness of our approach. Besides, we also calculate their

APFD values to assess their effectiveness, which is shown

in Table VI. From this figure and this table, for TB-G,

the effectiveness of Manhattan distance is close to that of

Euclidean distance for both C compilers; for TB-AR, the

effectiveness of the three distance formulae are close for GCC

and the effectiveness of Manhattan distance seems to be better

than that of Euclidean distance and Cosine distance for LLVM.

TABLE VI
APFD VALUES USING DIFFERENT DISTANCE FORMULAE

Sub. TB-G TB-AR
Manhattan Euclidean Manhattan Euclidean Cosine

GCC 0.7577 0.7661 0.7790 0.7765 0.7722
LLVM 0.7836 0.7947 0.7829 0.7674 0.7181

TABLE VII
TIME SPENT ON PRIORITIZATION USING DIFFERENT DISTANCE FORMULAE

(SECONDS)

Approach Manhattan Euclidean Cosine
TB-G 4,020 4,020 —
TB-AR 21,717 20,820 20,596

In addition, Table VII presents the time spent on prioriti-

zation by TB-G and TB-AR with different distance formulae.

From this table, TB-G with different distance formulae has the

same time spent on prioritization, and TB-AR with different

distance formulae has similar time spent on prioritization.

Therefore, distance formulae have no obvious impact on the

efficiency of our approach.

In conclusion, our approach tends to be stably effective and

efficient no matter which distance formula is used. Manhattan

distance seems to be slightly more effective than the other two

popular distance formulae.

5) Summary and Implication: In summary, we get the

following findings.

• For C compilers, IARP and TB-S are infeasible due to

their high time cost on prioritization.

• The time spent on prioritization using TB-G and TB-AR

is acceptable. TB-G is much more efficient than TB-AR.

• TB-AR and TB-G are more effective than the other

prioritization approaches in terms of APFD values, and

TB-G is more stable than the other approaches in terms

of time used to detect each bug.

• The PCA processing improves the efficiency of our

approach by slight loss on effectiveness.

• Our approach tends to be stably effective and efficient

no matter which distance formula is used. Manhattan

distance is slightly more effective than the other two

distance formulae.

Furthermore, these findings imply that, because TB-G is

much more efficient, and more stable in terms of time used

to detect each bug, and slightly less effective than TB-AR

in terms of APFD values, TB-G is more cost-effective than

TB-AR for C compilers.

IV. DISCUSSION

A. Implicit Precondition of Test Case Prioritization

The goal of test case prioritization is to schedule the

execution order of test cases so as to detect bugs as early

as possible.

If the time spent on test suite execution is trivial, test case

prioritization seems to be not so necessary, because it does not

matter much whether a bug is detected one minute early or

later. Therefore, only if the time spent on test suite execution

is long, test case prioritization manifests its value, which is

actually an implicit precondition of test case prioritization.

However, most existing research [24], [31], [4], [19], [8] of test

case prioritization evaluates their approaches in the scenario

that the time spent on test suite execution ranges from only

a few seconds to tens of minutes, thus they do not meet the

Number of Detected Bugs

2018161412108642

P
e

rc
e

n
ta

g
e

 o
f

E
x

e
c

u
te

d
 T

e
s

t
P

ro
g

ra
m

s

100%

80%

60%

40%

20%

0%

Euclidean

Manhattan

(a) TB-G for GCC

Number of Detected Bugs

2018161412108642

P
e

rc
e

n
ta

g
e

 o
f

E
x

e
c

u
te

d
 T

e
s

t
P

ro
g

ra
m

s

100%

80%

60%

40%

20%

0%

Cosine

Euclidean

Manhattan

(b) TB-AR for GCC

Number of Detected Bugs

1413121110987654321

P
e

rc
e

n
ta

g
e

 o
f

E
x

e
c

u
te

d
 T

e
s

t
P

ro
g

ra
m

s

100%

80%

60%

40%

20%

0%

Euclidean

Manhattan

(c) TB-G for LLVM

Number of Detected Bugs

1413121110987654321

P
e

rc
e

n
ta

g
e

 o
f

E
x

e
c

u
te

d
 T

e
s

t
P

ro
g

ra
m

s

100%

80%

60%

40%

20%

0%

Cosine

Euclidean

Manhattan

(d) TB-AR for LLVM

Fig. 6. Impact of Distance Formulae

implicit precondition of test case prioritization. In our study,

we use a real case—C compiler testing, and its time spent

on test suite execution is very long. For example, Yang et

al. [20] spend three years detecting 325 previously unknown

C compiler bugs, and Le et al. [21] spend eleven months

detecting 147 C compiler bugs. Thus, our study meets the

implicit assumption of test case prioritization, and our results

confirm the efficiency and effectiveness of our approach.

Therefore, our work authentically manifests the real value of

test case prioritization.

B. Extension of Our Approach

Our approach can be extended from two aspects: improving

effectiveness and efficiency of our approach and expanding

applications of our approach.

Our approach considers three types of fault-relevant charac-

teristics of the test program including statement characteristics,

type and modifier characteristics and operator characteristics.

In fact, test programs have other important characteristics that

may be related to bug detection, such as nest relations: if

“struct” and “struct” are nested in a test program, it may lead to

infinite loop on invalid struct redefinition. Furthermore, instead

of representing a test program by a frequency vector, we may

represent it by a sequence of tokens in the test program, which

may help keep more accurate information of a test program.

In future, we will improve the effectiveness of our approach

by considering different representations of test programs.

In addition, in this paper, our approach targets at C compil-

ers, but in fact, it can be easily extended to other compilers

(e.g., Java compilers), even all the software systems whose test

inputs are programs (e.g., operating systems and browsers).

Since only the first step in our approach is specific to the

software systems under test, our approach can be extended

to different software systems by considering different tokens

reflecting specific fault-relevant characteristics of the test in-

put. For other compilers (e.g., Java compilers), the test inputs

are also programs, and thus we could also extract similar

tokens reflecting fault-relevant characteristics (e.g., statement

characteristics, type and modifier characteristics and operator

characteristics) like C compilers. For other software systems

whose test inputs are programs/scripts (e.g., operating systems,

image processing software, and browsers), we can also extract

specific tokens reflecting fault-relevant characteristics by an-

alyzing information related to bug detection. After extracting

tokens reflecting fault-relevant characteristics from test-input

text, we can apply the last two steps in our approach and then

get the prioritized test suite. Therefore, our approach can be

generalized from C compilers to the kind of software systems

whose test inputs are programs.

V. RELATED WORK

Since a lot of research focuses on test case prioritization,

we classify them into four categories as prior work [8].

Prioritization Strategies. The research in this category

mainly focuses on the strategies or algorithms used in test

case prioritization. The most widely-used prioritization strat-

egy is two greedy algorithms, namely total and additional

algorithms [4]. However, as the two greedy algorithms cannot

always achieve the best effectiveness [4], Zhang et al. [8]

proposed models that unify the total and additional algorithms

and generates a family of prioritization algorithms between

them. Besides, researchers viewed test case prioritization as a

search problem, and thus proposed various meta heuristics al-

gorithms. Li et al. [32] proposed the 2-optimal strategy, which

is a greedy algorithm based on the k-optimal algorithm [33].

In the same paper, Li et al. [32] also proposed a prioritization

strategy based on hill-climbing algorithm and a prioritization

strategy based on genetic programming algorithm. Dario et

al. [34] proposed a hypervolume-based genetic algorithm for

test case prioritization. Furthermore, Jiang et al. [24] proposed

the adaptive random strategy using the idea of adaptive random

testing [25], which selects the next test case that has the

maximum distance with selected test cases. Recently, Jiang

and Chan [19] proposed a prioritization strategy combining the

adaptive random strategy and the search strategy (i.e., the local

beam search algorithm). Tonella et al. [35] proposed a test

case prioritization approach based on user knowledge using a

machine learning algorithm. Yoo et al. [36] proposed a cluster-

based test case prioritization approach based on their dynamic

runtime behavior. Arafeen and Do [37] proposed a test case

prioritization approach based on requirement clustering and

traditional code analysis. Nguyen et al. [38] and Saha et

al. [39] proposed to prioritize test cases based on informa-

tion retrieval. In this paper, by referring to these existing

prioritization strategies, we adapt the greedy strategy (i.e., the

total algorithm), adaptive random strategy and search strategy

(i.e., the local beam search algorithm) by using test-input

information and different distance formulae to prioritize test

programs.

Criteria. The research in this category mainly focuses on

various criteria used in test case prioritization. So far, most

test case prioritization approaches utilize code-based coverage

criteria including statement and branch coverage [4], block

coverage [15], function coverage [5], modified condition/de-

cision coverage [40], method coverage [15] and statically-

estimated method coverage [17], [41]. Besides, Elbaum et

al. [31] proposed to use the probability of exposing faults

to prioritize test cases. Mei et al. [42] investigated dataflow

coverage for testing service-oriented software. Staats et al. [43]

used oracle coverage as a criterion. Korel et al. [44] used

the coverage of system model instead of code-based cover-

age. Ma and Zhao [45] proposed to prioritize test cases by

combining fault proneness and importance of modula. Xu and

Ding [46] proposed to prioritize test cases based on transition

coverage and roundtrip coverage. Bryce et al. [47] proposed to

prioritize test cases based on window coverage and parameter

coverage for event-driven software. Fang et al. [48] compared

logic coverage criteria on test case prioritization. Furthermore,

besides utilizing coverage criterion, Thomas et al. [18] and

Jiang et al. [19] proposed to utilize test-input information to

prioritize test cases. The former proposed to use the linguistic

data (i.e., identifier names, comments and string literals) of

test scripts to approximate their functionality and then gives

high priority to test cases that test different functionalities,

and the latter proposed to regard test inputs as text when test

inputs are string and then prioritize them by calculating the

distance between test cases using edit distance. Our approach

also uses test inputs as the only input of test case prioritization,

even similar to the approach of Thomas et al. [18] on the high

level. However, as our approach transforms each test input

(i.e., C program) into a text-vector representing fault-relevant

characteristics of the test input, our approach is light-weight,

and more effective than their work.

Constraints. The research in this category mainly focuses

on various constraints of test case prioritization. Elbaum et

al. [49] and Park et al. [50] investigated the constraints

between test cost and fault severity. Hou et al [51] investi-

gated the quota constraint on regression testing of service-

centric systems. Kim and Porter [30] investigated the resource

constraint, which may not allow the execution of the whole

test suite. Walcott et al [52], Zhang et al. [7] and Do et al. [53]

investigated time constraints, which need to select a subset of

test cases for prioritization, by proposing a genetic algorithm,

proposing an integer linear programming based technique and

conducting an empirical study evaluating the effect of time

constraints

Usage Scenarios. The research in this category mainly

focuses on usage scenarios of test case prioritization. Test

case prioritization is usually used in the regression scenario.

In general, the regression scenario has two usage scenarios,

including a specific subsequence version and a series of

subsequent versions. Elbaum et al. [5], [31] referred to the

first scenario as version-specific prioritization and the second

one as general prioritization. Most research about test case

prioritization focuses on approaches for general prioritization,

but some researchers still investigated approaches for version-

specific prioritization [54]. Furthermore, Elbaum et al. [5]

investigated to use general prioritization approaches in version-

specific prioritization. In particular, our approach not only can

be used in the two scenarios in the regression scenario, but also

can be used in the scenario where the test suite prioritized on

the current version is used to test the current version.

VI. CONCLUSION

In this paper, we propose a novel text-vector based approach

to prioritize test case for C compilers, which does not require

any coverage information at all. In particular, our approach

extracts tokens reflecting fault-relevant characteristics from

program text, and transforms test programs into a set of text-

vectors by counting the occurrence times of each token in

each test program. After processing the set of vectors, our

approach prioritizes test programs using three strategies (i.e.,

greedy strategy, adaptive random strategy and search strategy).

To evaluate the efficiency and effectiveness of our approach,

we conduct an experiment on two C compilers (i.e., GCC

and LLVM). The experimental results show that our approach

is much more efficient than the existing approaches and is

effective in prioritizing test cases, and TB-G is more cost-

effective than TB-AR and TB-S. Furthermore, we investigate

the impact of various factors (i.e., the PCA processing and

distance formulae) on the effectiveness and efficiency of our

approach. The results show that the PCA processing improves

the efficiency of our approach by slight loss on effective-

ness, and distance formulae have no obvious impact on our

approach.

VII. ACKNOWLEDGEMENT

This work is supported by the National Basic Research

Program of China (973) under Grant No. 2015CB352201, and

the National Natural Science Foundation of China under Grant

No. 61421091, 61432001, 61529201, 61522201, 61272089.

REFERENCES

[1] G. J. Myers, C. Sandler, and T. Badgett, The art of software testing.
John Wiley & Sons, 2011.

[2] Z. He, C. Liu, and H. Yan, “Software testing evolution process model
and growth of software testing quality,” Science China Information
Sciences, vol. 58, no. 3, pp. 1–6, 2015.

[3] Y. Cheng, M. Wang, Y. Xiong, D. Hao, and L. Zhang, “Empirical
evaluation of test coverage for functional programs,” in Proceedings
of 9th International Conference on Software Testing, Verification and
Validation. IEEE, 2016, p. to appear.

[4] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Test case
prioritization: An empirical study,” in Proceedings of the 1999 IEEE
International Conference on Software Maintenance. IEEE, 1999, pp.
179–188.

[5] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Prioritizing test
cases for regression testing,” in Proceedings of the 2000 ACM SIGSOFT
International Symposium on Software Testing and Analysis. ACM,
2000, pp. 102–112.

[6] D. Hao, L. Zhang, L. Zhang, G. Rothermel, and H. Mei, “A unified test
case prioritization approach,” ACM Transactions on Software Engineer-
ing and Methodology, vol. 24, no. 2, pp. 10:1–10:31, 2014.

[7] L. Zhang, S.-S. Hou, C. Guo, T. Xie, and H. Mei, “Time-aware test-case
prioritization using integer linear programming,” in Proceedings of the
18th International Symposium on Software Testing and Analysis. ACM,
2009, pp. 213–224.

[8] L. Zhang, D. Hao, L. Zhang, G. Rothermel, and H. Mei, “Bridging the
gap between the total and additional test-case prioritization strategies,”
in Proceedings of the 35th International Conference on Software Engi-
neering. IEEE, 2013, pp. 192–201.

[9] D. Hao, L. Zhang, L. Zang, Y. Wang, X. Wu, and T. Xie, “To be
optimal or not in test-case prioritization,” IEEE Transactions on Software
Engineering, p. to appear, 2015.

[10] C.-T. Lin, C.-D. Chen, C.-S. Tsai, and G. M. Kapfhammer, “History-
based test case prioritization with software version awareness,” in
Proceedings of the 18th International Conference on Engineering of
Complex Computer Systems. IEEE, 2013, pp. 171–172.

[11] T. B. Noor and H. Hemmati, “A similarity-based approach for test case
prioritization using historical failure data,” in Proceedings of the 26th
International Symposium on Software Reliability Engineering. IEEE,
2015, p. to appear.

[12] Y. Lou, D. Hao, and L. Zhang, “Mutation-based test-case prioritization
in software evolution,” in Proceedings of 26th International Symposium
on Software Reliability Engineering. IEEE, 2015, pp. 46–57.

[13] Y. Lu, Y. Lou, S. Chen, L. Zhang, D. Hao, Y. Zhou, and L. Zhang,
“How does regression test prioritization perform in real-world software
evolution?” in Proceedings of the 38th International Conference on
Software Engineering. ACM, 2016, p. to appear.

[14] D. Hao, X. Zhao, and L. Zhang, “Adaptive test-case prioritization guided
by output inspection,” in Proceedings of the 37th Annual Computer
Software and Applications Conference. IEEE, 2013, pp. 169–179.

[15] H. Do, G. Rothermel, and A. Kinneer, “Empirical studies of test case
prioritization in a junit testing environment,” in Proceedings of the 15th
International Symposium on Software Reliability Engineering. IEEE,
2004, pp. 113–124.

[16] D. Di Nardo, N. Alshahwan, L. Briand, and Y. Labiche, “Coverage-
based test case prioritisation: An industrial case study,” in Proceedings
of the 6th International Conference on Software Testing, Verification and
Validation. IEEE, 2013, pp. 302–311.

[17] H. Mei, D. Hao, L. Zhang, L. Zhang, J. Zhou, and G. Rothermel, “A
static approach to prioritizing JUnit test cases,” IEEE Transactions on
Software Engineering, vol. 38, no. 6, pp. 1258–1275, 2012.

[18] S. W. Thomas, H. Hemmati, A. E. Hassan, and D. Blostein, “Static test
case prioritization using topic models,” Empirical Software Engineering,
vol. 19, no. 1, pp. 182–212, 2014.

[19] B. Jiang and W. Chan, “Input-based adaptive randomized test case
prioritization: A local beam search approach,” Journal of Systems and
Software, vol. 105, pp. 91–106, 2015.

[20] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding
bugs in C compilers,” in Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation.
ACM, 2011, pp. 283–294.

[21] V. Le, M. Afshari, and Z. Su, “Compiler validation via equivalence
modulo inputs,” in Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation. ACM, 2014,
pp. 216–226.

[22] J. Chen, W. Hu, D. Hao, Y. Xiong, H. Zhang, L. Zhang, and B. Xie, “An
empirical comparison of compiler testing techniques,” in Proceedings
of the 38th International Conference on Software Engineering. ACM,
2016, p. to appear.

[23] Y. K. Jain and S. K. Bhandare, “Min max normalization based data
perturbation method for privacy protection,” International Journal of
Computer & Communication Technology, vol. 2, no. 8, pp. 45–50, 2011.

[24] B. Jiang, Z. Zhang, W. K. Chan, and T. Tse, “Adaptive random test case
prioritization,” in Proceedings of the 24th International Conference on
Automated Software Engineering. IEEE, 2009, pp. 233–244.

[25] T. Y. Chen, H. Leung, and I. Mak, “Adaptive random testing,” in
Advances in Computer Science-ASIAN 2004. Higher-Level Decision
Making. Springer, 2005, pp. 320–329.

[26] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,”
Chemometrics and Intelligent Laboratory Systems, vol. 2, no. 1, pp.
37–52, 1987.

[27] I. Jolliffe, Principal component analysis. Wiley Online Library, 2002.
[28] C. Lidbury, A. Lascu, N. Chong, and A. F. Donaldson, “Many-core com-

piler fuzzing,” in Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation. ACM, 2015,
pp. 65–76.

[29] Y. Chen, A. Groce, C. Zhang, W.-K. Wong, X. Fern, E. Eide, and
J. Regehr, “Taming compiler fuzzers,” in Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, vol. 48, no. 6. ACM, 2013, pp. 197–208.

[30] J.-M. Kim and A. Porter, “A history-based test prioritization technique
for regression testing in resource constrained environments,” in Pro-
ceedings of the 24rd International Conference on Software Engineering.
IEEE, 2002, pp. 119–129.

[31] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case prioriti-
zation: A family of empirical studies,” IEEE Transactions on Software
Engineering, vol. 28, no. 2, pp. 159–182, 2002.

[32] Z. Li, M. Harman, and R. M. Hierons, “Search algorithms for regression
test case prioritization,” IEEE Transactions on Software Engineering,
vol. 33, no. 4, pp. 225–237, 2007.

[33] S. Lin, “Computer solutions of the traveling salesman problem,” Bell
System Technical Journal, vol. 44, no. 10, pp. 2245–2269, 1965.

[34] D. Di Nucci, A. Panichella, A. Zaidman, and A. De Lucia,
“Hypervolume-based search for test case prioritization,” in Proceedings
of the 7th International Symposium on Search-Based Software Engineer-
ing. Springer, 2015, pp. 157–172.

[35] P. Tonella, P. Avesani, and A. Susi, “Using the case-based ranking
methodology for test case prioritization,” in Proceedings of the 22nd
IEEE International Conference on Software Maintenance. IEEE, 2006,
pp. 123–133.

[36] S. Yoo, M. Harman, P. Tonella, and A. Susi, “Clustering test cases
to achieve effective and scalable prioritisation incorporating expert
knowledge,” in Proceedings of the 18th International Symposium on
Software Testing and Analysis. ACM, 2009, pp. 201–212.

[37] M. J. Arafeen and H. Do, “Test case prioritization using requirements-
based clustering,” in Proceedings of the 6th IEEE International Confer-
ence on Software Testing, Verification and Validation. IEEE, 2013, pp.
312–321.

[38] C. D. Nguyen, A. Marchetto, and P. Tonella, “Test case prioritization
for audit testing of evolving web services using information retrieval
techniques,” in Proceedings of the 9th IEEE International Conference
on Web Services. IEEE, 2011, pp. 636–643.

[39] R. K. Saha, L. Zhang, S. Khurshid, and D. E. Perry, “An information
retrieval approach for regression test prioritization based on program
changes,” in Proceedings of the 37th International Conference on
Software Engineering. IEEE, 2015, pp. 268–279.

[40] J. Jones, M. J. Harrold et al., “Test-suite reduction and prioritization for
modified condition/decision coverage,” IEEE Transactions on Software
Engineering, vol. 29, no. 3, pp. 195–209, 2003.

[41] L. Zhang, J. Zhou, D. Hao, L. Zhang, and H. Mei, “Prioritizing JUnit
test cases in absence of coverage information,” in Proceedings of the
25th IEEE International Conference on Software Maintenance. IEEE,
2009, pp. 19–28.

[42] L. Mei, Z. Zhang, W. Chan, and T. Tse, “Test case prioritization for
regression testing of service-oriented business applications,” in Proceed-
ings of the 18th International Conference on World Wide Web. ACM,
2009, pp. 901–910.

[43] M. Staats, P. Loyola, and G. Rothermel, “Oracle-centric test case pri-
oritization,” in Proceedings of the 23rd IEEE International Symposium
on Software Reliability Engineering. IEEE, 2012, pp. 311–320.

[44] B. Korel, L. H. Tahat, and M. Harman, “Test prioritization using system
models,” in Proceedings of the 21st IEEE International Conference on
Software Maintenance. IEEE, 2005, pp. 559–568.

[45] Z. Ma and J. Zhao, “Test case prioritization based on analysis of program
structure,” in Proceedings of the 15th Asia-Pacific Software Engineering
Conference. IEEE, 2008, pp. 471–478.

[46] D. Xu and J. Ding, “Prioritizing state-based aspect tests,” in Proceedings
of the 3rd International Conference on Software Testing, Verification and
Validation. IEEE, 2010, pp. 265–274.

[47] R. C. Bryce, S. Sampath, and A. M. Memon, “Developing a single
model and test prioritization strategies for event-driven software,” IEEE
Transactions on Software Engineering, vol. 37, no. 1, pp. 48–64, 2011.

[48] C. Fang, Z. Chen, and B. Xu, “Comparing logic coverage criteria on
test case prioritization,” Science China Information Sciences, vol. 55,
no. 12, pp. 2826–2840, 2012.

[49] S. Elbaum, A. Malishevsky, and G. Rothermel, “Incorporating varying
test costs and fault severities into test case prioritization,” in Proceedings
of the 23rd International Conference on Software Engineering. IEEE,
2001, pp. 329–338.

[50] H. Park, H. Ryu, and J. Baik, “Historical value-based approach for cost-
cognizant test case prioritization to improve the effectiveness of regres-
sion testing,” in Proceedings of the Second International Conference on
Secure System Integration and Reliability Improvement. IEEE, 2008,
pp. 39–46.

[51] S.-S. Hou, L. Zhang, T. Xie, and J.-S. Sun, “Quota-constrained test-case
prioritization for regression testing of service-centric systems,” in Pro-
ceedings of the 24th International Conference on Software Maintenance.
IEEE, 2008, pp. 257–266.

[52] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S. Roos,
“Timeaware test suite prioritization,” in Proceedings of the 2006 In-
ternational Symposium on Software Testing and Analysis. ACM, 2006,
pp. 1–12.

[53] H. Do, S. Mirarab, L. Tahvildari, and G. Rothermel, “An empirical
study of the effect of time constraints on the cost-benefits of regression
testing,” in Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ACM, 2008, pp.
71–82.

[54] A. Srivastava and J. Thiagarajan, “Effectively prioritizing tests in de-
velopment environment,” in Proceedings of the 2002 ACM SIGSOFT
International Symposium on Software Testing and Analysis. ACM,
2002, pp. 97–106.

