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Abstract
Word embedding has been widely used in various
areas to boost the performance of the neural mod-
els. However, when processing context-free lan-
guages, embedding grammar rules with word em-
bedding loses two types of information. One is the
structural relationship between the grammar rules,
and the other one is the content information of the
rule definition. In this paper, we make the first at-
tempt to learn a grammar-preserving rule embed-
ding. We first introduce a novel graph structure
to represent the context-free grammar. Then, we
apply a Graph Neural Network (GNN) to extract
the structural information and use a gating layer to
integrate content information. We conducted ex-
periments on six widely-used benchmarks contain-
ing four context-free languages. The results show
that our approach improves the accuracy of the base
model by 0.8 to 6.4 percentage points. Further-
more, Grape also achieves 1.6 F1 score improve-
ment on the method naming task which shows the
generality of our approach.

1 Introduction
Learning a representation for a basic unit (e.g., words in a
sentence) plays an increasingly essential role in natural lan-
guage processing tasks [Wolf et al., 2014; Sienčnik, 2015]. In
the form of a real-valued vector, the most widely used word
embedding encodes the semantics of a word in a context. Ex-
isting approaches mostly focus on how to learn a meaningful
representation of words in a natural language (NL) [Mikolov
et al., 2013; Pennington et al., 2014].

As we move to a scenario in which embedding techniques
routinely represent tokens in context-free languages (e.g.,
programming languages, domain specific languages, regu-
lar expressions), early approaches directly treat the tokens as
words in a NL and adopt word embedding techniques. Differ-
ent from the sentence in NL, the context-free sentence (CFS)
1 can be parsed and further compiled by machines, which
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1A text written by the corresponding context-free grammar. In

this paper, we only talk about the grammar used by common pro-

highly relies on the pre-defined grammar. For example, if
we remove “;” from “int i = 0;”, the C++ compiler will report
a grammar error and fail to compile the CFS. This highlights
the importance of the grammar.

Mou et al. [2016] has realized the fact and proposes to
embed the grammar information by parsing the CFS as an
abstract syntax tree (AST). The AST is further represented
as a sequence of production rules by more recent work [Yin
and Neubig, 2017; Rabinovich et al., 2017; Yin and Neubig,
2018; Iyer et al., 2018; Sun et al., 2020]. Unfortunately,
although they transfer the CFS into the production rule se-
quence, they still use the word embedding technique to rep-
resent these rules, which does not utilize the meta-level in-
formation in the grammar definition, e.g., b → c can be used
after a → b to further expand b.

In this paper, we propose a Grammar-Preserving Rule
Embedding approach called Grape. Similar to word embed-
ding, our approach produces the embeddings of the grammar
rules that can be used in downstream applications. Unlike
word embedding, we preserve the information of the pre-
defined context-free grammar rules.

However, it is challenging to preserve such grammars.
First, context-free grammar contains rich structural informa-
tion, i.e., the structural relationships between different gram-
mar rules, such as whether a rule can be a parent of another
rule in an AST. If such information is preserved, structurally
similar rules should have similar embeddings. For example
in Figure 1, either rule 4 or rule 5 can be a child of rule 3, and
also be a parent of rule 6, so their embeddings are better to be
close. Second, context-free grammar also contains extensive
content information, i.e., the information in the content of the
rule definition itself, such as the symbols used in the rule, the
order of the symbols, etc. For example, the embedding of
rule 6 and rule 9 should be similar as they have the shared
symbol orelse. Word embedding can preserve neither type of
information because the rules are represented using one-hot
encoding, such that neither the structural relation of the rules
nor the content of the rules are used as input for the neural
network.

To preserve the structural information, we propose to use a
graph to represent the context-free grammar, called a gram-
mar relation graph, where each node in the graph corre-
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Figure 1: Context-free grammar and the corresponding AST.

sponds to a rule in the grammar, and each edge represents
a parent-child relationship between two rules. Then, we use
a graph neural network (GNN) to map each node into a vec-
tor. To preserve the content information, we further propose
to use a gating layer to integrate the rule definition with the
node embedding in the GNN. The above neural structure is
then used as an embedding layer in existing neural network
for embedding grammar rules.

Our experiment was conducted on six widely-used bench-
marks containing four context-free languages. We used Tree-
Gen [Sun et al., 2020], one of the state-of-the-art models on
these benchmarks, as our base model. We directly replace
the embedding layer of TreeGen with Grape. The experi-
mental results show that our approach improves the accuracy
of TreeGen by 0.8-6.4 percentage points on six mainstream
benchmark sets. Although our approach is designed for rule
embedding, it also could be applied to AST token embedding.
Thus, we combined Grape with Sandwich Transformer [Hel-
lendoorn et al., 2020] on method naming to demonstrate the
generality of Grape. Grape also improves the base model by
1.6 F1 score. In summary, we make the following contribu-
tions:

• We make the first attempt to learn the embedding of
grammar. We design a graph structure to represent
context-free grammar and use a novel neural architec-
ture to encode the graph.

• We evaluated our approach on six benchmarks contain-
ing four context-free languages. The experimental re-
sults show that our approach is effective in learning the
syntax and semantic information of the grammar and
achieved 0.8-6.4 percentage points improvement over
TreeGen on these benchmarks. We also evaluated our
approach for an additional code-related task, method
naming, to show the generality of Grape. The experi-
mental results show that Grape also improves the per-
formance of base models by 1.6 F1 score.

2 Proposed Approach
Figure 2 shows the overview of Grape. As mentioned before,
Grape takes the context-free grammar as input and outputs
the embedding of each rule. To implement this component,
we first map the grammar into a novel graph structure and
then use a graph neural network to produce the embeddings.

2.1 Grammar Relation Graph
In this section, we introduce the detailed structure of the
graph and the approach mapping a context-free grammar into
the graph. We define a context-free grammar as G(gra) =
⟨N,T,R, λ⟩, where N denotes a set of non-terminals, T de-
notes a set of terminals, R denotes a set of production rules,
and λ ∈ N denotes a special start symbol. Especially, a pro-
duction rule that can be applied to non-terminal A is repre-
sented as A −→ B1 B2 · · · Bn, and an application of the rule
replaces A with the sequence B1 B2 · · · Bn.

We propose grammar relation graph to represent context-
free grammars. Formally, given a context-free grammar
G(gra), a grammar relation graph is a tuple G = ⟨V,E⟩, where
V = R denotes the vertexes in the graph, and E ⊆ V × V
denotes the edges and is a minimal set satisfying the fol-
lowing condition: for two arbitrary rules r1 = A1 −→
B11 B12 · · · B1m ∈ V and r2 = A2 −→ B21 B22 · · · B2n ∈
V , (r1, r2) ∈ E if A2 = B1j for some j such that 1 ≤ j ≤ m.

Figure 2 shows an example of a grammar relation graph.
On the left side, there is a set of production rules, where the
leading numbers are the IDs of the production rules. On the
right hand side there is the corresponding grammar relation
graph of the given partial context-free grammar. Each node
in the graph corresponds to a production rule in the grammar
and is labeled with the ID of the rule. As shown, the rule 2
can be used to expand a non-terminal produced by rule 1, and
thus node 1 has a directed edge to node 2 in the graph.

2.2 Neural Mechanism
The second part of Grape is a graph neural network (GNN).
The model takes the grammar relation graph as input and
outputs the vector of each rule. The overview of this part
is shown in Figure 2. In this section, we will introduce the
detailed structure of the GNN used in our approach.
Embedding Layer. The first layer of Grape is a one-hot
encoding layer similar to the most base models. Grape trans-
forms the unique ID of each production rule into a fixed-size
vector for GNN to compute.

Static Encoding. We first encode each node in the gram-
mar relation graph into a fixed-sized vector for GNN. Grape
directly uses the ID of each production rule as the one-hot
encoding label. Thus, we can encode each node in G as
n1,n2, · · · ,nP by table-lookup embeddings, where P de-
notes the total number of rules in R. We use the static encod-
ing of ri, as the initial embedding of the GNN.
Graph Neural Network. The computation of GNN itera-
tively updates the vector of nodes. In each iteration, the vec-
tor of each node is updated by combining those of its neigh-
bors. The computation of each iteration is performed through
two components. The first component, the definition encod-
ing component, integrates the corresponding rule definition.
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Figure 2: Context-free grammar and its grammar relation graph

The second component, the neighbor encoding component,
combines the vector of each node with those of its neighbors.

Definition Encoding Component. As mentioned before,
the static encoding of each node encodes only the ID of the
rule. This component integrates the rule content into the ver-
tex of each node. It first encodes the rule content and then
uses a gating sub-layer to combine the encoded rule content
with the vector of the node.

Definition Encoding Sub-Layer. To encode the content
information of each production rule, we first represent the
symbol in T

⋃
N as a vector s through table-lookup embed-

dings. Then, for a production rule r : α −→ β1 β2 · · ·βn,
we adopt a full-connected layer on the corresponding to-
ken embeddings. The rule encoding of r is computed as
sr = W [sα; sβ1

; ...; sβn
], where sα and sβj

are the table-
lookup embeddings of the parent node α and the child node
βj , and W is a trainable parameter. The sequence of the child
nodes is padded to a pre-defined maximum length. These
vectors are then fed to the gating sub-layer, and are integrated
with the input features for each node at each iteration.

Gating Sub-Layer. The input features for each node con-
tain rich structural information of G after several iterations.
To emphasize the importance of these features, we adopt a
mechanism named Gating Mechanism [Sun et al., 2020] to
integrate the input features with the rule content encoding.
This mechanism takes three vectors named q, c1, c2 as input
and incorporate c1 with c2 through the multi-head mecha-
nism treating q as the control vector. The detailed computa-
tion can be found in Sun et al.[2020].

For the t-th iteration, we use the input feature rit of the
node ri as the control vector to integrate itself with the cor-
responding definition encoding sri . Thus, the computation
of node ri at the t-th iteration can be represented as mi

t =
Gating(rit, r

i
t, sri). The vector mi

t is then fed to the second
neural component to integrate the neighbors’ information.

Neighbor Encoding Component. As the traditional GNN,
the encoding of each node should be integrated with the en-
coding of its neighbors to extract the structural information
of the graph. This component first computes the encoding of
the neighbors through the adjacent matrix, and then uses a
gating mechanism to combine the vector of the node with the
encodings of its neighbors.

Neighbor Encoding Sub-Layer. As the traditional GNN,
the encoding the neighbors of node ri at the t-th iteration can
be computed as pi

t =
∑

rj∈G An
rirjm

j
t . Here, An is a nor-

malized adjacency matrix of G. We use the normal operation
proposed by Kipf and Welling [2017]: An = S

−1/2
1 AS

−1/2
2 .

Here A is the adjacency matrix of G, S1 and S2 are the di-
agonal matrices with summation of A in columns and rows.
To encode the direction of edges, we define a hyperparameter
β(β > 1) to represent this information. For example, if node
ri has a directed edge connected to rj , cell Ai,j is 1 and cell
Aj,i is β.

Gating Sub-Layer. To integrate the neighbor encoding with
the input vectors for each node, we apply the same sub-layer
to the input vector rit and the neighbor encoding pit. We use
the input vector rit as the control vector q to incorporate these
two vectors. This computation can be represented as rit+1 =

Gating(mi
t,m

i
t,p

i
t).

We apply the GNN layer of N iterations on the initial en-
coding of each node and get vectors of each production rule.
Then these vectors are fed to a base model.

3 Evaluation
3.1 Experiment I: Grammar Preserving Rule

Embedding
We have implemented Grape for several different benchmarks
in several context-free languages. In this section, we report
our experiments and the performance of Grape.



Code Generation Semantic Parsing Regex Synthesis

Statistics HS DJANGO CONCODE ATIS JOB StrReg

# Train 533 16,000 100,000 4,434 640 2173
# Dev 66 10,000 2,000 491 - 351
# Test 66 1,805 2,000 448 140 996

Avg. Token (NL) 35.0 10.4 71.9 10.6 8.7 33.5
Avg. Token (Code) 83.2 8.4 26.3 33.9 17.9 15.1

Node of Graph 772 668 477 180 50 193
Avg. Degree 3.81 3.55 4.20 2.80 2.28 5.52
Med. Degree 3 2 5 2 1 4

Table 1: Statistics of the datasets we used.

Dataset. We evaluated our approach on six benchmarks, in-
cluding the HearthStone benchmark [Ling et al., 2016], two
semantic parsing benchmarks [Dong and Lapata, 2016], the
Django benchmark [Yin and Neubig, 2017], the Concode
benchmark [Iyer et al., 2018] and the StrReg benchmark [Ye
et al., 2020]. The statistics of these datasets are shown in
Table 1.2

The HearthStone benchmark contains 665 different cards
of HearthStone. Each card is composed of a NL specification
and a program written in Python. When processing the NL,
we used the structural preprocessing as described in Sun et
al. [2020]. The semantic parsing task contains two bench-
marks. The input of this task is the NL specification, while
the output is a short piece of lambda expressions in a specific
DSL. The Django benchmark contains 18,805 lines of Python
source code extracted from the Django web framework. Each
line of code is annotated with a NL specification. The Con-
code benchmark contains 104,000 pairs of Java code and a
NL specification with the programmatic context. The StrReg
benchmark contains 3520 pairs of structurally complex and
realistic regexes and a NL description.

The benchmarks involve four context-free languages: Java,
Python, lambda expressions, and regular expressions. For
Java and Python, we use the grammar extracted from their of-
ficial parsers3. For lambda expressions, we used the grammar
written by Kwiatkowski et al. [2013]. For regular expression,
we use the grammar defined by Ye et al. [2020].

Metric and Hyperparameters. Existing studies use differ-
ent metrics for different benchmarks. StrAcc, Acc+, ExeAcc,
and DFAAcc all measure the percentage of correct programs,
but use different definitions for correctness. StrAcc [Yin and
Neubig, 2017] considers a program as correct when it has ex-
actly the same token sequence as the ground truth. Acc+ [Sun
et al., 2019] further allows the renaming of variables. Ex-
eAcc [Dong and Lapata, 2016] further considers the sym-
metry of operators. DFAAcc [Ye et al., 2020] considers a
regex is correct when it is DFA-equivalent compared with the
groundtruth. To compare with existing results, we followed
the metrics settings in existing studies.

For the hyperparameters of our model, we set the number
of iterations N = 9. The hidden sizes were all set to 256. We
applied dropout after each iteration of the GNN layer, where
the drop rate is 0.15. The model was optimized by Adam with

2The code is available at https://github.com/pkuzqh/Grape
3The links of the parsers are

https://docs.python.org/3/library/ast.html and
https://github.com/c2nes/javalang for Python and Java.

learning rate lr = 0.0001. We selected the hyperparameters
based on the performance of validation set of Concode. The
number of iterations has slight influence on the results. As
we change the number from 6 to 11, the change of model per-
formance on Concode is less than 0.4%. We run Grape five
times with different random seeds on Atis, Job and Hearth-
Stone due to the small validation set of these benchmarks. At
inference time, we used beam search with beam size b = 5
following Sun et al. [2019].

Base model and Inference. We use TreeGen [Sun et al.,
2020], which is one of the current state-of-art model on these
benchmarks, as the base model. It uses a tree-based trans-
former to generate the rule sequence. Specially, Treegen
chooses the next production rule among all possible candi-
dates by softmax based on the outputs. In our approach, the
embeddings of production rules contain rich structural and
content information. Thus, we introduce the pointer network
that directly selects a rule from the grammar relation graph.
The pointer network is computed by

θ = vT tanh(W1h+W2r) (1)

P(select rule s in step i| · ) = exp{θs}∑Nr

j=1 exp{θj}
(2)

where h denotes the outputs of decoder, r denotes the outputs
of Grape fed into the base model.

For training, we first construct the grammar relation graph
based on the grammar of the specific language. We then build
the corresponding GNN layer based on the grammar graph
and connect it with the base model. Thus, it is an end-to-end
training where the output of GNN is directly fed into TreeGen
and the gradients can be passed backwardly.

Overall Result. Table 2 shows the performance of our ap-
proach on several benchmarks, in comparison with previous
state-of-the-art models. Each line in Table 2 corresponds to
an existing approach and shows its performance. The first
part denotes the traditional approaches using rule-based trans-
lation but not neural models. The third part denotes the neu-
ral models pre-trained with huge extra data. As shown, our
approach boosts the performance of TreeGen on all bench-
marks. In particular, the performance on Atis is even better
than the traditional approaches. To the best of our knowledge,
this is the first time that a neural approach has outperformed
the traditional approaches on this benchmark. Furthermore,
Grape achieves 6.4 points improvement over TreeGen on Str-
Reg, which is the highest among these benchmarks. We con-
jecture the reason is that the training set of StrReg does not
contain rich usage patterns of the grammar. When the train-
ing set contains rich usage patterns, a neural network may
learn the structural and content information from it, but when
the usage patterns are not rich, encoding grammar definitions
become critical. These results suggest that learning the gram-
mar embedding is effective in boosting the performance of
TreeGen.

Error Rate of Predicted Rules. To understand whether
Grape helps the base model to predict the production rule, we
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Method HearthStone Django Concode Atis Job StrReg

Metric StrAcc BLEU Acc+ StrAcc StrAcc ExeAcc ExeAcc DFAAcc

KCAZ13 [Kwiatkowski et al., 2013] - - - - - 89.0 - -
WKZ14 [Wang et al., 2014] - - - - - 91.3 90.7 -

N
eu

ra
lN

et
w

or
ks SEQ2TREE [Dong and Lapata, 2016] - - - - - 84.6 90.0 -

ASN+SUPATT [Rabinovich et al., 2017] 22.7 79.2 - - - 85.9 92.9 -
TRANX [Yin and Neubig, 2018] - - - 73.7 - 86.3 90.0 -
Iyer-Simp+200 idoms [Iyer et al., 2018] - - - - 12.20 - - -
GNN-Edge [Shaw et al., 2019] - - - - - 87.1 - -
SoftReGex [Park et al., 2019] - - - - - - - 28.2
TreeGen [Sun et al., 2020] 30.3±1.061 80.8 33.3 76.4 16.6 89.6±0.329 91.5±0.586 22.5

GPT-2 [Radford et al., 2019] 16.7 71 18.2 62.3 17.3 84.4 92.1 24.6
CodeGPT [Lu et al., 2021] 27.3 75.4 30.3 68.9 18.3 87.5 92.1 22.49

TreeGen + Grape 33.6±1.255 85.4 36.3 77.3 17.6 92.16±0.167 92.55±0.817 28.9

Table 2: Performance of our model in comparison with previous state-of-the-art results on several benchmarks.
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Figure 3: Visualizing some rule vectors in the DSL for semantic parsing with t-SNE

Model Top-1 Top-3 Top-5

TreeGen 1.11% 31.61% 39.60%

TreeGen + Grape 0.15% 27.09% 34.87%

Table 3: Error rate of Models on Atis.

count the error rate4 that the predicted production rule vio-
lates the grammar constraints on Atis benchmark as shown in
Table 3. We count the error rate of the top-1, top-3, and top-5
predicted production rules by these models, which is defined
by the number of grammatically incorrect predictions in top-
k divided by the the total predictions. TreeGen with Grape all
performs better compared with TreeGen. Especially, Tree-
Gen with Grape achieves 0.15 percentage error rate of the
top-1 prediction. These results show that Grape helps the base
model to learn the constraint of the grammar.

Visualization of Rule Embeddings. To figure out whether
Grape preserves the structural and content information of

4A prediction is incorrect if there are grammatically incorrect
rules in the top-k predicted rules. The error rate of the top-k denotes
the rate of incorrect prediction during generating.

the grammar, we use the t-Distributed Stochastic Neighbor
Embedding (t-SNE) model, a dimensionality reduction tech-
nique, to map the original vectors to 2-D space. Due to the
space limit, we randomly choose several rules from the lan-
guage for semantic parsing to show in the picture. As shown
in Figure 3, rules with similar content tend to have similar
representations. The rules which are relevant to node “ar-
guments” mainly lie on the left side while the rules associ-
ated with “enti-var” lie on the right side while the rule encod-
ing of TreeGen does not has this property. Also, rules with
similar structure have similar representations. The rules that
can have a common parent, such as entivar −→ evening :
pd, entivar −→ afternoon : pd and entivar −→ morning :
pd, have similar representations with Grape in the right sub-
figure. However, entivar −→ evening : pd lies far away
from entivar −→ morning : pd without Grape in the left
sub-figure. These observations suggest that Grape leads the
model to learn a better embedding of production rules.

Time Efficiency and Complexity. We further evaluated the
complexity of our model. It takes 34.78s for an epoch on
a single Nvidia Titan RTX with Grape on average, whereas
30.74s without Grape. And Grape has 6.5 × 105 parameters
on average.



Metric Precision Recall F1

Code2Seq [Alon et al., 2018] 50.64 37.40 43.02
Code2Vec [Alon et al., 2019] 18.51 18.74 18.62
Transformer [Vaswani et al., 2017] 38.13 26.70 31.41

S-Transformer [Hellendoorn et al., 2020] 52.64 48.08 50.25

S-Transformer+Grape 53.22 50.55 51.85

Table 4: Performance of our approach on Method Naming.

3.2 Experiment II: Grammar Preserving AST
Token Embedding

Apart from the production rule sequence, we observe that
several approaches [Alon et al., 2019; Sun et al., 2019], use
the AST traverse sequence to represent the CFS. These ap-
proaches usually treat the AST tokens as words and adopt
word embedding to represent the AST tokens. Although
Grape is designed for rule embedding, Grape also can be ap-
plied to represent the AST tokens. To adapt Grape for the
AST token embedding, we replace the corresponding rule
ri = α −→ β1 β2 · · ·βn of i-th node with α in the gram-
mar relation graph and merge the nodes which have the same
label in the graph.

To evaluate the effectiveness, we conducted an additional
experiment on method naming task. In this task, the model
needs to predict the name of a method given its correspond-
ing body. Following Alon et al. [2018], the model predicts
the target method name as a sequence of sub-tokens, e.g.,
getIndexOf is predicted as the sequence “get index of”. As
described by Hellendoorn et al. [2020], Sandwich Trans-
former (S-Transformer) adopts Transformer to extract the
long dependency of the code and adopts GNN layers to learn
the structural information of the code. Thus, we used S-
Transformer, which is capable of handling long dependencies
and rich structural information, as our base model.

For this task, we adopted the widely used Java bench-
mark [Alon et al., 2019; Alon et al., 2018], Java-small, which
contains 11 relatively large Java projects. We took 9 projects
for training, 1 project for validation and 1 project for test fol-
lowing Alon et al. [2018]. This dataset contains 691,607 ex-
amples in the training set, 23,844 examples in the validation
set and 57,088 examples in the test set. We used three met-
rics, precision, recall, and F1 score over the target sequence
as Alon et al. [2019]. We used F1 score on the development
set to select the best model.

The performance of Grape on method naming task is
shown in Table 4. Each line in Table 4 shows the perfor-
mance measured by the three metrics on the benchmark of
the corresponding approach. Compared with S-Transformer,
Grape improves the performance on three metrics by 0.58,
2.47, 1.60, respectively. These results exhibit the generality
of Grape.

4 Related Work
Code Generation. Code generation aims to generate code
from a NL specification [Ling et al., 2016; Dong and La-
pata, 2016; Liang et al., 2022] and has been intensively
studied during recent years. The early work generates code

based on templates and searching [Kwiatkowski et al., 2013;
Wang et al., 2014]. Ling et al. [2016] proposed a sequence-
to-sequence framework to generate code as sequences. Note
that code has the constraints of grammar, which is differ-
ent from NL. Thus, the abstract syntax tree (AST) was used
to represent the generated code [Dong and Lapata, 2016;
Yin and Neubig, 2017; Rabinovich et al., 2017; Xiong et al.,
2018]. To alleviate the long dependency problem, Sun et al.
applied the convolutional neural network [Sun et al., 2019]
and transformer [Sun et al., 2020] for code generation. How-
ever, these existing approaches just embed the partial rule list
through static labeling directly. Our approach further inte-
grate the structural and content information of the grammar
into the embeddings.
Distributed representations. Learning distributed repre-
sentation for elements (e.g. words, code tokens, AST tokens)
have been used to boost the performance of the neural mod-
els in several areas of natural language processing [Penning-
ton et al., 2014; ?; Alon et al., 2019]. ? [?] introduced,
word2vec, an approach to learning a good representation of
words based on self-supervised tasks. Devlin et al. [2018]
proposed, BERT, to compute the word embedding with the
sentence context via Transformer [Vaswani et al., 2017]. In-
spired by this work, [Alon et al., 2019] used a path-attention
based model to learn the representation of code. In this paper,
we propose Grape to learn a grammar-preserving rule embed-
ding via a well-designed GNN.
Graph Neural Network. Graph Neural Network has been
widely investigated in recent years. The concept of GNN
was proposed byC Scarselli et al.. Based on this framework,
various GNNs have been proposed [Kipf and Welling, 2017;
Li et al., 2016; Zhong and Mei, 2020]. In particular, Li et
al. [2016] proposed a gated graph neural network(GGNN),
which adapts the LSTM layer to GNN for better encoding the
node.

5 Conclusion
In this paper, we propose an approach to learn the distributed
representation of context-free grammar. We first introduce a
novel graph to represent the grammar. Then we adopt a gated
graph neural network to extract the structural information of
production rules and integrate the content information with
the node embedding via a gating layer. To confirm the effec-
tiveness of our approach, we conducted experiments on sev-
eral widely used benchmarks on code generation and seman-
tic parsing. The results show that Grape learns a good em-
bedding of the production rules and the combined model sur-
passes the existing state-of-the-art methods on these bench-
marks.
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