
Realizing Bidirectional Graph Transformations From Bidirectional Tree
Transformations

Yingfei Xiong1, Zhenjiang Hu1, Dongxi Liu1, Haiyan Zhao2, Hong Mei2, Masato Takeichi1

1Department of Mathematical Informatics
Graduate School of Information Science and Technology

University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656, Japan
{hu,liu,takeichi,Yingfei Xiong}@mist.i.u-tokyo.ac.jp

2Institute of Software
School of Electronics Engineering and Computer Science

Peking University, Beijing, 100871, China
{meih,zhhy}@sei.pku.edu.cn

Abstract

Bidirectional transformations are useful to maintain
consistency between source data and target data. So far,
researchers have proposed several theories and tools for
bidirectional transformations on tree structures. However,
as far as we know, there is no widely-recognized theory for
bidirectional transformations on graphs.

In this paper, we propose an approach to constructing
bidirectional graph transformations from existing bidirec-
tional tree transformations and show how they can be use-
ful to support better consistency and traceability between
different models in software development.

1 Introduction

In many cases people need to view the data from differ-
ent perspectives, thus we have to map the source data into
different views. Such kind of mappings are called trans-
formations. On the other hand, in some cases people want
to modify the view and then reflect the modification back-
wardly to the source. A transformation that supports such
kind of backward transformation is called a bidirectional
transformation.

Bidirectional transformations have many applications
in different kinds of areas. For example, bidirectional
transformations can be used to support the synchroniza-
tion among heterogeneously pieces of data [4], to create
visual editors that generate and maintain views from the
editing actions of users [5], even to support the classic
view-updating problem in database systems [1].

Recently, researchers have proposed many tools and
theories to support bidirectional transformations, espe-
cially on tree data structures. Two notable examples are
Harmony [2] and BiXJ [6]. These two tools both work on
XML files. Users write the code for forward transform-
ing XML files and these tools automatically support the

backward transformation.
Model-driven architecture (MDA) [3] is a new software

development paradigm where models are first-class enti-
ties and the refinement relationships between different de-
velopment stages are described by model transformations.
Research has shown that introducing bidirectionality into
model transformations can ensure better consistency and
traceability between different models [4]. However, to the
best of our knowledge, current model transformation tools
either only can support uni-directional transformation, or
require users to manually implement the backward trans-
formation. Without automatical tool support, MDA cannot
benefit from the consistency and traceability enhancement.

Model transformations are essentially transformations
on graph structures. A bidirectional graph transforma-
tion tool will be able to support model transformations
in MDA. In this paper we propose an approach to con-
structing bidirectional graph transformations from exist-
ing bidirectional tree transformations. In this way we can
make use of the widely-existing tree transformation tools
like BiXJ, and benefit from the stability and matureness of
these tools.

2 Approach

In this section we describe our approach. Due to space
limit, our description will be in plain text, but all the defini-
tions and theories in this section have formal counterparts,
which will be summarized in an extended version.

2.1 Duplication Transformation

Here we consider a specific type of bidirectional trans-
formation: duplication. A duplication transformation du-
plicates some data items in the source, and when any
replica is modified, this modification can be reflected back
to the data item in the source and all the replicas. For

V1

V2

E2 E1

V1

V2

E2 E1

V2E3

Graph A Graph B

Figure 1. A Graph Transformation

example, Figure 1 describes a duplication graph transfor-
mation. In Figure 1 the vertexes and the edges are corre-
sponding if they have the same value. The node “V2” in
Graph A are duplicated twice in Graph B. If we modified
any “V2” in Graph B into, say, “V3”. The “V2” in Graph
A and the other “V2”s in Graph B will also be changed into
“V3”. To support graph transformations, we will make use
of the duplication transformation in the tree transforma-
tion.

2.2 Realization of Bidirectional Transfor-
mation

The first step in realizing graph transformations with
tree transformations is to represent graphs using trees.
Comparing graphs with trees, we can discover that graphs
are in fact trees with node sharing. For example, in Graph
A, the vertex “V1” is shared by two edges: “E1” and “E2”.
Then we can represent a graph with a meta tree and a tree
transformation that captures the node-sharing information.

We illustrate this process by an example. Consider
Graph A in Figure 1. The corresponding meta tree and
the tree transformation are shown in the left part of Fig-
ure 2. All the edges and vertexes of Graph A are listed
as the leaves of the node “edges” and the node “vertexes”,
respectively. The node-sharing information is missing in
the meta tree, that is, we do not know to which nodes the
vertexes are connected. Then in Transformation T1, we
duplicate the vertexes nodes as the corresponding leaves
of the edge nodes. The direct sub node of an edge means
the source of that edge and the sub node of the source is
the target of the edge. The grey lines in Figure 2 show
from which nodes in the source nodes in the target orig-
inate. For simplicity, we only draw the lines related to a
typical vertex, “V2”, in Figure 2.

In order to transform the tree back into a graph, we also
assigned a unique ID to each vertex node and each edge
node. These IDs are also managed by Transformation T1.
For simplicity, the IDs are not shown in Figure 2.

The next step in realizing graph transformation is to
represent graph transformations by tree transformations.
The transformation between Graph A and Graph B in Fig-
ure 1 is represented by the Transformation T2, which is
shown the right part of Figure 2. The tree of Graph B is
constructed by duplicating the nodes in the tree of Graph
A, in a way similar to Transformation T1. To better illus-
trate this, we also draw the grey lines related to the vertex

Root
Vertexes Edges

V1

V2
E1

E2

Root
Vertexes Edges

V1
V2

E1
E2

V2

V1

V1

V2

Root
Vertexes Edges

V1

V2
E1

E2

V2

V1

V1

V2

V2 E3

V2

V1

Meta Tree Tree of Graph A Tree of Graph BT1 T2

Figure 2. Bidirectional Graph Transforma-
tions via Bidirectional Tree Transformation

“V2” in Figure 2.
With the composite effect of T1 and T2, we can ensure

the modifications in Graph B can be correctly reflected
back. For example, suppose one “V2” node in Graph B
is modified to, say, “V3”. Transformation T2 ensures that
the “V2” node under the “vertexes” node in the tree of
Graph A is modified to “V3” and all replicas in the tree of
Graph B are modified to “V3”. On the other hand, Trans-
formation T1 ensures that all “V2” in the tree of Graph A
are modified to “V3” and the meta tree is also modified
correspondingly.

To verify the feasibility of our approach, we also exper-
imented the approach by using BiXJ to model a model-
enabled software development process [4]. The result
shows that our approach is adequate to support the trans-
formation between models.

References

[1] A. Bohannon, J. A. Vaughan, and B. C. Pierce. Relational
lenses: A language for updateable views. In Principles of
Database Systems (PODS), 2006. Extended version avail-
able as University of Pennsylvania technical report MS-CIS-
05-27.

[2] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce,
and A. Schmitt. Combinators for bi-directional tree trans-
formations: a linguistic approach to the view update prob-
lem. In ACM SIGPLAN–SIGACT Symposium on Principles
of Programming Languages (POPL), Long Beach, Califor-
nia, pages 233–246, 2005.

[3] D. S. Frankel. Model Driven Architecture: Applying MDA
to Enterprise Comput ing. John Wiley & Sons, 2003.

[4] Z. Hu, D. Liu, H. Mei, M. Takeichi, Y. Xiong, and H. Zhao.
A compositional approach to bidirectional model transfor-
mation. Technical Report METR 2006-54, Department of
Mathematical Informatics, University of Tokyo, October
2006.

[5] Z. Hu, S.-C. Mu, and M. Takeichi. A programmable editor
for developing structured documents based on bidirectional
transformations. In Proceedings of ACM SIGPLAN 2004
Symposium on Partial Evaluation and Program Manipula-
tion, pages 178–189. ACM Press, 2004.

[6] D. Liu, Z. Hu, M. Takeichi, K. Kakehi, and H. Wang. A
Java library for bidirectional XML transformation. JSSST
Computer Software, to appear, 2006.

