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Abstract—Delta debugging provides an efficient and systematic
approach to isolate and identify a minimal subsequence that
exhibit a specific property. A notable trend in the development
of delta debugging is to address data with domain-specific
structures, such as programs. However, the efficiency and ef-
fectiveness of domain-specific delta debugging algorithms still
present challenges. Probabilistic delta debugging (ProbDD) en-
hances the ddmin algorithm, which forms the foundation of most
domain-specific delta debugging approaches, by incorporating a
probabilistic model. By replacing the ddmin component with
ProbDD, algorithms relying on ddmin can achieve superior
performance. Meanwhile, domain-specific delta debugging tech-
niques, such as Perses, have been designed to cater to the abstract
syntax tree (AST) and follow predefined sequences of attempts
to minimize programs. These techniques benefit from the use
of AST-based transformations, enabling them to achieve even
smaller results efficiently. However, we observe that ProbDD
assumes independence between elements, which may limit their
performance in capturing syntactic relationships. Additionally,
domain-specific approaches such as Perses rely on a predefined
sequence of attempts the removal of the element and fail to utilize
the information from existing test results.

In this paper, we propose T-PDD, a novel approach that
addresses these limitations. T-PDD leverages the AST to construct
a probabilistic model, both utilizing historical test results and
capturing syntactic relationships to estimate the probabilities of
elements being retained in the result. It selects a set of elements
that maximizes the gain for the next test based on the model and
updates the model using the test results.

In our evaluation, we assess our approach on 107 real-world
subjects. The results demonstrate an average improvement of
26.95% in processing time and a 3.4x reduction in result size
compared to Perses in the best-case scenario.

Index Terms—Delta Debugging, Probabilistic Model, Abstract
Syntax Tree

I. INTRODUCTION

Software bugs are an inevitable part of the software develop-
ment process, causing disruptions, failures, and costly delays.
Efficient bug localization and debugging techniques are crucial
for improving software quality and reducing maintenance ef-
forts. One such technique that has gained significant attention
is delta debugging. Delta debugging [1]–[3] is a systematic and
automated approach for isolating the root cause of a bug by
iteratively reducing a complex input or program to a minimal,
reproducible test case.

The concept of delta debugging was first introduced by
Zeller and Hildebrandt in 1999 [1] as a method to simplify
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and narrow down inputs that trigger failures. Their pioneering
work led to the development of the ddmin algorithm [3],
which has since become the foundation for a range of delta
debugging approaches and has found widespread application
in various domains, including compiler debugging [3]–[5],
regression fault localization [1], isolating the cause-effect
chain of a failure [2], [6], and debloating software [7]–[9]
to reduce the size of a program while keeping certain desired
functionalities [10]. Delta debugging approaches operate on
the principle that the presence of redundant or irrelevant
components in a test case makes it harder to identify the root
cause of a failure. By selectively removing or modifying these
components, delta debugging approaches iteratively simplify
the test case while preserving its ability to reproduce the bug.

A significant trend in the development of delta debugging
techniques is to address data with domain-specific structures,
such as programs. However, despite these advancements, the
efficiency and effectiveness of domain-specific delta debug-
ging algorithms still present challenges. One issue highlighted
in [4] is that many domain-specific approaches, particularly
those targeting program inputs, often generate objects that
do not conform to the syntactic structure during the delta
debugging process. This can result in wasted time and effort, as
the produced objects may not be valid or executable programs.

ProbDD, proposed by Wang et al. [11], stands as the
state-of-the-art delta debugging algorithm in the field. It in-
troduces a probabilistic model to estimate the likelihood of
each element being retained in the resulting output. In each
iteration, ProbDD strategically selects a subset of elements
that maximizes the expected gain in the subsequent test, lever-
aging the information provided by the probabilistic model.
Subsequently, it verifies if the desired property is preserved
within this subset and updates the probabilistic model based
on the test outcome. In contrast to ddmin, which follows
a predefined strategy for element removal from the original
object, ProbDD enhances the testing process by incorporating
insights from historical test results. By substituting the ddmin
component with ProbDD, approaches that rely on ddmin can
achieve superior performance. Experimental results reported in
ProbDD [11] demonstrate significant time savings and reduced
program sizes.

Meanwhile, there have been notable advancements in
domain-specific delta debugging approaches, particularly in
the domain of programs. These approaches such as Perses [4],



focus on designing transformations based on AST. These
transformations are tailored to ensure syntactic validity and
offer the potential for further size reduction in the results and
improved efficiency.

We observe that domain-specific approaches like Perses [4],
despite their effectiveness, also rely on a predefined sequence
of attempts to apply defined transformations to the original
object. Additionally, probabilistic approaches such as ProbDD
assume independence between elements, which may limit their
performance in capturing syntactic relationships. To overcome
these limitations, we propose a novel probabilistic delta debug-
ging algorithm called T-PDD. T-PDD leverages a Bayesian
network constructed from the AST, utilizing both existing test
results and capturing syntactic relationships among elements
to estimate the probability of each element being retained in
the result. During each iteration, T-PDD selects a subset of
elements that maximizes the expected gain in the subsequent
test, guided by the probabilistic model. It then verifies if the
desired property is preserved within this subset. Furthermore,
T-PDD updates the probabilistic model based on the testing
result, refining its estimation of element probabilities. The
construction of the probabilistic model from the AST also
allows T-PDD to perform probabilistic inference efficiently,
as the structural complexity of the AST is relatively simple.
As a result, we anticipate that T-PDD will surpass existing
domain-specific delta debugging approaches in terms of both
reducing the size of the produced result and improving time
efficiency.

We conducted a comprehensive evaluation of T-PDD using
a dataset of 107 subjects. Our evaluation dataset is larger
than that of all recent publications on delta debugging at top
venues, to the best of our knowledge [4], [10]–[13]. This
dataset included 20 widely adopted C subjects from previous
work [4], [11], [12]. In addition, we curated a diverse dataset
of 87 subjects consisting of both C and Rust programs for
evaluating T-PDD. This dataset allows us to thoroughly assess
the effectiveness and efficiency of T-PDD. Our experimental
results clearly demonstrate that T-PDD significantly improves
the efficiency of Perses, a representative modern delta debug-
ging approach. For example, in a typical case, Perses took up
to 7 hours to reduce a C program with 371,277 tokens, whereas
T-PDD accomplished the same reduction in just 1.5 hours. On
average, T-PDD achieved the same size of produced results as
Perses, while reducing the time consumption by 26.95%.

In summary, this paper presents the following key contribu-
tions:

1) We introduce a novel probabilistic model for the delta
debugging algorithm, utilizing a tree-structured Bayesian
network that incorporates the AST.

2) We curate a comprehensive dataset comprising 87 sub-
jects specifically designed for evaluating our proposed
approach. This dataset enables a thorough assessment of
the effectiveness and efficiency of T-PDD.

3) We conduct extensive evaluations of T-PDD using both
existing datasets and our collected dataset, encompassing
a total of 107 subjects. The experimental results demon-

strate that T-PDD significantly improves the efficiency of
the representative delta debugging approach, while also
producing results that are 3.4 times smaller in the best
case.

II. MOTIVATING EXAMPLE

We utilize a program simplification example to demonstrate
the functionality of the domain-specific delta debugging ap-
proach. Among the available approaches, we choose Perses
as the representative technique because it is the state-of-the-
art approach for context-free languages, designed for general
purposes. The code snippet presented in Listing 1 showcases
the function that requires simplification. For the sake of clarity,
we omit the definitions of the invoked functions. In this
scenario, we assume that the while-loop has the potential to
trigger a compiler crash bug. Furthermore, we assume that
any valid program containing the while keyword triggers
the aforementioned bug.

In this example, Perses operates on the AST depicted in
Figure 1. The algorithm Perses starts by initializing a priority
queue (Q) to maintain the nodes awaiting processing. In each
iteration, Perses selects the node with the highest number of
tokens from Q for further processing. Perses also distinguishes
Kleene-Star nodes from regular nodes. A Kleene-star node
has a list of children with variable length, such as a list of
parameters in a function definition. When such a node is
encountered, Perses applies the ddmin algorithm to attempt
to remove its children. In the context of our paper, nodes like
Kleene-Star are referred to as quantifier nodes, while others
are regular nodes. For regular nodes, Perses first attempts to
remove the node itself. If the test fails after removing the
node, Perses proceeds to search for any descendant node that
can replace the processed node without violating the syntax.
After processing a node, its children are added to Q for future
processing. A new iteration begins when Q becomes empty.
The process continues until there are no nodes that can be
removed within a single iteration.

Perses attempts to remove nodes in Figure 1 based on a se-
quence of (1.TRANSUNIT, 2.COMPOUNDSTMT, 3.*,
4.WHILE_STMT, 5.INIT_DECL, 6.COMPOUNDSTMT,
8.*, 7.POST_EXP, ... ...) in the first iteration.
When processing regular nodes, i.e., all nodes except for 3.*
and 8.* in our example, Perses tries to remove the node itself
first. If the test fails after removing the node, Perses proceeds
to search for any descendant node that can replace the pro-
cessed node without violating the syntax. In our example, the
node 2.COMPOUNDSTMT and 4.WHILE_STMT can be re-
placed by their descendant node 6.COMPOUNDSTMT, respec-
tively. When processing quantifier nodes, i.e., 3.* and 8.*,
Perses utilizes ddmin to minimize the sequence of their chil-
dren, respectively. In this way, the child of 8.* can be success-
fully removed in this iteration after processing all front nodes
in the predefined sequence. In the second iteration, Perses fol-
lows a sequence of (1.TRANSUNIT, 2.COMPOUNDSTMT,
3.*, 5.INIT_DECL, 4.WHILE_STMT, ... ...) to
attempt the node removal. In this iteration, the node



5.INIT_DECL can be successfully removed after pro-
cessing the node 1.TRANSUNIT, 2.COMPOUNDSTMT,
and 3.*. In the last iteration, Perses follows a se-
quence of (1.TRANSUNIT, 2.COMPOUNDSTMT, 3.*,
4.WHILE_STMT, ... ...) to attempt the node removal.
As no more nodes can be removed in this iteration, Perses
terminates the process.

From the above process, it is evident that Perses adheres
to the predefined sequences for node removal and does not
learn from historical test results. For example, the node
4.WHILE_STMT has been unsuccessfully attempted for re-
moval multiple times in the three ddmin processes across all
three iterations. If the simplification process were to learn
from historical test results, as demonstrated later in Figure 3,
the node 4.WHILE_STMT would have been attempted for
removal twice, resulting in its probability of retention in the
final result given that its parent reaches 1.0. While ProbDD
utilizes a probabilistic model to determine the subsequence
tested in the next iteration based on historical test results, it
fails to address the aforementioned limitations in the following
aspects.

On one hand, ProbDD assumes independence between
elements, which can be problematic when directly applying
it to AST leaf nodes. This approach considers a sequence
of AST leaf nodes as input and may lead to the removal of
nodes that violate the program’s syntax. For instance, ProbDD
uses two independent Bernoulli random variables to indicate
whether the child nodes of 2.COMPOUNDSTMT, namely { and
}, should be included in the final result or not. However, if
the node { should not be retained in the final result, so should
the node }. This indicates that these two nodes are dependent,
and both nodes should be either removed or retained together.
This highlights a limitation of ProbDD when dealing with
interdependent nodes in the AST structure.

On the other hand, Perses employs the ddmin algorithm
to attempt removing children of quantifier nodes such as
3.*. The ddmin algorithm is repeatedly applied in each
iteration, trying different combinations of child removal until
eventually attempting to remove each individual child. As
an advanced approach to ddmin, it is possible to optimize
Perses by substituting the ddmin algorithm with ProbDD.
While ProbDD shows potential in leveraging a probabilistic
model to guide the search process based on historical test
results, similar to ddmin, it is also repeatedly applied to
address the 3.* node in each iteration. In conclusion, Perses
retains its predefined sequence of removal attempts across
different iterations, regardless of whether ddmin or ProbDD
is employed.

In contrast, our approach, T-PDD, takes a different ap-
proach by constructing a probabilistic model directly from
the AST. The structural simplicity of the AST enables T-PDD
to efficiently perform probabilistic inference and effectively
guide the search process. By leveraging this lightweight prob-
abilistic model, T-PDD is able to achieve efficient program
simplification. It utilizes existing test results and captures the
relationships among elements, resulting in improved efficiency

Listing 1: Example program to be simplified
1 i n t main ( ) {
2 i n t * g 1 = s a f e a r r ( c o n f i g 1 ( ) ,

↪→ c o n f i g 2 ( ) ) ;
3 w h i l e ( 1 ) {
4 g 1 [ 0 ] = s a f e v a l ( c o n f i g ( ) ) ;
5 }
6 r e t u r n 0 ;
7 }

Fig. 1: The parse tree of Listing 1, simpilified for clarity.

and effectiveness in minimizing programs.
Figure 2 illustrates our model constructed from the AST

shown in Figure 1, following the steps in Section III-A2. Each
node in Figure 2 represents a random variable that indicates
whether the corresponding node in Figure 1 is included in the
final result given its parent. To enhance clarity, we have omit-
ted the annotations in this figure. Figure 3 demonstrates the
steps of our algorithm for simplifying the program presented
in Listing 1. The labels n1 through n8 indicate that the nodes
are sequentially numbered from 1 to 8 in Figure 1. In Figure 3,
each odd row represents a test, and the removed elements are
depicted in cells with darker colors. The last cell of each odd
row displays the result of the corresponding test. Each even
row presents the probability of each node in Figure 2 being
included in the final result after each test, given that its parent
is included in the final result.

For each quantifier node and its children, a conditional
probability table (CPT) is included to represent the probability
of that node being in the final result when the parent node
is in the final result. These CPTs are initialized according to
the steps described in Section III-A4. This probabilistic model
captures the syntactic relationships among nodes and ensures
syntactic validity during the program simplification process,
distinguishing T-PDD from ProbDD. During each step of the
algorithm, T-PDD selects and excludes the node along with
its descendant nodes that have the highest expected gain, as
explained in Section III-B. T-PDD starts by excluding n3 and
its descendant elements n4 to n8. However, the test function
fails, leading to an update of the CPT of n3, as described



Fig. 2: Our model built from Figure 1, random variables do
not be annotated for clarity.

in Section III-C. Subsequently, T-PDD proceeds to exclude
{n4, n6, n8} at the second step, which fails the test, resulting
in the necessary updates to the corresponding CPTs. At the
third and fourth steps, T-PDD excludes {n8} and {n5, n7} for
testing, respectively. In both cases, the tests pass leading to
setting the probabilities of n8 and n5 being included in the
final result (given that their parents are included in the final
result) to zero. During the fifth test, T-PDD focuses on the
expected gain of {n1, n2}, which is the only object remaining
to be tested. However, it fails the test function as well. After
updating the CPT accordingly, each item in CPTs is either
0 or 1, prompting T-PDD to begin applying transformation
templates to simplify the program. In this particular example,
only two templates, namely replacing 2.COMPOUNDSTMT
with 6.COMPOUNDSTMT and replacing 4.WHILE_STMT
with 6.COMPOUNDSTMT, are applied. However, both of these
transformations fail the test. Finally, the simplification process
terminates and returns the simplified program. Please note
that T-PDD does not define any transformation templates.
As an example for the application of T-PDD to Perses, we
traverse the transformation templates defined in Perses when
processing the example program once after the convergence
of T-PDD.

Indeed, our approach T-PDD demonstrates an efficient strat-
egy for program minimization in this example. By prioritizing
the removal of non-compulsory elements based on expected
gain, T-PDD minimizes the number of tests required to achieve
program simplification. Comparatively, domain-specific delta
debugging approaches such as Perses follow the predefined
sequences to attempt the removal of elments and requires
3 times ddmin application to process a single node 3.* in
the above example. While ProbDD shows improved perfor-
mance compared to ddmin [11], it cannot capture syntactic
relationships between nodes in AST. Even after replacing
ddmin with ProbDD in Perses, it still requires three appli-
cations to address the node 3.*. Moreover, Perses retains its
predefined sequence of attempts to remove elements across
different iterations, regardless of whether ddmin or ProbDD
is employed. This discrepancy highlights the advantage of T-
PDD in reducing the number of tests needed to simplify the
program.

Fig. 3: Steps of our algorithm

III. APPROACH

In this section, we will describe the key components of our
proposed approach, which includes the Bayesian network, the
selection of subsequences for testing, and the update process
based on historical test results.

A. The Bayesian Network

1) Notations: Formally, the general delta debugging is
defined as follows: Let X be the universe of all objects of
interest. Let ϕ : X → {F, T} be a test function that determines
whether an object exhibits a given property (T) or not (F).
Also, let |X| represent the size of an object X ∈ X. The
objective of delta debugging is to discover another object
X∗ ∈ X, given an object X ∈ X where ϕ(X) = T , such
that |X∗| is minimized while maintaining ϕ(X∗) = T . In
other words, X∗ retains the desired property.

Contrary to the general delta debugging approaches, our
approach incorporates an initial parsing step, which transforms
the input object X into an AST denoted as T . The nodes
of this tree, represented by N = ⟨n1, n2, . . . , nk⟩, can be
categorized into two subsets: the leaf node set Nl and the
non-leaf node set Nnl. Each element in the original input
sequence X corresponds to an element in the leaf node set Nl.
Our approach aims to identify the optimal structure T ∗ that
preserves the desired properties of the input while minimizing
its size. By traversing the leaf nodes of the optimal structure
T ∗, the resulting optimized subsequence X∗ can be obtained.
In essence, our approach leverages the structured representa-
tion of the input object to guide the simplification process,
ensuring that the produced result adheres to the intended
syntax structure while achieving the desired optimization.

2) The Model: Our model utilizes a tree-like Bayesian
network, which is defined as a directed acyclic graph (DAG)
denoted as G = (Θ, E). Here, Θ refers to the set of nodes
in the graph, while E represents the set of directed edges
connecting the nodes. In our Bayesian network, each node
θi ∈ Θ corresponds to a Bernoulli random variable that
indicates whether the corresponding element ni is included
in T ∗ or not. Therefore, θi and ni are correspond one-to-one.
For leaf nodes ni ∈ Nl, θi = 1 indicates that the represented
leaf node is included in T ∗. For non-leaf nodes ni ∈ Nnl,
θi = 0 signifies that the non-leaf node is not included in T ∗,



and consequently, all nodes in its corresponding subtree are
excluded. The edges in E are derived from the AST. If there
is an edge from ni to nj in T , an edge from θi to θj exists
in E.

Let Sni
denote the parent of ni in T , and Sθi denote the

parent of θi in G. Following the Bayesian network definition,
we assign a conditional probability table (CPT) P (θi|Sθi) per
node, specifying the probability of θi conditioned on its parent.
Since Sθi = 0 implies that all nodes in the corresponding
subtree are not in T ∗, we have P (θi = 1|Sθi = 0) = 0. Con-
sequently, P (θi|Sθi) can be represented by a single probability
value p(θi = 1|Sθi = 1), denoted as pθi .

With the proposed Bayesian network model, we define
the joint distribution of the graph G as the product of the
conditional probability distributions.

P (θ1, ..., θk) =

k∏
i=1

P (θi|Sθi) (1)

We define that P (θi|Sθi) = P (θi), if θi is the root of G. Let
ΘI be the set that includes θi and all its ancestors (the path
from the root to θi), the marginal probability of the ith variable
is:

P (θi = 1) =
∏
θ∈ΘI

pθ (2)

3) Inference: In our approach, the Bayesian network is
utilized to predict the probability of whether an object X
passes the test. Our core hypothesis is that X will pass the
test if and only if it includes all elements in the optimal
subsequence X∗. According to this hypothesis, the probability
of X passing the test is equivalent to the probability that the
deleted subtree Td does not contain any leaf nodes in T ∗.
Given a deleted subtree Td, we can extend it to Td−EX by
including all its ancestors up to the root, and the corresponding
probabilistic subgraph can be denoted as Gd−EX ⊂ G. The
probability that Td does not contain any leaf nodes in T ∗

can be recursively defined as Q(θR), where θR is the root of
Gd−EX (also the root of G) and Q is defined as follows.

Q(θ) =


(1− pθ), θ is a leaf node

(1− pθ) + pθ ·
∏

θc∈Θ(Gd−EX),Sθc=θ

Q(θc), otherwise (3)

In this equation, Q(θ) represents the probability that all
nodes in the subtree of θ are 0 if all the ancestors of θ are
1. The value pθ represents P (θ = 1|Sθ = 1), as described
earlier.

The computation of Q(θR) can be performed in linear time,
as the function Q is called once for each node in Td−EX .
This allows for efficient prediction of the probability of a
subsequence passing the test.

4) The Priors: The prior probabilities assigned to each
node in the Bayesian network serve to incorporate our as-
sumptions and knowledge about the syntax structure during the
simplification process. Let us consider node nR in T , which
represents the root node of T . We define P (θR = 1) = 1.0,

indicating that the root node is always included in the optimal
subsequence. For the other nodes ni in T , we define the prior
probability for each corresponding node in G according to the
following cases:

i) If Sni
is a quantifier node, we assign a prior probability

of pθi = σ, where σ is a hyperparameter in our approach.
This hyperparameter can be tuned to control the proba-
bility of including node ni in the optimal subsequence.
By adjusting σ, we can influence the likelihood of ni’s
children being retained or excluded during the simplifi-
cation.

ii) If Sni
is a regular node, we set pθi = 1.0. In this case,

if the parent node Sni exists in the optimal subsequence
T ∗, node ni must also be included.

B. Select a Subsequence for Testing

The gain of a test on a subsequence X ′ is defined as the
reduction in sequence size or the number of elements that
would be excluded from the original sequence X if the test
passes. The gain function can be represented as follows:

gain(X ′, X) =

{
|X| − |X ′| , ϕ(X ′) = T

0, ϕ(X ′) = F

The gain is equal to the reduction in sequence size when the
test passes (ϕ(X ′) = T ), and it is zero when the test fails
(ϕ(X ′) = F ). To simplify the notation, we can use gain(Td)
instead of gain(X ′, X) since X remains constant during the
selection process, and Td corresponds to X ′ one by one. This
gain function helps quantify the impact of a test on the size of
the sequence and guides the selection of optimal subsequences
during the simplification process.

The expectation of the gain function gain(Td) can be
computed by considering the number of leaf nodes in the
deleted subtree Td and the probability that the test passes
(ϕ(X ′) = T ). The expectation can be expressed as:

E(gain(Td)) = |Td|l · P (ϕ(X ′) = T ) (4)

In this equation, |Td|l represents the number of leaf nodes
in the deleted subtree Td. Please refer to Section III-A3 for
details on how to compute P (ϕ(X ′) = T ).

The goal of the selection is to find a deleted subtree Td

to maximize E(gain(Td)). We enumerate all the remaining
subtrees in T to find the largest expectation and delete that
subtree to get X ′ for testing.

C. Update the Model

The process of updating the model based on historical test
results involves computing the posterior probabilities of the
variables in the Bayesian network given the observed test
results. This task can be computationally challenging, as it
falls under the category of weighted model counting, which is
generally infeasible to solve exactly in polynomial time [11].
To address this challenge, we can approximate the posterior
probabilities and iteratively update the model after each test,
refining the probabilities based on the test results.



The procedure for updating the probabilities is as follows:
after selecting a subsequence X for testing, we obtain the
result of whether it passes the test or not. Based on the result,
we update the CPTs in the Bayesian network. Specifically, we
focus on updating the posterior probabilities of the variables
θi ∈ Gd−EX , as described in Section III-A2.

On one hand, if the test passes, for θi ∈ Gd−EX , we can
update the posterior probability as:

P (θi = 1|ϕ(X) = T ) =
P (θi = 1) · P (ϕ(X) = T |θi = 1)

P (ϕ(X) = T )
(5)

Here, P (θi = 1) represents the prior marginal probability,
which can be computed using Equation 2. P (ϕ(X) = T ) is
the probability of the test passing, which has been obtained by
computing Q(θR) in Equation 3. P (ϕ(X) = T |θi = 1) can
be obtained by computing Q(θR) after setting θi and all its
ancestors to 1, and there is no need to recompute Q for other θ
that is not set to 1 in this process, as we have already computed
those values when computing Equation 4 in Section III-B.
Finally, the posterior conditional probability p̂θi is computed
as p̂θi =

P (θi=1|ϕ(X)=T )
P (Sθi

=1|ϕ(X)=T ) .
On the other hand, if the test fails, the situation is similar.

we update the posterior probability as:

P (θi = 1|ϕ(X) = F ) = P (θi=1)·(1−P (ϕ(X)=T |θi=1))
1−P (ϕ(X)=T ) (6)

The computation process is the same as when the test passes.
The updating process is performed in topological order,

allowing for efficient computation in linear time. However,
the sheer number of conditional probability tables (CPTs) that
require updating poses a significant time-consuming challenge
in practice, prompting us to seek ways to enhance efficiency.
In theory, after a single failed test, the probabilities of the
nodes along the path from the root to the deleted subtree root
should ideally be 1.0. This would imply that these nodes are
guaranteed to be retained in the final result. However, real-
world scenarios often deviate from this ideal due to factors
such as semantic dependencies, which our syntactic model
fails to capture. To address this discrepancy, we adopt an
optimization strategy focused on updating only the CPT of
the deleted subtree root. This allows for the possibility of
elements that should have been retained in the final result
to be excluded in future tests, resulting in a smaller output
size. Specifically, for θi ∈ Gd−EX , when the test passes,
we set p̂θi = 0. Conversely, when the test fails, we set
p̂θi =

pθi

P (ϕ(X)=F ) . Furthermore, if p̂θi exceeds 1.0 after this
adjustment, p̂θi is then set to 1.0. While this optimization
may slightly affect the model’s accuracy, experimental results
demonstrate its effectiveness. Further investigations can be
pursued to explore additional optimizations that enhance the
efficiency of the update process while preserving the accuracy
of the results.

In our paper, we propose a novel approach called T-
PDD for delta debugging. The core steps of our approach
involve building a Bayesian network from the ASTs, selecting
subsequences for testing based on expected gain, and updating
the network after each test. This iterative process continues

until each pθ is either 0 or 1 or the expected gain falls
below a predefined threshold (in our case, 1.0). In contrast to
domain-specific delta debugging approaches, which apply all
transformation templates throughout the process, in T-PDD,
transformation templates are applied after the convergence.
The termination condition is met when all templates have
been applied once, and at this point, the simplified program
is returned as the final result. By combining the exclusion
of subtrees and the application of transformation templates,
our algorithm provides a systematic and efficient approach to
program simplification, yielding desirable results.

IV. EVALUATION

In our evaluation, we compare our proposed approach
with Perses, a widely used domain-specific delta debugging
approach in the field of compiler debugging. Perses is known
for its state-of-the-art performance for context-free languages
and is built upon the ddmin algorithm. We aim to assess the
performance of our approach by conducting a comparative
analysis with Perses. Given that ProbDD has demonstrated
superior performance compared to the ddmin algorithm, we
hypothesize that integrating ProbDD into Perses could poten-
tially enhance its effectiveness. Therefore, we also evaluate
our approach by comparing it against a variant of Perses that
incorporates the ProbDD algorithm. We refer to this variant
as p-Perses in our evaluation. Furthermore, we investigate the
impact of the parameter settings in our approach. Specifically,
our evaluation aims to address the following research ques-
tions:

• RQ1. How does T-PDD compare to Perses in terms of
processing time and result size?

• RQ2. How does T-PDD compare to the variant of Perses
(p-Perses) that incorporates the ProbDD algorithm in
terms of processing time and result size?

• RQ3. What is the impact of the parameter in T-PDD?

A. Experimental Setup

1) Subjects: Our evaluation dataset comprises a total of
20 subjects written in the C programming language. These
subjects were selected from existing publications and are
widely recognized and used in the field of software engineer-
ing. They serve as representative examples for evaluating the
effectiveness of our approach.

In addition to the aforementioned subjects, we curated a
comprehensive dataset consisting of 87 subjects. Among these,
82 subjects are written in the C programming language, while
the remaining 5 subjects are written in the Rust programming
language. These subjects cover a diverse range of codebases
and programming constructs. In total, our study used 107
subjects. On average, each subject has 22,000 lines of code
(LOC), ranging between 105 and 7,000 LOC.

To generate the C subjects, we utilized Csmith, a specialized
fuzzing testing tool designed for C compilers. With Csmith,
we generated a large number of C programs that were sub-
sequently used to test 15 different stable versions of GCC
and LLVM compilers over a period of one week. During



this extensive testing process, we identified a total of 133
buggy test cases that triggered crashes or resulted in wrong
code errors in the compilers. These buggy test cases spread
across 7 different stable versions of the compilers. To ensure
efficiency and relevance in our evaluation, we further filtered
out 51 test cases that exhibited excessively long compilation
times. This step helped us focus on the subjects that were
more manageable and representative of real-world scenarios.
Ultimately, our evaluation dataset consisted of 82 subjects that
successfully triggered bugs in 7 different stable versions of
GCC and LLVM compilers. Among these subjects, 17 were
responsible for triggering crash bugs in specific versions of
GCC compilers (gcc-4.4.0 and gcc-4.6.0), while the remaining
65 subjects triggered wrong code bugs in various versions of
GCC and LLVM compilers (gcc-4.4.3, gcc-4.5.0, gcc-4.6.0,
gcc-6.2.0, gcc-7.1.0, and LLVM-6.0.1).

Regarding the Rust subjects, we specifically selected 5
subjects from the issue tracking system of Rust [14]. Out
of these 5 subjects, one was found to trigger a crash bug
in a particular version of the Rust compiler (rust-nightly-
20191029). The remaining 4 subjects were responsible for
triggering wrong code bugs in different versions of the Rust
compilers (rust-1.20.0, rust-1.34.0, rust-nightly-20200210, and
rust-nightly-20200922).

By incorporating both the curated and generated subjects,
our evaluation dataset provides a comprehensive and diverse
set of programs for assessing the effectiveness of our approach.

2) Metrics: In our study, we adopted three metrics com-
monly used in the evaluation of delta debugging approaches, as
established by previous research [4], [10], [15]. These metrics
include:

i) Size of the produced result: This metric measures the size
of the minimized program or code snippet. We quantified
the size using the number of tokens present in the result.

ii) Processing time: This metric quantifies the time taken by
the delta debugging approach to minimize the program.
We measured the processing time in seconds.

iii) Number of tokens deleted per second: This metric indi-
cates the rate at which tokens are removed during the
delta debugging process. It provides insights into the
efficiency of the approach. We calculated this metric
by dividing the total number of removed tokens by the
processing time.

To ensure accurate representation of the results, we computed
geometric means instead of arithmetic means when calculating
the average results. This decision was made due to significant
variations observed among different subjects in terms of the
three metrics. By using geometric means, we provide a more
balanced measure of the overall effectiveness of the delta
debugging approach across the different subjects.

3) Process: To address RQ1, we utilized all 107 subjects
in our evaluation. Firstly, we recorded the original size of
each subject. Then, we applied Perses and T-PDD to each
subject and recorded the size of the produced result as well as
the processing time. Additionally, we calculated the number
of tokens deleted per second. To determine the statistical

significance of the improvements achieved by our approach in
terms of effectiveness and efficiency compared to the original
approaches, we conducted a paired sample Wilcoxon signed-
ranked test and calculated the corresponding p-values using the
sizes of the produced results, the number of tokens deleted per
second, and the processing time.

To investigate RQ2, we compared the performance of T-
PDD and p-Perses on a random selection of 25 subjects from
our dataset, taking into consideration the time required to run
all subjects.

To explore RQ3, we conducted experiments to assess the
impact of the parameter σ in T-PDD. We utilized the same
subset of our dataset as in RQ2 for this experiment and varied
the value of σ (i.e., the initial value of conditional probability)
to 0.3, 0.4, 0.5, 0.6, and 0.7. Due to the significant time
required, we did not perform experiments on all subjects.

The results of both T-PDD and p-Perses are subject to
randomness. To mitigate the influence of randomness, we
executed both approaches five times and computed the average
results. We selected five repetitions as the standard deviation
of the five runs for each subject and approach was already
below 1% of their respective average results. For RQ1 and
RQ2, we set σ in T-PDD to 0.5.

4) Implementation: For the compared approaches, we se-
lected the latest version of Perses (v1.5) available at the
beginning of our evaluation as the baseline approach for our
evaluation. Additionally, we implemented p-Perses that incor-
porates the ProbDD algorithm. In this variant, we replaced the
ddmin component of Perses (v1.5) with ProbDD and used the
same hyper-parameter value as the one used in ProbDD [11].
Both approaches were executed on the subjects using the
default settings of Perses.

Regarding our approach, T-PDD, we implemented the nec-
essary functions for building the Bayesian network from an
AST, updating posterior probabilities, and selecting objects
for the next test. To ensure a fair comparison, we based our
implementation of these functions on Perses (v1.5). However,
we made a modification to the termination condition of T-
PDD compared to Perses, and as a result, we added an extra
command line option –fixpoint false when running T-PDD
on the subjects. This option reflects the different termination
conditions of T-PDD and Perses.

Our evaluation was performed on a Linux server with 16-
core 32-thread Intel(R) Xeon(R) Gold 6130 CPU (3.7GHz),
128 Gigabyte RAM, and the operating system of Ubuntu Linux
16.04.

B. Results and Analysis

1) Comparison between T-PDD and Perses: Table I
presents the overall performance of T-PDD and Perses, high-
lighting their efficiency in terms of the three metrics. The
results clearly indicate that T-PDD outperforms Perses in terms
of efficiency. On average, T-PDD achieves a deletion rate
of 12 more tokens per second than Perses across all 107
subjects, while maintaining the same size of the produced re-
sult. Importantly, this performance improvement is statistically



significant, as evidenced by both the p−valueS and p−valueT
being less than 0.05.

Detailed distribution of the improvements. Due to space
limitations, we are unable to list the results of each subject.
However, we have published the detailed results in our GitHub
repository for further reference. Additionally, we present the
detailed distribution of improvements in Figure 4, focusing on
the size of the produced result and the processing time. Each
sub-figure showcases the improvement achieved by T-PDD
over Perses on each subject, with the blue line representing the
actual improvement and the orange line serving as a reference
point (scale 0). Instances where T-PDD outperforms Perses are
depicted above the orange line.

Regarding the size of the produced result, T-PDD performs
worse than Perses on 24 subjects. This discrepancy can be
attributed to the presence of unused variable definitions that
remain in the output generated by T-PDD. These remnants
contribute to an average increase of 22 tokens compared to
the results produced by Perses. The nature of T-PDD, which
terminates after a single traversal of transformation templates,
can result in the retention of definitions associated with deleted
invoked functions or variables. Concerning the processing
time, T-PDD exhibits a relatively worse performance than
Perses on 6 subjects, with 4 of these subjects yielding smaller
size results when using T-PDD. Notably, there are only two
subjects where T-PDD performs worse in terms of both the size
of the produced result and the processing time. In such cases, it
is observed that T-PDD struggles to efficiently eliminate large
continuous chunks of dead code, a rare scenario in practice
where the ddmin algorithm employed by Perses can handle
that more effectively.

RQ1: In summary, our evaluation of T-PDD has
demonstrated its significant efficiency improvement over
Perses. Across a comprehensive set of 107 subjects, T-
PDD outperforms Perses by consuming 26.95% less time
and deleting 12 more tokens per second while achieving
the same size of the produced result. These findings are
statistically significant.

2) Comparison between T-PDD and p-Perses: Table II
shows the detailed results and overall performance of T-PDD
and p-Perses in terms of the three metrics. From Table II,
we can see that T-PDD performs better than p-Perses in all
metrics. On average, T-PDD deletes 8 more tokens per second
to obtain 17.5% smaller results than p-Perses on a random
selection of 25 subjects from our dataset. It is worth noting
that p-Perses performs worse than T-PDD due to the predefined
attempts to remove the elements as mentioned in Section II,
which does not utilize the historical test results. However, there
are two subjects where T-PDD performs worse than p-Perses
in terms of the size of the produced result and the processing
time, respectively. For the 20th subject, T-PDD only obtains
one more token in the result compared to p-Perses, but con-
sumes 8.077% less time. For the 25th subject, T-PDD requires
more time than p-Perses. As discussed in Section IV-B1, T-

PDD is not particularly effective in processing subjects that
contain large sections of dead code, which is a rare scenario
in the domain of program simplification.

RQ2: On average, T-PDD significantly outperforms p-
Perses by deleting 8 more tokens per second to obtain
17.5% smaller results on a random selection of 25
subjects from our dataset.

3) Impact of σ in T-PDD: We conducted an investigation
into the impact of the initial conditional probability parameter,
denoted as σ, in T-PDD. This investigation was based on a ran-
dom selection of 25 subjects from our dataset. The results are
presented in Figure 5, which consists of multiple sub-figures
depicting the size of the produced result, the number of tokens
deleted per second, and the processing time of T-PDD with
different σ values. In each sub-figure, the blue line represents
the performance of T-PDD with the corresponding σ value,
while the orange line represents the performance of Perses for
comparison purposes. It is worth noting that although different
σ values may lead to variations in performance, T-PDD
consistently outperforms Perses across all studied σ values.
Furthermore, we observed that the performance differences
between different σ values are considerably smaller compared
to the performance difference between T-PDD and Perses. This
indicates that the choice of σ has a relatively minor impact on
the overall performance of T-PDD.

RQ3: Our experiments revealed that the parameter σ
has a minimal impact on the performance of T-PDD.
Regardless of the specific values tested, T-PDD consis-
tently outperformed Perses.

C. Threats to Validity

To address the threat to internal validity, we have made
efforts to ensure the correctness of the implementation of T-
PDD and the experimental scripts. We conducted a thorough
code review and testing to verify the accuracy and reliability
of our implementation. By carefully examining the code, we
aimed to minimize the potential for errors or inconsistencies
that could affect the internal validity of our study.

The threat to external validity is mainly associated with the
subjects used in our study and the compared approaches. In
order to address this, we have employed a combination of sub-
jects from existing publications, which are commonly used and
recognized in the field. Furthermore, to enhance the diversity
of subjects, we have expanded our evaluation to include 5 Rust
files and a selection of C files. This broader range of subjects
enables us to investigate the generalizability of our approach.
In the future, we plan to further extend the evaluation by in-
corporating additional subjects from various types of context-
free grammars. Regarding the compared approaches, we have
chosen Perses as a representative approach in the domain of
compiler debugging, as discussed in Section IV-A.

The threat to construct validity primarily arises from ran-
domness inherent in our experimental setup. Randomness can



TABLE I: Comparison between T-PDD and Perses

Summary Ri
T-PDD Perses ↑R p− valueR ×S p− valueS ↑T p− valueTRt St Tt Rp Sp Tp

Dataset 45,612 48 43 1,000 48 31 1,369 00.00% 0.9736 1.37 0.0000 26.95% 0.0006

In this table and the tables in the rest of this section, R represents the size of the results; S represents the number of tokens deleted per seconds; T
represents the processing time in seconds; Ri represents the size of the input; t represents the T-PDD; p represents the Perses; ↑ denotes the improvement,
where ↑X= (Xp −Xt)/Xp; ×S denotes the speedup, where ×S = St/Sp. In this table, all numbers are geometric means.

(a) Detailed improvement distribution on the size of the produced result

(b) Detailed improvement distribution on the processing time

Fig. 4: Detailed improvement distribution

TABLE II: Comparison between T-PDD and p-Perses: De-
tailed Data

D Subject T-PDD p-Perses ↑R ×S ↑TRt St Tt Rp Sp Tp

A
dataset

subset
consisting

of
25

subjects

1 20 63.008 858 20 60.001 901 0.0% 1.05 4.772%
2 20 87.628 494 20 62.827 689 0.0% 1.395 28.302%
3 20 87.05 536 20 48.351 965 0.0% 1.8 44.456%
4 20 208.426 1,075 20 89.053 2,516 0.0% 2.34 57.273%
5 20 171.498 1,459 20 162.689 1,538 0.0% 1.054 5.137%
6 20 110.01 630 20 103.288 671 0.0% 1.065 6.11%
7 145 44.273 1,849 267 27.374 2,986 45.693% 1.617 38.078%
8 103 14.41 1,769 189 13.095 1,940 45.503% 1.1 8.814%
9 82 19.823 1,677 203 15.833 2,092 59.606% 1.252 19.837%
10 72 35.444 1,041 79 22.549 1,636 8.861% 1.572 36.369%
11 229 33.23 1,834 395 27.036 2,248 42.025% 1.229 18.416%
12 351 23.326 2,077 410 20.443 2,367 14.39% 1.141 12.252%
13 237 23.637 2,426 281 17.243 3,323 15.658% 1.371 26.994%
14 260 74.224 2,003 301 42.2 3,522 13.621% 1.759 43.129%
15 20 104.099 696 20 38.849 1,865 0.0% 2.68 62.681%
16 20 87.099 497 20 62.555 692 0.0% 1.392 28.179%
17 20 86.888 537 26 73.935 631 23.077% 1.175 14.897%
18 20 108.886 1,038 20 63.425 1,782 0.0% 1.717 41.751%
19 55 17.026 574 116 14.693 661 52.586% 1.159 13.162%
20 60 4.166 808 59 3.83 879 -1.695% 1.088 8.077%
21 66 4.051 884 74 2.975 1,201 10.811% 1.362 26.395%
22 54 27.526 1,549 55 16.107 2,647 1.818% 1.709 41.481%
23 4,539 0.239 15,090 4,677 0.111 31,216 2.951% 2.153 51.659%
24 99 0.127 55 99 0.047 150 0.0% 2.702 63.333%
25 141 37.69 4,890 172 54.118 3,405 18.023% 0.696 -43.612%

Summary 66 27 1,104 80 19 1,572 17.5% 1.421 29.771%

introduce variability in the performance of T-PDD and the
variant of Perses used for comparison. To mitigate this threat,
we have conducted multiple runs of each approach on each

(a) Impact of σ on the size of the produced result

(b) Impact of σ on the number of deleted tokens per second

(c) Impact of σ on the processing time

Fig. 5: Impact of σ for T-PDD



subject, specifically performing 5 repetitions. By calculating
the average results, we have aimed to account for the impact
of randomness and obtain more reliable performance metrics.
Further details on the experimental setup and the results can
be found in Section IV-A.

V. RELATED WORK

A. Probabilistic Delta Debugging Approaches

One closely related work to our approach is ProbDD [11],
which introduces a probabilistic model to guide the delta de-
bugging process and achieves state-of-the-art performance in
this field. Our approach, T-PDD, shares a similar motivation of
utilizing historical test results to guide delta debugging. How-
ever, there are key differences between ProbDD and T-PDD.
While ProbDD assumes independence between elements, T-
PDD leverages the AST to construct a probabilistic model,
capturing the relationships among elements. This distinction
allows T-PDD to effectively address domain-specific delta
debugging problems, while ProbDD focuses on a more general
context. Another related work is CHISEL [10], which designs
a Markov decision model to optimize the predefined sequences
of the ddmin algorithm. Furthermore, CHISEL incorporates
an analysis tailored to C programs, enabling it to identify def-
use relationships. Pardis [16] is an approach that leverages
machine learning techniques to enhance the delta debugging
process for C programs. It trains a model to predict the
semantic validity of objects, thereby improving the efficiency
and effectiveness of the debugging process. DEBOP [13] is
another probabilistic approach based on Markov chain Monte
Carlo (MCMC) with Metropolis-Hastings sampling. However,
DEBOP is designed for a different problem domain: software
debloating, where the goal is to maximize a set of continuous
objective functions instead of using a binary test function.
Consequently, DEBOP is not suitable for addressing domain-
specific delta debugging problems with binary test results,
which is the focus of T-PDD.

B. Domain-specific Delta Debugging Approaches

Different with the general delta debugging approaches such
as ddmin and ProbDD, there exist several domain-specific
delta debugging approaches tailored to specific programming
languages or problem domains. Berkeley Delta [17] utilizes
topformflat to identify nested structures and then perform
ddmin on them. Hierarchical Delta Debugging (HDD) [15]
is a program simplification technique that utilizes syntax
trees as its foundation, building upon the ddmin algorithm.
Since its introduction, several variants of HDD have been
proposed to further enhance its capabilities. These include
Coarse HDD [18], HDDr [19], and Modern HDD [20], [21].
These variants aim to improve upon the original HDD al-
gorithm by introducing new strategies and optimizations for
more effective program simplification. C-reduce [5] is one
such approach that employs heuristics based on the C/C++
semantics obtained from Clang for efficient program reduction.
Similar to C-reduce, there are other approaches in the domain
of software debloating that leverage expert knowledge to guide

the reduction process. Examples of such approaches include
Trimmer [7], uTrimmer [8] and PRAT [9]. J-reduce and its
improved version, proposed by Kalhauge and Palsberg [22],
[23], are reduction tools for Java bytecode that models the
reduction task as a problem of dependency graph reduction.
GTR* [24] defines transformation templates for tree-structured
data and filters out templates not present in a collected corpus
of example data. Storm [25] designs transformation templates
specifically for probabilistic program reduction. While these
transformation template-based delta debugging approaches
have shown improvements in reduction effectiveness within
their respective domains, they often suffer from efficiency
issues, as reported in existing studies [4]. Perses [4], on the
other hand, is a general-purpose delta debugging approach that
operates on the AST level. However, Perses follows predefined
sequences of attempts for program simplification and does not
leverage information from existing test results. In contrast,
our approach T-PDD utilizes a Bayesian network constructed
from the AST, incorporating existing test results and capturing
the relationships among elements to estimate the probability
of each element being retained in the result. As revealed in
Section IV, T-PDD significantly outperforms Perses in terms
of efficiency. More recently, Vulcan [12] has been proposed to
perform aggressive program transformations using the formal
syntax of the language. While Vulcan can achieve smaller
sizes of the produced result, it is designed as a post-processing
step for language-agnostic program reducers and the designed
templates are highly time-consuming.

VI. CONCLUSION

This paper introduces T-PDD, a novel approach designed to
enhance the performance of domain-specific delta debugging
techniques. By constructing a Bayesian network from the
Abstract Syntax Tree, T-PDD leverages existing test results
and captures the relationships among elements to estimate the
probability of each element being retained in the result. In T-
PDD, a strategic selection of elements is made to maximize the
gain of the subsequent test, guided by the Bayesian network.
The network is then updated based on the test results, contin-
ually refining the estimation process. The experimental results
demonstrate the significant advantages of T-PDD over Perses,
a representative domain-specific delta debugging approach. T-
PDD achieves a remarkable 26.95% reduction in processing
time on average, while also producing results that are 3.4 times
smaller in the best case. Our tool and benchmarks can be found
at: https://github.com/Amocy-Wang/T-PDD.
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