Faster Mutation Analysis via
Equivalence Modulo States

Bo Wang, Yingfei Xiong, Yanggingwei Shi,
Lu Zhang, Dan Hao

Peking University
July 12, 2017




Mutation Analysis

* Mutation analysis is a fundamental software analysis technique

Program > Mutants ) Test

Mutation Testing [DeMillo & Lipton, 1970]

Mutation-Based Test Geneartion [Fraser & Zeller, 2012]
Determining Mutant Utility [Just et al., 2017]
Mutation-based Fault Localization [Papadakis & Traon, 2012]
Generate-Validate Program Repair [Weimer et al., 2013]
Testing Software Product Lines [Devroey et al., 2014]

Mutate Compile & iU

Test



Scalability: A Key Limiting Issue

* The testing time of a single program is amplified N times
* Nis the number of mutants
* N can be usually large
* Nisrelated to the size of the program

e Plain mutation analysis scales to only programs less than 10k
lines of code

Program > Mutants ) Test

Results
Mutate Compile &
Test




Redundant
Computations

 Many computation steps in mutation analysis are
equivalent

* Reusing them could possibly enhance scalability



Example

test:

p();
assert(...);

p():
1: a=x();
2:a=a/2;

3:y(a);

Mutate

p():

1: a=x();
2:a=a-2;
3:y(a);

p():
1: a=x();
2: a=a+2;

3:y(a);

p():

1: a=x();
2: a=a*2;
3:y(a);

W Binary; o2
W Binary, B4
W Binary; B4

Compile

Execute



Existing work 1:
M UtatiOﬂ SChemata [Untch, Offutt, Harrold, 1993]

p(): p(): p():

1: a=x(); 1: a=x(); 1: a=x();
2: a=a-2; 2: a=a+2; 2:a=a*2;
3:y(a); 3:y(a); 3:y(a);

x(): X(): X():
v0): vO): v0):

* Procedures x() and y() are the same in the three
mutants, but they are compile three times

 Redundancy in Compilation



Existing work 1:
M UtatiOﬂ SChemata [Untch, Offutt, Harrold, 1993]

p(): p():

1: a=x(); 1: a=x();
2:a=a-2; 2:a=a+2;
3:y(a); 3:y(a);

p():

1: a=x();
2:a=a*2;
3:y(a);

=

p():

1: a=x();

2: if(mut==1) a=a-2
else if (mut==2) a=a+2
else a=a*2;

3:y(a);

* Generate one big program that compiles once
* Mutants are selected dynamically through input

parameters



Existing work 2:
Split-Stream Execution

[King, Offutt, 1991][Tokumoto et al., 2016][Gopinath, Jensen, Groce, 2016]

1: a=x(); _ (). —3-2 .
2: a=a-2; o — 2V Lo 2= 5 )

3:y(a);

1: a=x(); .
: a=a+2; 0 ' 1 2
3:y(a);

N

1: a=x();

:a=a*2; 0 ' 1 2
3: y(a);

N

* The computations before the first mutated
statement are redundant



Existing work 2:
Split-Stream Execution

1: a=x();

2:a=a-2; 1 — 2 e
3:y(a);
fork()

1: a=x(); a=x(); a=a+2 y(a);
2: a=a+2; 0 1 2
3:y(a);
: ) fork()

a=x(); —a* ;
2:a=a*2; 1 e 2 e
3:y(a);

* Start with one process

* Fork processes when mutated statements are
encountered



1: a=x();

2:a=a-2;

3:y(a);

1: a=x();

2: a=a+2;

3:y(a);

1: a=x();

2:a=a*2;

3:y(a);

Redundancy After the First
Mutated Statement

1 2
a==2 a==0
a=a+2
1 2
a==2 a==4
a=a*2
1 2
a==2 a==4



Our Contribution

* Equivalence Modulo States

* Two statements are equivalent modulo the current state
if executing them leads to the same state from the
current state
e Statements
e a=a*2
* a=a+2

e are equivalent modulo
e State 2 where a ==



Mutation Analysis via
Equivalence Modulo States

m1 a=3-2 m1 m1
1 2 3 Process 2
m1,m2,m3 m2,m3 a=a+2 m2,m3 m2,m3
a=a*2
0 1 2 3 Process 1

e Start with a process representing all mutants

* At each state, group next statements into equivalence
classes modulo the current state

* Fork processes and execute each group in one process



Challenges

m1 a=3-2 m1 m1
1 2 3 Process 2
m1,m2,m3 m2,m3 a=a+2 m2,m3 m2,m3
a=a*2
0 1 2 3 Process 1

* Objective: Overheads << Benefits

* Challenge 1: How to efficiently determine equivalences
between statements?

* Challenge 2: How to efficiently fork executions?
* Challenge 3: How to efficiently classify the mutants?



Challenge 1.
Determine Statement Equivalence

* Performance trial executions of statements and
record their changes to states
e State: a==2
* a=a+2 = {a - 4}
¢ a=a*2 = {a —» 4}

 Compare their changes to determine equivalence

* Does not work on statements making many
changes

* f(x,y), fly, x)



Challenge 1.
Determine Statement Equivalence

* Record abstract changes that can be efficiently
compared

* Ensuring c(s7) # c(s,) = al(s;) # a(sy)
* S4,S,: Statements
* c(s): Concrete changes made by s
* a(s): Abstract changes made by s

e Abstract changes of method call: values of arguments
e State: x=2,y=2
e f(x,y) = <2,2>
e f(y, x) = <2,2>



Challenge 2: Fork Execution

* Memory: the POSIX system call “fork()”
* Implements the copy-on-write mechanism
* Integrated with POSIX virtual memory management

* Other resources: files, network accesses, databases
* Solution 1: implement the copy-on-write mechanism
* Solution 2: map them into memory



Experiments — Mutation Operators

Name Description Example

AOR | Replace arithmetic operator a+b—a-D>
LOR Replace logic operator a&b—alb
ROR | Replace relational operator a==b—oa>=b
LVR Replace literal value T—->T+1

COR Replace bit operator a&& b—allb
SOR Replace shift operator a>>b-oa<<bd
STDC Delete a call foo() — nop
STDS Delete a store a=>5— nop
UOI Insert a unary operation b=a—a++;, b=a
ROV | Replace the operation value foo(a, b) — foo(b, a)
ABV Take absolute value foo(a, b) — foo(abs(a), b)

* Defined on LLVM IR
* Mimicking Javalanche and Major




Experiments - Dataset

Name LOC Tests | Mutants | Locations
flex 10334 42 56916 5119
gzip 4331 214 37326 3058
grep 10102 75 58571 4373
printtokens 475 4130 1862 199
printtokens2 401 4115 2501 207
replace 512 5542 3000 220
schedule 292 2650 493 55
schedule2 297 2710 1077 121
tcas 135 1608 937 73
totinfo 346 1052 756 63
vim 7.4 477257 (42073) 98 173683 14124
Total 504482 20736 337122 27612




Experiments - Results

12

10

B Our Approach ~ m Split-Stream Execution B Mutation Schemata

Time (hours)

2.56X speedup over SSE, and 8.95X speedup over MS



Experiments - Results

250
200
150
100

50

flex gzip grep printtokens printtokens2

B Our Approach  m Split-Stream Execution B Mutation Schemata

50

40

30

20

- B _
. - I N -. o

replace schedule schedule2 tcas

B Our Approach M Split-Stream Execution B Mutation Schemata



Discussion: Why worked?

* Overheads: the overhead for each instruction is small
* Not related to the size of the program, effectively O(1)

* Benefits: equivalences between statements modulo the
current state are common in mutation analysis
a=b
a>b+1
a>c
c>b

ea>b=>

* See paper for a detailed study on overheads/benefits



Discussion:
Eliminating More Redundancies

* Translating to model checking problem
e [Kastner et al., 2012]
e [Kim, Khurshid, and Batory, 2012]

* Record multiple states as a meta state at variable
level

e [Kastner et al., 2012]
e [Meinicke, 2014]

* Overheads yet need to be controlled



Conclusion

e Mutation analysis is useful
* Scalability is the a key challenge

* Eliminating redundancy is a promising way to
address scalability

 Overhead and benefit must be balanced

* Equivalence modulo states could achieve 2.56X
speedup over SSE



Acknowledgments

* We acknowledge Rene Just and Micheal Ernst for fruitful
discussion helping scope the paper

* and ISSTA Program Committee for the recognition
* and you for listening!



