
Faster Mutation Analysis via 
Equivalence Modulo States

Bo Wang, Yingfei Xiong, Yangqingwei Shi, 

Lu Zhang, Dan Hao

Peking University

July 12, 2017



Mutation Analysis

• Mutation analysis is a fundamental software analysis technique
• Mutation Testing [DeMillo & Lipton, 1970]

• Mutation-Based Test Geneartion [Fraser & Zeller, 2012]

• Determining Mutant Utility [Just et al., 2017]

• Mutation-based Fault Localization [Papadakis & Traon, 2012]

• Generate-Validate Program Repair [Weimer et al., 2013]

• Testing Software Product Lines [Devroey et al., 2014]

Program
MutantsMutantsMutants MutantsMutantsTest 

Results
Compile &
Test

Mutate



Scalability: A Key Limiting Issue 

• The testing time of a single program is amplified N times
• N is the number of mutants

• N can be usually large 

• N is related to the size of the program

• Plain mutation analysis scales to only programs less than 10k 
lines of code

Program
MutantsMutantsMutants MutantsMutantsTest 

Results
Compile &
Test

Mutate



Redundant 
Computations

• Many computation steps in mutation analysis are 
equivalent

• Reusing them could possibly enhance scalability



Example

p():
1: a=x();
2: a=a/2;
3: y(a);

p():
1: a=x();
2: a=a-2;
3: y(a);

p():
1: a=x();
2: a=a+2;
3: y(a);

p():
1: a=x();
2: a=a*2;
3: y(a);

test:
p();
assert(…);

𝐵𝑖𝑛𝑎𝑟𝑦1 𝑅𝑒𝑠𝑢𝑙𝑡1

Mutate Compile Execute

𝐵𝑖𝑛𝑎𝑟𝑦2 𝑅𝑒𝑠𝑢𝑙𝑡2

𝐵𝑖𝑛𝑎𝑟𝑦3 𝑅𝑒𝑠𝑢𝑙𝑡3



Existing work 1: 
Mutation Schemata [Untch, Offutt, Harrold, 1993]

• Procedures x() and y() are the same in the three 
mutants, but they are compile three times

• Redundancy in Compilation

p():
1: a=x();
2: a=a-2;
3: y(a);
x():
…
y():
…

p():
1: a=x();
2: a=a+2;
3: y(a);
x():
…
y():
…

p():
1: a=x();
2: a=a*2;
3: y(a);
x():
…
y():
…



Existing work 1: 
Mutation Schemata [Untch, Offutt, Harrold, 1993]

• Generate one big program that compiles once

• Mutants are selected dynamically through input 
parameters

p():
1: a=x();
2: a=a-2;
3: y(a);

p():
1: a=x();
2: a=a+2;
3: y(a);

p():
1: a=x();
2: a=a*2;
3: y(a);

p():
1: a=x();
2: if(mut==1) a=a-2

else if (mut==2) a=a+2
else a=a*2;

3: y(a);



Existing work 2:
Split-Stream Execution

• The computations before the first mutated 
statement are redundant

1: a=x();
2: a=a-2;
3: y(a);

1: a=x();
2: a=a+2;
3: y(a);

1: a=x();
2: a=a*2;
3: y(a);

0 1 2 3

0 1 2 3

0 1 2 3

a=x();

a=x();

a=x();

a=a-2

a=a+2

a=a*2

y(a);

y(a);

y(a);

[King, Offutt, 1991][Tokumoto et al., 2016][Gopinath, Jensen, Groce, 2016]



Existing work 2:
Split-Stream Execution

• Start with one process

• Fork processes when mutated statements are 
encountered

1: a=x();
2: a=a-2;
3: y(a);

1: a=x();
2: a=a+2;
3: y(a);

1: a=x();
2: a=a*2;
3: y(a);

1 2 3

0 1 2 3

1 2 3

a=x();

a=a-2

a=a+2

a=a*2

y(a);

y(a);

y(a);

fork()

fork()



Redundancy After the First 
Mutated Statement
1: a=x();
2: a=a-2;
3: y(a);

1: a=x();
2: a=a+2;
3: y(a);

1: a=x();
2: a=a*2;
3: y(a);

1 2 3

0 1 2 3

1 2 3

a=a-2

a=a+2

a=a*2

a==2

a==2

a==2

a==0

a==4

a==4



Our Contribution

• Equivalence Modulo States
• Two statements are equivalent modulo the current state 

if executing them leads to the same state from the 
current state

• Statements
• a = a * 2

• a = a + 2

• are equivalent modulo
• State 2 where a == 2



Mutation Analysis via 
Equivalence Modulo States

• Start with a process representing all mutants

• At each state, group next statements into equivalence 
classes modulo the current state

• Fork processes and execute each group in one process

1 2 3

0 1 2 3

a=a-2

a=a+2
a=a*2

m1,m2,m3 m2,m3

m1

m2,m3

m1

m2,m3

m1

Process 1

Process 2



Challenges

• Objective: Overheads << Benefits
• Challenge 1: How to efficiently determine equivalences 

between statements?
• Challenge 2: How to efficiently fork executions?
• Challenge 3: How to efficiently classify the mutants?

1 2 3

0 1 2 3

a=a-2

a=a+2
a=a*2

m1,m2,m3 m2,m3

m1

m2,m3

m1

m2,m3

m1

Process 1

Process 2



Challenge 1: 
Determine Statement Equivalence
• Performance trial executions of statements and 

record their changes to states
• State: a==2

• a=a+2 ⟹ 𝑎 → 4

• a=a*2 ⟹ 𝑎 → 4

• Compare their changes to determine equivalence

• Does not work on statements making many 
changes 
• f(x, y), f(y, x)



Challenge 1: 
Determine Statement Equivalence
• Record abstract changes that can be efficiently 

compared

• Ensuring 𝑐(𝑠1) ≠ 𝑐(𝑠2) ⟹ 𝑎 𝑠1 ≠ 𝑎 𝑠2
• 𝑠1, 𝑠2: Statements
• 𝑐(𝑠): Concrete changes made by 𝑠
• 𝑎(𝑠): Abstract changes made by 𝑠

• Abstract changes of method call: values of arguments
• State: x = 2, y =2
• f(x, y) ⟹ <2,2>
• f(y, x) ⟹ <2,2>



Challenge 2: Fork Execution

• Memory: the POSIX system call “fork()”
• Implements the copy-on-write mechanism

• Integrated with POSIX virtual memory management

• Other resources: files, network accesses, databases
• Solution 1: implement the copy-on-write mechanism

• Solution 2: map them into memory



Experiments – Mutation Operators

• Defined on LLVM IR 
• Mimicking Javalanche and Major



Experiments - Dataset



Experiments - Results

0

2

4

6

8

10

12

Time (hours)

Our Approach Split-Stream Execution Mutation Schemata

2.56X speedup over SSE, and 8.95X speedup over MS



Experiments - Results

0

50

100

150

200

250

flex gzip grep printtokens printtokens2 vim7.4

Our Approach Split-Stream Execution Mutation Schemata

0

10

20

30

40

50

replace schedule schedule2 tcas totinfo

Our Approach Split-Stream Execution Mutation Schemata



Discussion: Why worked?

• Overheads: the overhead for each instruction is small
• Not related to the size of the program, effectively O(1)

• Benefits: equivalences between statements modulo the 
current state are common in mutation analysis

• 𝑎 > 𝑏 ⇒

𝑎 ≥ 𝑏
𝑎 > 𝑏 + 1
𝑎 > 𝑐
𝑐 > 𝑏

• See paper for a detailed study on overheads/benefits



Discussion:
Eliminating More Redundancies
• Translating to model checking problem

• [Kästner et al., 2012]
• [Kim, Khurshid, and Batory, 2012]

• Record multiple states as a meta state at variable 
level
• [Kästner et al., 2012]
• [Meinicke, 2014]

• Overheads yet need to be controlled



Conclusion

• Mutation analysis is useful

• Scalability is the a key challenge

• Eliminating redundancy is a promising way to 
address scalability

• Overhead and benefit must be balanced

• Equivalence modulo states could achieve 2.56X 
speedup over SSE



Acknowledgments

• We acknowledge Rene Just and Micheal Ernst for fruitful 
discussion helping scope the paper

• and ISSTA Program Committee for the recognition

• and you for listening!


